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Abstract—We show that the Calogero-type perturbation preserves the integrability and partial separation
of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expres-
sions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems,
but leads to the change of degree of degeneracy.
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1. INTRODUCTION

The Coulomb problem is maximally superinte-
grable due to the conservation of the Runge–Lenz
vector. The Hamiltonian admits separation of vari-
ables in several coordinate systems. Any such coor-
dinate system possesses its own integrable perturba-
tions. Among them there are the Coulomb problem
in constant electric field (Coulomb–Stark problem)
and the two-center Coulomb problem. They admit a
separation of variables, respectively, in parabolic and
elliptic coordinates. Note that both systems are not
exactly solvable. In the Coulomb–Stark problem,
one can get analytically only the perturbative spec-
trum, while in the two-center Coulomb system, the
energy spectrum can be constructed only numerically,
except for some special cases [1]. Nevertheless, the
separation of variables is crucial in their study.

The well-known rational Calogero model [2],
which describes one-dimensional particles, interact-
ing with inverse-square potential,

H0 =
∑

i

p2i
2

+

N∑

i<j

g(g − 1)

(xi − xj)2
, (1)

is another example of maximally superintegrable sys-
tem [3]. It possesses higher-order (in momenta)
integrals of motion, which had been constructed by
the Lax pair [4]. The inverse-square potential in one
dimension possesses various integrable generaliza-
tions [see [5, 6] for the review], which have many
applications in physics and mathematics.
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The mixture of the Coulomb and Calogero po-
tentials gives rise to a more general integrable N-
dimensional system [7]. Recently we have shown
together with Olaf Lechtenfeld that the Calogero–
Coulomb system is also superintegrable [8]. This
property can be understood in the action-angle lan-
guage. An explicit form of the complete set of con-
stants of motion can be derived by taking proper
deformations of the corresponding integrals of the
underlying Coulomb system, then forming the sym-
metric polynomials on them [8, 9]. This method differs
from the standard construction [4], so that the defor-
mations of the Liouville integrals do not commute any
more. Nevertheless, the functional independence of
the constricted integrals of motion is preserved.

In this report we consider in this context the
N-dimensional Coulomb–Stark and two-center
Coulomb problems with the additional Calogero
potential (we will refer them as Calogero–Coulomb–
Stark and two-center Calogero–Coulomb prob-
lems). Both systems have a highlighted direction,
along which the full rotational symmetry of the initial
one-center Coulomb problem is broken down to the
SO(N − 1) symmetry. It is defined, respectively, by
the external filed direction and by the line connecting
two Coulomb charges. We show that under the
proper choice of this highlighted direction, both
systems still remain integrable and admit partial
separation of variables. In fact, the Schrödinger
equation decouples into three parts, only one of
which depends on the inverse-square interaction
term. The latter can be treated as a deformation of
the Schrödinger equation for the SO(N − 1) angular
momentum, usually referred as an angular Calogero
Hamiltonian [10–14].

The report is based on the recent publications in
[9, 15].
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2. CALOGERO–COULOMB PROBLEM

The Calogero–Coulomb problem is a mixture of
the N-particle rational Calogero model (1) and of the
N-dimensional Coulomb system [7]:

Hγ =
p2

2
+

N∑

i<j

g(g − 1)

(xi − xj)2
− γ

r
. (2)

It inherits most of the properties of the original
Coulomb system and possesses hidden symmetries
given by an analog of Runge–Lenz vector [8, 9]. It
is convenient to describe this system by means of the
Dunkl operators which make transparent the analogy
with the initial Coulomb problem. Let us consider
instead the extended Hamiltonian in this regard,

Hgen
γ =

π2

2
− γ

r
=

p2

2
+

∑

i<j

g(g − sij)

(xi − xj)2
− γ

r
. (3)

The modified momentum is expressed in terms of the
Dunkl operators by

π = −i∇, ∇i = ∂i −
∑

j �=i

g

xi − xj
sij. (4)

The operator sij permutes the ith and jth coordi-
nates. On the symmetric wavefunctions the gener-
alized Hamiltonian Hgen

γ reduces to the Calogero–
Coulomb Hamiltonian (2).

The Dunkl operators commute mutually like or-
dinary partial derivatives. However, their commuta-
tions with coordinates are nontrivial deformations of
the Heisenberg algebra relations [16],

[πi, xj] = −iSij. (5)

Here the operators Sij for i �= j are just rescaled
permutations: Sij = −gsij , and the Sii are defined by
the relation

∑
j Sij = 1.

Let us define the deformed angular momentum
operator via the Dunkl momentum [10, 17]:

Lij = xiπj − xjπi. (6)

It satisfies the deformed angular momentum com-
mutation relations [10]. The generalized Calogero–
Coulomb Hamiltonian preserves it [8].

