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Abstract—The role of the nucleon correlations in the ground states of even–even nuclei on the properties
of low-lying states in odd–even spherical and transitional nuclei is studied. We reason about this subject
using the language of the quasiparticle–phonon model which we extend to take account of the existence
of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even–even cores.
Of paramount importance to the structure of the low-lying states happens to be the quasiparticle–phonon
interaction in the ground states which we evaluated using both the standard and the extended random
phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed
using pairing and quadrupole–quadrupole interaction modes which have the dominant impact on the
lowest-lying states’ structure. It is found that states with same angular momentum and parity become
closer in energy as compared to the predictions of models disregarding the backward amplitudes, which
turns out to be in accord with the experimental data. In addition we found that the interaction between
the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute
significantly to the magnetic dipole moment of odd-A nuclei. It also reveals a potential for reproducing their
experimental values which proves impossible if this interaction is neglected.
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1. INTRODUCTION

The perception of a nucleon orbiting around a dou-
bly even inert core lead to numerous valuable conclu-
sions about the validity of the nuclear single-particle
shell model. One of its undoubted validations is the
reproduction of the experimentally measured nuclear
spins and parities [1]. This picture needs amendments
if continuously varying quantities such as the energy
of levels and the transitions between them as well
as the electric and magnetic moments are to be de-
scribed. Departing from the magic configurations—
the landmarks of the extreme shell model—parts of
the nucleon–nucleon interaction which cannot be in-
corporated in the mean field start to play a significant
role in determining the spectroscopic properties of the
nuclear states. This residual interaction imposes a
many-body problem whose solution is often based
on physical insights. For odd-A nuclei this problem
can be approached by the interaction between the last
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nucleon with the different modes of the even–even
core. In this work we present the most important
results based on the particle–core coupling concept
for the lowest-lying states which have been obtained
from the authors during the last decade. The outcome
from these research facilitates the process of describ-
ing the nuclear properties far away from the valley of
stability which is one of the major directions in the
development of nuclear physics.

A model which consistently incorporates the in-
teraction between the different vibrational modes of
the even–even core with the last nucleon is the well
established quasiparticle–phonon nuclear model [2].
Originally [3] it treated the influence of the excited
states of the core on the last nucleon—its shift in
energy, fragmentation as well as its decay properties.
The achievements of this approach for medium ex-
citation energies are reviewed in [4, 5]. In a series
of papers [6–9] other authors and we applied efforts
to tackle the fluctuations of the ground state, the
so-called zero-point motion, and their effects on the
lowest-lying states in odd–even isotopes. In physical
terms, we suggested the existence of (quasi)nucleons
and phonons in the ground state of the even–even
cores. Due to the limited applicability of the standard
perturbation theory to this problem [10], we applied
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the Random Phase Approximation (RPA) [7] as well
as a state-of-the art realization of the more consistent
but complicated extended RPA (ERPA) [8]. These
approximate methods yield progressively improving
results for even–even nuclei when applied to calcu-
lating both energies and transitions.

The main focus of our research is the effects of the
particle–vibration coupling on the various measured
quantities related to states close the ground state. In
this respect the generation of the single-particle basis
is performed using a standard Woods–Saxon mean
field. On top of it we added pairing correlations as
well as different channels of the long-range part of the
residual interaction. In QPM the respective Hamil-
tonian is diagonalized approximately in a step-by-
step procedure by introducing fictitious particles—
the quasinucleons and the phonons. This approach
gives the model the advantage of being flexible and
versatile enough to be tailored to focus on the physical
phenomena of interest. The latter happens to be quite
helpful not only in terms of reducing the amount of
performed numerical operations but also to keep a
steadfast eye on the physical outcome of the calcu-
lations.

In this review paper we briefly outline in Section 2
the main elements of the theory with respect to the
studied quantities. Results from calculations for the
energies of the low-lying states, the transitions be-
tween them as well as their magnetic moments are
presented in Section 3. Perspective directions for fu-
ture developments in this area as well as the potential
improvements of the current scheme are discussed in
the concluding Section 4.

