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INTRODUCTION
In this work, we present the time-dependent inte-

gral neutron transport equations, for solution of which
the KIR and KIR-P codes, based on the Monte Carlo
method and intended for calculating the kinetics of
nuclear reactors, are being developed. In the KIR
code, two algorithms for simulating the kinetics by the
analog Monte Carlo method are implemented. The
KIR-P code implements the classical adiabatic, quasi-
static, and improved quasi-static approximations. The
Monte Carlo method in the KIR-P code is used for
calculating the parameters of point kinetics and find-
ing the shape function. The main aspects of solving
these integral equations by the Monte Carlo method
are presented.

To date, the analysis of the kinetics and dynamics
of reactors is based on algorithms for solving the
approximate equations of point or distributed kinetics.

Only recently did works describing programs in
which the neutron transport equation with a time
dependence of the neutron flux density (NFD) is
solved by the Monte Carlo method appear [1–11].
Such programs became possible owing to the intensive
development of multiprocessor computers [12].

Preliminary estimates show that the use of super-
computers with a capacity of ~10 petaflops will make
possible the simulation of fast dynamic processes with
a duration of tens of seconds for both thermal- and
fast-neutron reactors. Recall that 1 petaflop equals
1015 f loating-point operations per second and 1 exa-
flop equals 1018 operations per second. The most pow-
erful computer in the world (information for June 2014
[12]), the Chinese Tianhe-2 (MilkyWay-2), has more

than 3 100 000 computing cores with a clock frequency
of 2.2 GHz and has a capacity of ~33.9 petaflops; in
second place is the Titan (USA) (560 000 cores with a
clock frequency of 2.2 GHz and a capacity of
~17.6 petaflops); in third place is the Sequoia (USA)
(more than 1.5 million cores with a clock frequency of
1.6 GHz and a capacity of ~17.2 petaflops); and in
fourth place is the Japanese K (more than 700000
cores with a clock frequency of 2.0 GHz and a capacity
of more than 10 petaflops). By 2020, Japan is going to
build a computer with a capacity of 1 exaflop.

It should be noted that all programs mentioned in
[1–11] employ either the approximate or direct
approach. In addition, although these works describe
programs based on the Monte Carlo method, they
present only the time-dependent neutron transport
equation in the integro-differential form.

Using the Monte Carlo method, the statistics of the
processes in the phase space are collected and, in this
manner, the integral neutron transport equation,
which will be analyzed in the present paper, is solved.
Here, we do not present the proof of the possibility to
pass from the integro-differential equation to the Pei-
erls integral equation [13]—it is presented in the
monograph by Vladimirov [14]. The general transport
equation has the form of the Fredholm equation of the
second kind,

The analog method for solving the neutron transport
equation by the Monte Carlo method naturally simu-
lates the random processes in the reactor, which, in
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turn, are described by the neutron transport equation
without regard for any variations in time. Therefore, to
find a way to implement approximate methods, it is
necessary to find out how the time-dependent param-
eters are reflected in the kinetic equation.

THE COMPUTATIONAL METHOD
AND THE INTEGRAL EQUATIONS

The simulation of the distributed neutron kinetics
consists in the repeated solution by the Monte Carlo
method of the inhomogeneous neutron transport
equation in the time intervals into which the time of
the dynamic processes under consideration is divided.

The inhomogeneous neutron transport equation in
the integro-differential form reads [15]

(1)

where

(2)

(3)

In the book by Bell and Glasstone [15, p. 21], the
equation for the NFD in the integral form is derived by
the standard method of characteristics. The total
derivative of the NFD is introduced as follows:

(4)

where s is the distance in the direction of the displace-
ment Ω.

From Eq. (1), it is easy to see that

(5)

(6)

As a result, the equation for the NFD is reduced to the
integral form:

(7)

where q is defined by formulas (2) and (3).
Formally representing the neutron flux Φ(r, Ω, E,

t) as the product of the amplitude factor n(t) and the
shape function ψ(r, Ω, E, t), i.e.,

(8)

one can obtain the neutron transport equation for the
shape function [16, p. 414]:

(9)

where f(r, Ω ', E' → Ω, E) is the probability that, upon
collision at point r of a neutron having the direction of
motion Ω' and energy E ', a neutron with the direction
of motion Ω and energy E will appear.

Solving differential equation (3), one can obtain an
expression for the density of delayed neutron emitters:

When writing the neutron flux as the product of two
factors, it is assumed that the amplitude factor n(t)
describes the main time dependence, while the shape
function ψ slowly varies with time. The methods
employing the representation of the f lux in form (8)
are referred to as factorization methods.