The deformed Runge–Lenz vector is given by the
expression [9]

Ai =
1

2

∑

j

{Lij, πj}+
i

2
[πi, S]−

γxi
r

. (7)

It contains the permutation-group invariant element
which vanishes in the absence of the Calogero term

S =
∑

i<j

Sij. (8)

The generalized Hamiltonian preserves the deformed
Runge–Lenz vector too [9].

In the absence of the Calogero interaction (g = 0),
the integrals of the generalized Calogeo–Coulomb
Hamiltonian (3) are reduced to the standard integrals
of the N-dimensional Coulomb problem.

The Calogero–Coulomb problem can be obtained
by the restriction of the extended Hamiltonian (3) to
the symmetric wavefunctions. Therefore, its con-
stants of motion can be constructed by taking the
symmetric polynomials on the components of the
Dunkl angular momentum and Runge–Lenz vec-
tor [8, 9]:

L2k =
∑

i<j

L2k
ij , (9)

Ak =
∑

i

Ak
i . (10)

The expressions above demonstrate that the Calo-
gero–Coulomb problem is a superintegrable system,
like the pure Calogero [3] and Coulomb models.

Note that the square of Dunkl angular momentum
is related to the angular part I of the Calogero Hamil-
tonian [10]:

L2 = 2I + S(S −N + 2). (11)

In two dimension the symmetries of the Calogero–
Coulomb system, based on the dihedral group D2,
have been studied also in [18].

3. COULOMB–CALOGERO–STARK
PROBLEM

Consider the N-dimensional Coulomb problem
in constant electric field F in the presence of the
Calogero interaction:

Hγ,F =
p2

2
+

N∑

i<j

g(g − 1)

(xi − xj)2
− γ

r
+ Fx0, (12)

where x0 is the normalized center-of-mass coor-
dinate (see Eq. (15) below). The external field is
aligned in the direction (1, 1, . . . , 1), which ensures
the permutation invariance of the Hamiltonian. In the
absence of the external field, this model is reduced to
the Calogero–Coulomb model, considered above.

The generalized Hamiltonian is defined in terms of
the Dunkl momentum (4) as follows:

Hgen
γ,F =

π2

2
− γ

r
+ Fx0. (13)

First, consider its invariants.
The entire Dunk angular momentum tensor (6)

is not an integral of motion any more. Instead, its
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components, which are orthogonal to the external
field, are preserved,

L⊥
ij = Lij +

1

N

∑

k

(Ljk − Lik). (14)

Alternatively, one can express them in terms of the
Jacobi coordinates, which separate the center-of-
mass from the relative motion. They are defined by
the orthogonal map [12, 19]

x0 =
1√
N

(x1 + . . . + xN ),

x̃k =
1√

k(k + 1)
(x1 + . . .+ xk − kxk+1), (15)

where 1 ≤ k ≤ N − 1. The first coordinate describes
the center of mass, while the others, marked by tilde,
characterize the relative motion.

Denote now by L̃ij the components of the de-
formed relative angular momentum, rotated by the
Jacobi transformation. The algebra generated by L⊥

ij ,

in fact, coincides with the L̃ij , which are respon-
sible for the relative motion (1 ≤ i, j ≤ N − 1). In
the absence of Calogero interaction, they form the
SO(N − 1) subalgebra, which describes the rotations
in the hyperspace, orthogonal to the center-of-mass
direction.

Apart from the deformed relative angular mo-
menta, the modified component of the Runge–Lenz
vector (7) along the field direction, defined by

A = x0

(
2Hgen

γ,F +
γ

r

)
−

(
rpr +

N − 1

2i

)
p0

− F

2

(
r2 + 3x20

)
(16)

is preserved too.

This invariant commutes with the deformed rela-
tive angular momentum. In the g = 0 limit, one can
extract from these symmetry generators the standard
Liouville integrals of the Coulomb–Stark system.
The N − 2 integrals can be chosen to be the quadratic
Casimir elements of the naturally embedded algebras
SO(2) ⊂ . . . ⊂ SO(N − 1). They are described in
the relative angular coordinates and momenta. The
last two integrals are given by the Hamiltonian and
the modified component of the Runge–Lenz vector,
which had been constructed for N = 3 in [20].

Out of the g = 0 point, we deal with the deformed
quantities, and the Liouville property cannot be ex-
tended straightforwardly. Nevertheless, in the pres-
ence of a constant uniform electric field, the general-
ized Calogero–Coulomb model (13) still remains an
integrable system.