2. MODEL OVERVIEW

The QPM approach to the nuclear many-body
problem involves assumptions related to the Hamil-
tonian of the system, the choice of model wave func-
tions and finally the set of approximation methods for
solving the Schroedinger equation. A key feature of
this model is the introduction of two types of virtual
particles which represent the basic modes of nuclear
excitations—the single-particle and vibrational mo-
tions. These particles are the Bogoliubov quasipar-
ticles and the nuclear phonons which are formulated
as

αjm = ujajm − (−)j−mvja
†
j−m (1)

and

Qλμi =
1
2

∑

jj′

[
ψλi

jj′A(jj′;λμ) (2)

− (−1)λ−μϕλi
jj′A

†(jj′;λ − μ)
]
,

respectively. The spherical single-nucleon basis
states ajm are used throughout this paper. Details on
the quasiparticle–phonon nomenclature, which we
follow in this paper, can be found in [2].

In order to diagonalize a complex Hamiltonian like
the one involving short-range pairing and long-range
interactions on top of the mean field

H = HMF + HRAIR + HRES, (3)

one transforms it to obtain a picture of freely prop-
agating and interacting quasiparticles and phonons.
Initially, the first two terms of the Hamiltonian are di-
agonalized by using the BCS ansatz. From the long-
range part of the residual interaction we consider in
our research the multipole and spin-multipole terms:

HRES = HM + HSM, (4)

which are expressed as

HM = −1
2

∑

λ
ρ=±1

(
κ

(λ)
0 + ρκ

(λ)
1

)
(5)

×
∑

μ
τ=n,p

M †
λμ(τ)Mλμ(ρτ),

HSM = −1
2

∑

λ
L=λ,λ±1

ρ=±1

(
κ

(λL)
0 + ρκ

(λL)
1

)
(6)

×
∑

M
τ=n,p

(Sλ
LM )†(τ)Sλ

LM (ρτ),

where the index τ enumerates the neutron (n) and
proton (p) subsystems.

M †
λμ =

∑

jj′mm′

〈jm|iλRλ(r)Yλμ|j′m′〉a†j′m′ajm (7)

and

(Sλ
LM )†

=
∑

jj′mm′

〈jm|iλRλ(r)[σYλ]LM |j′m′〉a†j′m′ajm (8)

are the single-particle multipole and spin-multipole
operators [2]. From the sum over L in Eq. (6) we
include only the terms with L = λ − 1. In the phonon
space, the eigenstates of this part of the interaction
are of unnatural parity (−1)L−1. The reduced matrix
elements related to equations (7) and (8) are denoted

by f
(λ)
jj′ and f

(λL)
jj′ , respectively.

The transformed Hamiltonian (4) in terms of
quasiparticle and phonon operators, which we skip
here for brevity, embodies explicitly the interaction
between these two types of objects. The effect of this
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interaction on the physical system under consider-
ation hinges on the elemental content introduced in
the wave function. We elaborated on multi-particle–
multi-hole configurations of the ground states of
even–even nuclei since their properties determine
to a large extent the structure of the lowest-lying
states of odd-A nuclei. For that reason in addition
to configurations built on top of the ground state we
allowed excitation channels through annihilation of
quasiparticle⊗phonon configurations existing in this
ground state. A superposition of such elementary
excitations forms the wave function which we have
explored in our studies:

Ψν(JM) =

[
CJνα

†
JM +

∑

jλi

Djλi(Jν)P †
jλi(JM)

− EJνα̃JM −
∑

jλi

Fjλi(Jν)P̃jλi(JM)

]
|〉, (9)

with |〉 denoting the ground state of the even–even
core.