Expanding each term for the neutron source q and
dividing Eq. (2) by n(t), one can obtain the equation
for the shape function without approximations:
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For the adiabatic and quasi-static approximations,
either this shape function is time-independent or its
time dependence is expressed by linear or other
approximations. Therefore, the derivative of the shape
function with respect to the parameter s is introduced
as follows:

(11)

In this case, the change of variables (6) is performed
and the change of variables (5) is removed.

By analogy with [15, p. 21], by the method of char-
acteristics, the integral equations for the shape func-
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tion (rather than for NFD) are derived in three
approximations: adiabatic, quasi-static, and improved
quasi-static.

The adiabatic approximation implies three simpli-
fications [16, p. 415–416]. In this approximation, the
shapes of the distributions of the delayed and prompt
neutron sources are identical and, therefore, the time
shift in the direction of precursors of delayed neutrons
is neglected. In addition, both terms with the time
derivatives are neglected in Eq. (1).

The integral equation in the adiabatic approxima-
tion reads

(12)
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The expression in the exponent in (12) will be called
the attenuation factor.

The prompt and delayed neutron sources can be
combined, and in the absence of an external source,
the eigenfunction corresponding to the eigenvalue Keff
can be calculated.

This equation is successfully solved by precise
codes based on the Monte Carlo method.

In the quasi-static approximation, only the time
derivative of the shape function, dψ(r, Ω, E, t)/dt, in
Eq. (1) is set to zero. The integral equation for the
shape function in the quasi-static approximation reads

(13)
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It is readily seen from Eqs. (12) and (13) that, for the
numerical solution of Eq. (13) by the Monte Carlo
method, when calculating the attenuation term, one

should take into account the term , which

can be calculated in the point-kinetics approximation.
In the stationary problem, delayed neutrons are emit-
ted immediately and are described in Eq. (12) by the

term (r – s'Ω ', E', t), which, in the

quasi-static approximation, should be eliminated; this
can be done relatively easily when calculating the
number of neutrons of the next generation. At the
same time, the delayed neutron source described in

Eq. (13) by the term (r – s'Ω', t) should

be distributed.
In the improved quasi-static approximation, it is a

common practice to use the following linear approxi-
mation of the derivative of the shape function:

where t – Δt is the time for which the shape function
was recalculated the last time.

There are also other approximations of the shape
function [17, p. 61], such as exponential and quadratic
ones, which can be easily used in calculations. The
integral equation for the improved quasi-static
approximation reads

(14)

Besides the operations that must be carried out for the
quasi-static approximation, it is evident from Eqs. (13)
and (14) that, when calculating the attenuation factor
for the numerical solution by the Monte Carlo

method, one should take into account the term .

At the same time, neutron sources should be distrib-
uted by the distribution in the previous time step,

which are expressed in Eq. (14) by the term ψ(r –

s'Ω', Ω', E ', t – Δt). This functional is supposed to be
estimated in the previous time interval.

CONCLUSIONS

On the basis of the integral equations derived, some
aspects of the method for calculating fast transient
processes in nuclear reactors in different approxima-
tions have been considered.

Presently, programs implementing the Monte
Carlo method for solving time-dependent integral
equations of neutron transport are being developed.
These programs are supposed to be used in a program
complex intended for simulating the dynamic pro-
cesses in the cores of liquid-metal cooled reactors.

REFERENCES
1. B. L. Sjenitzer and J. A. Hoogenboom, Nucl. Sci. Eng.

175, 94 (2013).
2. N. Z. Cho and S. Yun, in Proceedings of the Interna-

tional Conference on the Physics of Reactors PHYSOR 08,
Nuclear Power: A Sustainable Resource, Interlaken, Swit-
zerland, Sept. 14-–19, 2008.

3. S. Yun, J. W. Kim, and N. Z. Cho, in Proceedings of the
International Conference on the Physics of Reactors
PHYSOR 08, Nuclear Power: A Sustainable Resource,
Interlaken, Switzerland, Sept. 14–19, 2008.

4. M. Shayesteh and M. Shahriari, Ann. Nucl. Energy 36,
901 (2009).

5. J. Leppanen, in Proceedings of the International Confer-
ence on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering M&C 2013,
Sun Valley, Idaho, May 5–19, 2013, p. 117.