The integrals of the pure Calogero–Coulomb sys-
tem (12) obtained by the restriction to the symmet-
ric wavefunctions, must be symmetric too. Since
the longitudenal component of the Runge–Lenz vec-
tor (16) obeys this condition, it remains as a correct
integral for this system,

[A,Hγ,F ] = 0. (17)

We should take symmetric expressions of the kine-
matical constants of motion too, as in the absence
of the electric field [9]. For this purpose it is more
suitable to use the angular momentum in Jacobi co-
ordinates:

[Hγ,F , L̃2k] = 0, L̃2k =
∑

1≤i<j≤N−1

L̃2k
ij . (18)

The first member of this family is the square of the
relative Dunkl angular momentum. It is related to
the angular part of the Calogero model with reduced
center of mass Ĩ, which we call the relative angu-
lar Calogero Hamiltonian, by the same formula as
Eq. (11) above. So, we have proved the integrability
of the Calogero–Coulomb–Stark system.

Separation of Variables in Parabolic Coordinates

It is well known that the Coulomb–Stark system
admits separation of variables in parabolic coordi-
nates. It appears that the Calogero–Coulomb–Stark
system admits complete separation of variables in
parabolic coordinates for N = 2, 3 and partial sepa-
ration for N > 3 [15].

In the Jacobi coordinates (15), the last system
acquires the following form:

Hγ,F =
p20
2

− γ√
x20 + x̃2

+ Fx0 + H̃0, (19)

where the last term is the Calogero Hamiltonian (1)
with reduced center of mass. We pass to the parabolic
coordinates (ξ, η, ϕι), where ϕι are the relative angu-
lar variables, and

ξ = r + x0, η = r − x0. (20)

In new coordinates the Hamiltonian (19) is expressed
as follows:

Hγ,F = − 2

ξ + η
(γ +Bξ +Bη)

+
Ĩ
ξη

+
F

2
(ξ − η), (21)

where we have shorten the kinetic term using the
notation

Bξ =
1

ξ
N−3

2

∂

∂ξ
ξ

N−1
2

∂

∂ξ
. (22)
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Further we proceed by extending straightforwardly
the steps, applied for the usual Coulomb system in
external field in [21]. Employing the following ansatz
to the total wavefunction

Ψ(ξ, η, ϕι) = Φ1(ξ)Φ2(η)ψ(ϕι), (23)

we decouple Schrödinger equationHγ,FΨ = EΨ into
three parts. The two of them depend, respectively, on
ξ and η,

(
Bξ +

E

2
ξ − F

4
ξ2 − q̃(q̃ +N − 3)

4ξ
+ λ1

)

× Φ1(ξ) = 0, (24a)
(
Bη +

E

2
η +

F

4
η2 − q̃(q̃ +N − 3)

4η
+ λ2

)

× Φ2(η) = 0. (24b)

Here the Coulomb charge is fractioned into two parts,

λ1 + λ2 = γ. (24c)

The last equation describes the spectrum and
eigenstates of the relative angular Calogero mo-
del [11]:

Ĩ(ϕι, ∂ϕι)ψq̃(ϕι) =
q̃(q̃ +N − 3)

2
ψq̃(ϕι). (24d)

In particular, the spectrum is determined by the num-
bers

q̃ =
gN(N − 1)

2
+ 3l3 + . . .+NlN

with li = 0, 1, 2, . . . . (25)

For integer values of the coupling g, the angular
energy spectrum is that of a free particle with angular
momentum q̃ on the (N − 2)-dimensional sphere,
but has a significantly lower degeneracy due to the
restriction to the symmetric wavefunctions [11, 13].

The longitudinal component of the Runge–Lenz
vector (16) separates the two equations (24a) and
(24b):

AΨ = (λ2 − λ1)Ψ. (26)

The second invariant, given by the relative angular
Hamiltonian Ĩ , is common in both cases and sepa-
rates the relative angular degrees of freedom.

In the absence of the electric field, F = 0, the frac-
tional Coulomb charges λi with i = 1, 2 take discrete
values depending on the parabolic quantum numbers
ni = 0, 1, 2, . . .

λi = γ
ni +

1
2(q̃ + 1)

n+ 1
2(N − 3)

. (27)

They specify also the partial wavefunctions Φ1(ξ) =
Φn1q̃(ξ) and Φ2(η) = Φn2q̃(η). The principal quan-
tum number, which characterizes the spectrum

En = − γ2

2
(
n+ N−3

2

)2 ,

n = nr + l + 1, nr = 0, 1, 2, . . . , (28)

is expressed now via parabolic quantum numbers,
n = n1 + n2 + q̃ + 1. (29)

As in the usual Coulomb problem [22], the electric
field completely removes the degeneracy in the or-
bital momentum, but preserves the degeneracy with
respect to q.