The coefficients from Eq. (9) are subject to the
equation of motion [11]

〈|{δOJMν ,H,O†
JMν}|〉 (10)

= ηJν〈|{δOJM , O†
JM}|〉,

which yields a generalized eigenvalue problem owing
to the non-orthogonality of the basis states induced
by the Pauli principle

⎛

⎜⎜⎜⎜⎜⎜⎝

εJ V (Jj′λ′i′) 0 −W (Jj′λ′i′)

V (Jjλi) KJ(jλi|j′λi′) W (Jjλi) 0

0 W (Jj′λ′i′) −εJ −V (Jj′λ′i′)

−W (Jjλi) 0 −V (Jjλi) −KJ(jλi|j′λi′)

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

CJν

Dj′λ′i′(Jν)

−EJν

−Fj′λ′i′(Jν)

⎞

⎟⎟⎟⎟⎟⎟⎠
(11)

= ηJν

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 − L(Jjλi) 0 0

0 0 1 0

0 0 0 1 − L(Jjλi)

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

CJν

Dj′λ′i′(Jν)

−EJν

−Fj′λ′i′(Jν)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where

V (Jjλi) = − 1√
2
(1 + L(Jjλi))Γ (Jjλi) , (12)

W (Jjλi) = −1
4

πλ

πJ
(1 + L(Jjλi) (13)

−L(jJλi))
∑

i′τ0

Aτ0

(
λii′

)
ϕλi′

Jj

and

KJ

(
jλij′λ′i′

)
= δjj′δλλ′δii′ (1 + L(Jjλi)) (14)

× (ωλi + εj −R (Jjλi)) .

The emerging off-diagonal quantities V (Jjλi) ∼
〈|αJMHα†

jmQ†
λμi|〉 and W (Jjλi) ∼

〈|αJMHαjmQλμi|〉 represent the interaction between
quasiparticles and phonon in both the excited and
the ground states, respectively. The exclusion of
certain three-quasiparticle states inhibited by the

Pauli principle, as well as other effects, related to this
principle are taken into account by using the exact
commutation relations between the quasiparticle
and phonon operator. These blocking effects are
quantified by [1 − L(Jjλi)] which reduces the weight
of certain quasiparticle⊗phonon configurations as
well as by R(Jjλi) inducing a shift in the energy of
such configurations. Hereafter πλ =

√
2λ + 1.

Having determined the structural composition of
the odd–even nucleus, estimates for the observable
quantities of interest are obtained by evaluating the
average values of the corresponding operators. For
the magnetic dipole and electric quadrupole moments
they are defined as

μ1(Jν) =

√
4π
3
〈JJν|M(M ; 10)|JJν〉, (15)

Q2(Jν) =

√
16π
5

〈JJν|M(E; 20)|JJν〉, (16)
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Values of the matrix elements V 2 (Jjλi) and W 2 (Jjλi) as well as other Pauli induced factors calculated for Jπ = 1/2+

at the lowest poles

State Nuclide Pole’s structure V 2 W 2 R 1 + L
1/2+ 131Ba 2d3/2 ⊗ 21 0.0361 1.302 –0.36 0.93

133Ba 2d3/2 ⊗ 21 0.1225 2.1 –0.43 0.932
135Ba 2d3/2 ⊗ 21 0.4 0.837 –0.11 0.99
137Ba 2d3/2 ⊗ 21 0.56 0.49 –0.053 0.9948

where the electric and magnetic multipole operators
are expressed as

M(X;λμ) =
1
πλ

∑

j1m1
j2m2

(−1)j2−m2 F (λ)
j1j2

× 〈j1m1, j2 − m2|λμ〉 a+
j1m1

aj2m2 .

F (λ)
j1j2

are the reduced single particle matrix elements:

F (λ)
j1j2

=

{
e
〈
j2||rλiλYλμ||j1

〉
, for electric transitions,

μ0

(
gs

〈
j2||s∇(rλYλμ)||j1

〉
+ gl

2
λ+1

〈
j2||l∇(rλYλμ)||j1

〉)
, for magnetic triansitions.

