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Abstract—The probabilities for E2 transitions between low-lying excited 3− and 5− single-phonon states
in the 208Pb and 132Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The
approach used involves a new type of ground-state correlations, that which originates from integration of
three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These
correlations are shown to make a significant contribution to the probabilities for the aforementioned
transitions.
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“Each nucleus requires an individual approach.”
V. G. Soloviev

1. INTRODUCTION

Theoretical methods for taking into account quasi-
particle–phonon interaction that were implemented
within the quasiparticle–phonon model developed
by V.G. Soloviev and his coauthors [1, 2] are quite
seminal and have withstood the tests of time. Not
only has the quasiparticle–phonon model been widely
applied in low-energy nuclear physics, but it is still
undergoing a vigorous development—for example, in
what is concerned with taking into account the con-
sistency of the mean field and effective interaction on
the basis of the Skyrme energy density functional [3].
It is also necessary to mention the important results
obtained earlier within the quasiparticle–phonon
model that concern structures in photoabsorption
cross sections for many nuclei. It was shown (see,
for example, [2, 4, 5]) that a Lorentzian extrapolation
is overly rough in the region extending up to the
neutron-separation energy, so that, sometimes, the
existence of substructures (irregularities) in cross
sections is not consistent with a Lorentzian extrapo-
lation of giant dipole resonances. This issues have
become ever more important in the course of the
past decade in connection with the development of
experimental techniques (for an overview, see [6])
and the growing demand for nuclear data [9, 10]—
first of all, for calculating radiative strength functions,

1)National Research Centre Kurchatov Institute, pl. Akademi-
ka Kurchatova 1, Moscow, 123182 Russia.

2)Institute for Physics and Power Engineering, pl. Bondaren-
ko 1, Obninsk, Kaluga oblast, 249033 Russia.

*E-mail: dvoytenkov@ippe.ru

which are needed for describing all nuclear reactions
involving photons. There are two definitions of the
radiative strength function—one involves transi-
tions between the ground state and excited states,
while the other, which is used, as a rule, contains
transitions between excited states. The radiative
strength function of the first kind was calculated on
the basis of the quasiparticle–phonon model [5] in the
region around the neutron-separation energy, where
reasonably good agreement with experimental data
was obtained. However, it is of interest to consider the
whole region below the neutron-separation energy—
that is, the region of the pygmy dipole resonance [6].
In order to calculate the radiative strength function
of the second kind, it is necessary to know here
the nature of the nuclear levels being considered.
Therefore, use is made, as a rule, of the Brink–Axel
hypothesis [7], which states that, on the basis of each
excited state, it is possible to construct a giant dipole
resonance (in the present-day formulation, any giant
resonance) of the same form as that based on the
ground state, its features being independent of the
nature of this state (for more details, see [8]).

In textbooks on nuclear data [9, 10], use is
extensively made of the assumption that the cross
section for dipole photoabsorption at energies below
the neutron-separation energy can be described in
terms of various present-day forms of a smooth
Lorentzian curve. In [9], for example, there are six
versions of this curve. As was indicated above, it
was shown within the quasiparticle–phonon model
that this is at odds with the existence of structures in
the photoabsorption cross section. It seems that the
community of nuclear-data specialists perceived this
circumstance in 2006 (even though the authors of [11,
12] emphasized earlier the importance of taking into
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account microscopic effects in considering nuclear
data), when microscopic calculations of radiative
strength functions on the basis of the Hartree–Fock–
Bogolyubov method and the quasiparticle random-
phase approximation (QRPA) were included in [9].
The approach in question has a substantially higher
predictive power, and this is of crucial importance
for unstable nuclei and astrophysics and permits
describing ground and excited states of nuclei on
equal footing. As yet another example of intensively
employing methods of the quasiparticle–phonon
model, we can indicate studies (see, for instance, [13])
devoted to combinatorial calculations of the level den-
sity. The combinatorial self-consistent level-density
models developed by Goriely and other authors [10]
(for a brief overview, see [14]) appeared as a natural
continuation of those studies.