4. TWO-CENTER CALOGERO–COULOMB
SYSTEM

Consider now the integrable two-center Coulomb
system in the presence of the inverse-square Calogero
potential. In order to construct the Hamiltonian of
this system, we should replace, as in the previous
sections, the momentum operators by the Dunkl
momenta, and then restrict the Hamiltonian to the
symmetric wavefunction. In order to assure the
permutation symmetry, we align the axis, connecting
two Coulomb charges, along the center-of-mass
coordinate. In the Jacobi coordinates (15), the
distances to the charges are given by

r1 =
√

x̃2 + (x0 − a)2,

r2 =
√

x̃2 + (x0 + a)2. (30)

The generalized two-center Calogero–Coulomb Hamil-
tonian is

Hgen
γ1,γ2 =

π2

2
− γ1

r1
− γ2

r2
. (31)

On the symmetric wavefunctions, it produces the
two-center Calogero–Coulomb system,

Hγ1,γ2 =
p2

2
+

N∑

i<j

g(g − 1)

(xi − xj)2
− γ1

r1
− γ2

r2
. (32)

Like the Calogero–Coulomb–Stark Hamiltonian, it
possesses the symmetry given by the deformed angu-
lar momentum generators perpendicular to the prede-
fined direction (14).

The modified Runge–Lenz integral of the g = 0
Hamiltonian has been constructed in [23, 24]. The
construction can be extended to the case of nonzero
coupling values by [15]

A = L2 + a2p20 − 2ax0

(
γ1
r1

− γ2
r2

)
, (33)

where L2 is the Dunkl angular momentum square,
defined in Eqs. (9).
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Separation of Variables in Elliptic Coordinates

Now, let us show that in complete analogy with
the previous case, the two center Calogero–Coulomb
system (32) admits complete separation of variables
in the elliptic coordinates for N = 2, 3 and the partial
separation for N > 3.

The map from the Jacobi variables (x0, y) to the
elliptic coordinates (ξ, η) looks as follows (similar to
the usual hydrogen atom case [25]):

ξ =
r1 + r2
2a

, η =
r1 − r2
2a

, (34)

where ri is the distance from the i-th Coulomb
charge (30). The relative angles ϕi remain un-
changed. The new coordinates belong to the regions
ξ ≥ 1 and −1 ≤ η ≤ 1. The two-center Calogero–
Coulomb Hamiltonian (32) in elliptic coordinates
reads

Hγ1,γ2 =
1

2a2(ξ2 − η2)
(Bη −Bξ)

+
Ĩ(ϕι, ∂ϕι)

a2(ξ2 − 1)(1− η2)
(35)

− γ1
a(ξ + η)

− γ2
a(ξ − η)

,

where the operator Bξ from the kinetic energy part
acquires the following form:

Bξ =
1

(ξ2 − 1)
N−3

2

∂

∂ξ
(ξ2 − 1)

N−1
2

∂

∂ξ
. (36)

Then, choosing the wavefunction

Ψ(ξ, η, ϕι) = Φ1(ξ)Φ2(η)ψ(ϕι), (37)

we can separate the variables in the Schrödinger
equation into the three parts. The first two equations
are (

Bξ −
q̃(q̃ +N − 3)

ξ2 − 1
+ 2a(γ1 + γ2)ξ

+ 2a2Eξ2 − λ

)
Φ1(ξ) = 0, (38a)

(
Bη −

q̃(q̃ +N − 3)

η2 − 1
+ 2a(γ1 − γ2)η

+ 2a2Eη2 − λ

)
Φ2(η) = 0. (38b)

The third equation is inherited from the Stark
case (24d). It describes the energy eigenstates of the
relative angular Calogero Hamiltonian and its spec-
trum, depending on the composite quantum number
q̃ (25). In the absence of the Calogero term, it deter-
mines the spectrum and energy states of a free particle
system on (N − 2)-dimensional sphere.

Obviously, the partial states Φ1,2 in the first two
equations depend on the energy level E and the q̃. The
parameter λ in the first two equations separates the
variables ξ and η. It coincides with the eigenvalue
of the slightly redefined Runge–Lenz invariant for
the two center Calogero–Coulomb system (33) with
the Dunkl angular momentum square replaced by the
doubled angular Calogero Hamiltonian,

A = 2I + a2p20 − 2ax0

(
γ1
r1

− γ2
r2

)
. (39)

We follow the steps done above for the parabolic case.
First, use the total wavefunction Ψ instead of the par-
tial ones, Φ1,2, in Eqs. (38a) and (38b). Next, cancel
out the energy E by taking appropriate combinations
of both equations. This yields the eigenstate equation
for the modified Runge–Lenz invariant: AΨ = λΨ.
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