(17)

Here e and μ0 are the electron charge and nuclear
magneton, respectively.

3. RESULTS

From the various manifestations of the correlated
motion of nucleons in odd-A isotopes we present
below characteristic shifts in the calculated energies
of nuclear levels and their magnetic moments which
bring the obtained results closer to the experimental
values. Importantly, the described effects cannot be
reproduced if the even–even core is understood as
composed of particles moving independently one from
the other. The calculations have been performed
systematically in a series of barium and cadmium
isotopes with shapes close to spherical and as well
for such belonging to the transitional region with
E(4+

1 )/E(2+
1 ) < 2.5.

Prior to analyzing the results obtained for mea-
surables the magnitudes of the quantities indroduced
in the previous section for the case of 131Ba are pre-
sented in the table. As shown in [7], the correlations
in the ground state tend to increase together with
the quantities W (Jjλi) with decreasing number of
neutrons with respect to the magic number 82. In the
table the squares of the interaction vertices W 2(Jjλi)
and V 2(Jjλi) are evaluated at the states |jλi〉 with
lowest energy. Following the Green’s function repre-
sentation of Eq. (11) (conf. [7]) it can be concluded
that the contributions from quasiparticle ⊗ phonon
configurations, lying at higher energies, peter out

because of the large values of the corresponding de-
nominators and the weakened quasiparticle⊗phonon
interaction in the ground state. We therefore examine
only levels in the vicinity of the Fermi level, since they
interact with the ground state stronger than for those
lying at higher energies. Having the lowest quasi-
particle energies, the quasiparticle states ν1h11/2,
ν3s1/2, and ν2d3/2 experience the greatest part of
the interaction with the remaining quasiparticles in
the ground state. It is also argued that the values of
R(Jjλi) tend to grow as the isotopes move away from
the magic number 82 of the neutron subsystem. This
is explained by the strong dependence of R(Jjλi) on
the degree of collectivity of the vibrational states in the
even–even nuclei [12].

3.1. Shifts in the Energies
In this section we discuss the effect of increasing

the density of low-energy states which we attribute to
the correlations in the ground states. We direct our
attention to the third and fourth columns of Fig. 1.
In the fourth column in this figure we can see higher
densities of the states with energies of up to 1 MeV
as compared to the results in the corresponding third
column which disregard the backward-going terms in
the odd–even nuclear wave function. The correct-
ness of this result is borne out by the experimental
data which are presented in the first column. The
reason for that is simple: the quasiparticle–phonon
interaction W (Jjλi) pushes the energy of the low-
est solution up from its unperturbed position, which
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Fig. 1. The lowest part of the energy spectrum of 131Ba (in keV). The calculations are performed within a model version
including backward and forward amplitudes, denoted by BCW + FRW, as well as by using a model version with only forward
amplitudes, denoted by FRW.

thereby approaches the energy of the lowest pure
quasiparticle ⊗ phonon state. As a result, it becomes
closer to the second solution with the same quantum
numbers, thus reducing the energy gap between the
two lowest eigenvalues. It is worthwhile to notice that
the forward V (Jjλi) and backward vertices W (Jjλi)
work in opposite directions as the former shifts the
first solution to lower energies as compared to the
quasiparticle energy [2].

This same important effect is visualized in Fig. 2,
where in addition the strengths of the induvidual
levels with signiture 5/2+ are plotted. As seen from
this figure, the fragmentation of the quasiparticle
strengths due to the backward amplitudes increases
substantially. We found a similar behavior for the rest
of the states from the valence shell in all nuclei from
the considered region.