However, it was shown at a phenomenological
level in the studies of a group from Oslo (see, for ex-
ample, [15]) that, in order to explain experimental data
on radiative strength functions, the QRPA method
should be supplemented with taking into account
coupling to phonons. A self-consistent approach
to calculating radiative strength functions over the
whole energy range was developed in [8, 14, 16–19].
This approach employed the Green’s function method
and took into account QRPA effects, a discretized
single-particle spectrum, and coupling to phonons.
These calculations of radiative strength functions and
respective radiative features revealed that the contri-
bution of coupling to phonons is quite sizable and is
mandatory for explaining experimental data (provided
that the Brink–Axel hypothesis is valid). Thus, we
see that, in accordance with the early results based
on the quasiparticle–phonon model and the recent
results of applying the self-consistent approach, there
arises the possibility of dispensing with a Lorenzian
extrapolation of the photoabsorption cross section.
But if one does not invoke the Brink–Axel hypothesis
(in general, its validity is not obvious—see [8]), then,
according to the definition of the radiative strength
function, a microscopic description of this quantity
requires calculating electromagnetic transitions at
least between excited single-phonon states, for which
an extensive body experimental data is already avail-
able. An attempt at solving this problem by the
Green’s function method is among the purposes pur-
sued in the present study. It should be noted that
a similar problem was tackled in [20] and [21] with-
in non-self-consistent methods of the quasiparticle–
phonon model and Green’s functions, respectively.

In the present study, we also aim at an analysis
of ground-state correlations belonging to a new
type. Earlier, Voronov and his coauthors [22] worked
on evolving procedures for an improved inclusion
of ground-state correlations, implying ground-state

correlations known within the QRPA framework.
Such correlations may be called two-quasiparticle
correlations, since, in terms of Green’s functions,
they are associated with integration of two Green’s
functions. Those studies relied on the fact that,
within the QRPA framework, ground-state corre-
lations are small. Improved QRPA phonons were
used to describe effects of quasiparticle–phonon
interaction, with the result that the equations of
the quasiparticle–phonon model for even–even nu-
clei were generalized in such a way as to include
phonons of the extended QRPA scheme [22]. For
odd nuclei, ground-state correlations were analyzed
in [23, 24] on the basis of the quasiparticle–phonon
model, as well as in [25] (without allowance for the
Pauli exclusion principle). Such correlations may be
called quasiparticle–phonon ground-state correla-
tions. The calculations performed in [22–25] showed
that the inclusion of such ground-state correlations
improved agreement with experimental data but was
unlikely to make a sizable contribution to the features
being studied. In [26] and [27], two-phonon ground-
state correlations were also considered on the basis
of, respectively, the quasiparticle–phonon model and
the Green’s function technique. Thus, the problem of
ground-state correlations has a rich and long history,
which deserves a continuation.

Calculations of ground-state correlations belong-
ing to a new type were recently performed in the
problem of quadrupole moments of the first excited
2+ levels in magic and semimagic nuclei, and a large
contribution of these ground-state correlations (50%
to 60% of observables) was likely to be observed for
the first time [28]. A triangle that contains an integral
of three Green’s functions is the main quantity that
determines the effect. As any other Feynman dia-
gram, it involves diagrams going backward—that is,
ground-state correlations. These ground-state cor-
relations may be called three-quasiparticle ground-
state correlations, in contrast to two-quasiparticle
ground-state correlations appearing in the QRPA
scheme. The quadrupole-moment problem is that
where the phonons in the triangle are identical and
corresponds to the diagonal case of the triangle.

In the present study, we consider the nondiagonal
case that corresponds to a transition between two
single-phonon states. This problem is more com-
plicated algebraically than the problem of calculat-
ing the quadrupole moment in an excited state. We
study probabilities for E2 transitions between single-
phonon states, describing, in just the same way as
in [28], the problem within the QRPA scheme. It will
be seen below that ground-state correlations of the
new type were disregarded in [20]. In order to estimate
the probabilities for E2 transitions, we make several
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simple approximations in our calculations. Specif-
ically, effects involving ground-state correlations of
the new type are estimated in the same approxima-
tions as those that are used in dealing without these
correlations.