6. B. L. Sjenitzer and J. A. Hoogenboom, in Proceedings of
the International Conference on the Physics of Reactors
PHYSOR 2012 on Advances in Reactor Physics Linking
Research, Industry and Education, Knoxville, Tennessee,
USA, Apr. 15–20, 2012.

7. B. L. Sjenitzer and J. A. Hoogenboom, in Proceedings of
the International Conference on Mathematics and Com-
putational Methods Applied to Nuclear Science and Engi-
neering M&C 2011, Rio de Janeiro, RJ, Brazil, May 8–
12, 2011.

8. B. L. Sjenitzer and J. A. Hoogenboom, in Proceedings of
the Joint International Conference on 7th Supercomputers

( )1
( )

dn t
n t dtv

χ
β Σ

π∑
( )

4
j

j j fj

E
v

χ
λ

π∑
( )

4
j

j jj

E
C

ψ − ψ − Δ Δ[ ( , , , ) ( , , , )]/ ,E t E t t tr Ω r Ω

( )

( )
( )

( ) ( )

∞

≠

⎡ ⎤⎛ ⎞⎢ ⎥ψ = − Σ − + +⎜ ⎟υΔ υ⎝ ⎠⎢ ⎥⎣ ⎦
χ⎛ ⎞− β Σ −⎜ ⎟π ψ −⎜ ⎟

+ Σ − →⎜ ⎟⎜ ⎟×
⎝ ⎠

χ
+ λ −

π

∫ ∫

∫ ∫ ∑

∑

'

tot

0 0

', '

( )1 1 1( , , , ) exp '' , , ''
( ) ( )

( )
(1 ) ' ', ,

4 ' ', ', ', ' '
' ', ', ( , ', ' , )

( )
' ',

4

s

p
f f

xE
x f

j
j j

j

dn tE t s E t ds
n t t n t dt

E
s E t

n t s E t d dE
s E t f E E

E
C s

Ω

r Ω r Ω

r Ω
r Ω Ω Ω

r Ω r Ω Ω

r Ω

v

( ) ( )

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪+ − + ψ − − Δ
⎪ ⎪υΔ⎩ ⎭

' .

( )' , , , ( ' ', ', ', )

ds

n tt Q s E t s E t t
t

r Ω Ω r Ω Ω

Δ
1

tv

Δ
( )n t

tv



1256

PHYSICS OF ATOMIC NUCLEI  Vol. 79  No. 8  2016

DAVIDENKO et al.

in Nuclear Application and 3rd Monte Carlo SNA + MC
2010, Tokio, Japan, Oct. 17–21, 2010.

9. D. Legrady and J. Hoogenboom, in Proceedings of the
International Conference on the Physics of Reactors
PHYSOR 08, Nuclear Power: A Sustainable Resource,
Interlaken, Switzerland, Sept. 14–19, 2008.

10. H. Shen, Z. Li, K. Wang, and G. Yu, in Proceedings of
the International Conference on the Physics of Reactors
PHYSOR 2010, Advances in Reactor Physics to Power the
Nuclear Renaissance, Pitsburg, Penns., USA, May 9–14,
2010.

11. A. K. Zhitnik, N. V. Ivanov, V. E. Marshalkin, S. P. Og-
nev, A. V. Pevnitsky, V. M. Povyshev, I. E. Ponomarev,
V. I. Roslov, T. I. Semenova, V. A. Tarasov, V. P. Fomin,
T. A. Taivo, and W. S. Yang, in Proceedings of the Inter-
national Conference on the Monte Carlo Method: Versa-

tility Unbounded in a Dynamic Computing World, Chat-
tanooga, Tennessee, USA, April 17–21, 2005.

12. Top 500, the List. http://www.top500.org/. Cited
October 10, 2014.

13. R. Peierls, Proc. Cambridge Philos. Soc. 35, 610
(1939).

14. V. S. Vladimirov, Izv. Akad. Nauk SSSR, Ser. Mat. 21,
3 (1957).

15. G. I. Bell and S. Glasstone, Nuclear Reactor Theory
(Van Nostrand Reinhold, New York, 1970).

16. V. F. Kolesov, Aperiodic Pulse Reactors (RFYaTs-VNIIEF,
Sarov, 1999) [in Russian].

17. P. A. Fomichenko, Preprint IAE No. IAE-5880/5
(Kurchatov Inst. At. Energy, Moscow, 1995).

Translated by E. Chernokozhin


		2017-02-09T12:04:30+0300
	Preflight Ticket Signature