3.2. Magnetic Moments

The ground state admixtures modify considerably
the results of calculations for the magnetic moments
as will be agrued below for the case of the isotopes
117−127Cd [9]. Although the contribution to the wave
function coming from configurations arising to the
coupling of the last nucleon with the magnetic giant
dipole resonance of the core are small, their influence
on the magnetic moments are significant because of
the strong M1 transition to the ground state. The
effects of the M1 giant resonance on the magnetic
moments (the Arima–Horie effect) were the main
focus of many research studies, while the contribution
from other modes seems to be a less explored territory.
In [13] a systematic theoretical analysis of experimen-
tal data on magnetic moments in different nuclei is
performed utilizing the theory of finite Fermi systems.
The influence on the magnetic moments coming from
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Fig. 2. Quasiparticle strength distribution (C2 + E2) of the state ν2d5/2 in 131Ba and 133Ba. The quadrupole–quadrupole
interaction strength κ(2) is kept constant in the calculations within the three model versions.
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Fig. 3. Magnetic moments in units μ0 of the first 11/2− state in the chain 111−127Cd. The solid line represents the experimental
values [15, 16]. The calculations are performed within BCW+FRW (dotted line) and FRW (dashed line) versions of the
model. The error bars give the uncertainty in evaluating the magnetic moments when varying the strength of the quadrupole–
quadrupole interaction in a wide range of values.

the coupling with the low-lying collective quadrupole
and octupole core excitations is studied in [14].

The results from the calculations performed using
the featured QPM versions are plotted in Fig. 3 and
are compared to the experimental values. The dotted
and dashed lines in this figure depict the fact that
the interaction between the last quasiparticle and the
ground-state phonon admixtures produces configu-
rations which contribute significantly to the magnetic
moment of odd-A nuclei and reveal a potential for
reproducing their experimental values which proves
impossible if this interaction is neglected. The impor-
tance of the contributions to the magnetic dipole mo-
ment coming from different components of the wave
function (conf. [9]) is shown in Fig. 4. The enhanced
fragmentation due to the quasiparticle–phonon in-
teraction in the ground state leads systematically to

shrinked values of the single quasiparticle contribu-
tion μqp−qp and to an increase in the quasiparticle–
phonon contribution μqp−ph leading to an overall de-
crease in the magnitude of the magnetic moment.
The enhancement of the magnetic transitions be-
tween different quasiparticle⊗phonon configurations,
given by μph−ph, is due to configurations involving a
quadrupole phonon, of which ν1h11/2 ⊗ 2+

1 plays the
most important role. It is worth noting that because
of the weakened coupling between the quasiparticles
and the quadrupole phonons in the core’s ground
state near the neutron shell closure, the quantity
μph−ph tends to diminish while μqp−qp remains almost
unchanged along the isotope chain. This interac-
tion, however, leaves the first order core polariza-
tion term μqp−ph, describing the magnetic transitions
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Fig. 4. Contributions from different components of the wave function to the magnetic dipole moment of the 11/2 states in the
series of isotopes 117−127Cd.

between quasiparticle and quasiparticle⊗1+-phonon
states vitually unaffected because the latter configu-
rations represent a negligible part in the 11/2−1 state
mixture.

4. OUTLINE AND CONCLUSIONS

The energies and the magnetic dipole moments of
the low-lying states in odd-A barium and cadmium
nuclei are found to be significantly affected by the
correlations in the ground state. The obtained correc-
tions allow one to reproduce the experimental values
in open-shell nuclei which proves impossible if the
existence of the quasiparticle⊗phonon configurations
in the ground states of even–even nuclei is ignored.
However, despite its capacity of reaching the experi-
mental values, the described theoretical development
suffers from the shortcoming (conf. [6, 7]) that the
residual interaction strength which yields results that
are of sound agreement with the odd-A experimental
data, generate substantially less collective 2+

1 states
in the even–even cores than the ones implied from
the data for the neighboring even–even nuclei. The
origin of this inconsistency is the set of approximation
techniques embeded in the considered QPM versions,
namely the BCS and RPA, which tend to overesti-
mate the degree of correlations in the ground state for
open-shell nuclei. One path to overcome this problem
is to apply more consistent RPA-like approaches, or
to use tractable methods based on the variational
principle for the ground state as in [17].
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