2. DESCRIPTION OF THE METHOD

We make use of the method intended for analyz-
ing anharmonic effects and developed by Khodel for
magic nuclei [29]. The method takes consistently into
account all effects proportional to the small parameter
g2, where g is the dimensionless phonon-production
amplitude. The amplitude Mss′ for the transition
between the excited single-phonon states s and s′ has
the form (in the representation of single-particle wave
functions) [28, 30]

Mss′ = M
(1)
ss′ + M

(2)
ss′ (1)

=
∑

123

[V12(gs
31)

∗gs′
23A

(1)
123 + V12g

s′
31(g

s
23)

∗A
(2)
123],

where the index 1 runs through the following set of
values: (n1, j1, l1,m1). This corresponds to the two
Feynman (triangle) diagrams in the figure. Here, V is
the vertex that describes the medium effect (nucleon–
nucleon interaction) in the theory of finite Fermi sys-
tems [31] (in our case, E2 transitions, which generate
the effect of medium quadrupole polarization); g is
the phonon-production amplitude described within
the QRPA scheme; and A(1) is an integral of three
Green’s functions,

A
(1)
123(ωs, ωs′) (2)

=
∫

G1(ε)G2(ε + ω)G3(ε + ωs)dε

=
[(1 − n1)(1 − n2)n3 − n1n2(1 − n3)]

(ε31 − ωs)(ε32 − ωs′)

+
1

ε12 + ω

[
n1(1 − n2)(1 − n3) − (1 − n1)n2n3

ε13 + ωs

− (1 − n1)(1 − n3)n2 − (1 − n2)n1n3

ε23 + ωs′

]
.

Further, we have

A
(2)
123(ωs, ωs′) = A

(1)
123(−ωs′ ,−ωs). (3)

In expression (1), we retained only those terms
that correspond to the triangles in the figure, which
involve three Green’s functions, and omitted other
terms that contain δF and which take into account
the change in the effective interaction F in the
phonon field. Since they made a small contribution
in calculating the quadrupole moments of the first 2+

states [28], there is every reason to believe that their

quantitative role is insignificant in our nondiagonal
problem as well.

After summation over the projections m1, m2, and
m3, we obtain

Mss′ = (−1)Ms+1

⎛

⎝ Is Is′ L

−Ms Ms′ M

⎞

⎠ (4)

×
∑

123,p,n

[⎧
⎨

⎩
Is Is′ L

j2 j1 j3

⎫
⎬

⎭ 〈1||V ‖ 2〉

× 〈3||gs||1〉〈2||gs′ ‖ 3〉A(1)
123

+ (−1)(Is′+Is+L)

⎧
⎨

⎩
Is′ Is L

j2 j1 j3

⎫
⎬

⎭ 〈1||V ‖ 2〉

× 〈3||gs′ ||1〉〈2||gs ‖ 3〉A(2)
123

]
,

where 1 = (n1, j1, l1). In the second term, we in-
terchange the indices 1 and 2 and make use of the
relation 〈1||V ||2〉 = (−1)j1−j2〈2||V ||1〉. After that,
we finally find that the reduced probability for the
s → s′ transition of energy ω = ωs − ωs′ has the form

B(E(M)L) =
1

2Is + 1
|〈‖ Mss′ ‖〉|2, (5)

where

Mss′ =
∑

123

⎧
⎨

⎩
Is Is′ L

j2 j1 j3

⎫
⎬

⎭ V12g
s
31g

s′
23 (6)

×
[
A

(1)
123(ωs, ωs′) + (−1)(Is+Is′+L)A

(1)
213(−ωs′ ,−ωs)

]
.

Here, we have introduced the notation 〈1||V ||2〉 =
V12, etc. For the bracketed expression on the right-
hand side of Eq. (6), we obtain

[
A

(1)
123(ωs, ωs′) + (−1)(Is+Is′+L) (7)

× A
(1)
213(−ωs′ ,−ωs)

]
=

[
(1 − n1)(1 − n2)n3

− n1n2(1 − n3)
]( 1

(ε31 − ωs)(ε32 − ωs′)

+
1

(ε31 + ωs)(ε32 + ωs′)

)

+
[
n1(1 − n2)(1 − n3) − (1 − n1)n2n3

]

× −2ωωs − 2ε12ε13

(ω2 − ε2
12)(ε

2
13 − ω2

s)
+

[
n2(1 − n1)(1 − n3)

− (1 − n2)n1n3

] 2ωωs′ − 2ε12ε23

(ω2 − ε2
12)(ε

2
23 − ω2

s′)
.
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The parenthetical terms in the second row on the
right-hand side of Eq. (7) appear in the respective
formula for the reduced transition probability in the
problem that involves pairing [20] (for more details,
see [28]). The remaining terms in (7), which, as we
will see, make a significant quantitative contribution,
were disregarded in [20]. Following [21], we call these
remaining terms ground-state correlations (GSC).
In the limiting case where there is no pairing and
where ω = 0, expression (7) reduces to the respective
formula in [28].

3. ESTIMATING B(E2)
IN DOUBLY MAGIC NUCLEI

By means of Eqs. (5)–(7), we have calculated
the probabilities for E2 transitions between the 3−

and 5− excited low-lying single-phonon states in
the 208Pb and 132Sn doubly magic nuclei. We have
employed the following approximations:

(i) The phonon-production amplitude g was cal-
culated on the basis of the Bohr–Mottelson model;
that is,

g(r) =
β

2L + 1
r
dU

dr
YLM , (8)

where β was determined on the basis of the experi-
mental (for 208Pb from [32]) and calculated (for 132Sn
from [33]) values of B(EL) (see Table 1).

Table 1. Energies and total amplitudes of vibrations
in 208Pb and 132Sn

Nucleus Level E, MeV β

208Pb 3−1 2.61 0.12

[32] 5−1 3.20 0.072

5−2 3.71 0.034

132Sn 3−1 4.352 0.082

[33] 5−1 4.943 0.018

(ii) It is rather difficult to calculate the vertex V (ω),
but, in our case of doubly magic nuclei, the energy
ω is small in relation to the energy of the first 3−

level, which corresponds to the pole of the vertex V ;
therefore, we can disregard the energy dependence of
the vertex and to express it approximately in terms
of the effective quadrupole charge [34, 35] as V =
eeffV

0, where epol = en
eff = 0.6 and ep

eff = 1.6. This
circumstance simplifies our task substantially.

In our calculations, we relied on the self-consis-
tent single-particle scheme described in [28]. With
allowance for the aforementioned approximations, our
calculation is not fully self-consistent. However,
there are reasons to believe that a comparative anal-
ysis of terms that involve ground-state correlations
and terms that does not involve such correlations,
which is the main objective of our present study, will
be quite reliable, since we perform it on the basis of
the same procedure.

The results of the calculations are given in Table 2.
A comparison with the only reliable experiment for
208Pb [B(E2)expt =28e2 fm4] shows that, in view of
the roughness of the approximations used, our es-
timate is quite reasonable. Our main objective was
to clarify the role of ground-state correlations, and
we found that, for the first transition in 208Pb, the
contribution of ground-state correlations increased
B(E2) by a factor of 1.5. The results for other tran-
sitions show that the contributions of ground-state
correlations are quite sizable for them as well. In
view of the incoherence of the terms in the transition
amplitudes and a significant degree of inconsistency
in our calculations, all this means that a quantitative
contribution of ground-state correlations belonging
to the new type is substantial and calls for a more
thorough analysis.

It is of interest to examine the contribution of
quadrupole polarizability of nuclei—that is, the differ-
ence between the vertex V and the bare vertex eqV

0.
For this purpose, we have calculated B(E2) for the
first transition in 208Pb at epol = 0 and obtained the
value of B(E2)= 9.64e2 fm4, which is nearly one-
fourth as large as that in the case of epol = 0.6. Thus,
we have seen that, in calculating probabilities for

PHYSICS OF ATOMIC NUCLEI Vol. 79 No. 6 2016



908 KAMERDZHIEV, VOITENKOV

Table 2. Amplitudes and reduced probabilities for the 5− → 3− E2 transitions in 208Pb and 132Sn (in e2 fm4) units

Nucleus
GSC �= 0 GSC = 0

transition Mn
ss′ Mp

ss′ B(E2) Mn
ss′ Mp

ss′ B(E2)
Exp.

208Pb 5−1 → 3−1 –3.42 –16.48 36.00 –2.16 –13.87 23.36 28 ± 2

5−2 → 3−1 –5.86 0.24 2.87 –4.82 1.20 1.19
132Sn 5−1 → 3−1 –0.25 –0.08 0.01 –0.20 0.05 0.002

transitions between single-phonon states, it is nec-
essary to take simultaneously into account, in just
the same way as in dealing with the static case [28],
effects of nuclear polarizability and effects of ground-
state correlations.

4. CONCLUSIONS

In the present study, we have estimated the prob-
abilities for E2 transitions between the 3− and 5−

excited states in the 208Pb and 132Sn magic nuclei.
We have performed our calculations on the basis of
quantum many-body theory—more precisely, within
the approach that was developed in [30] and where
effects of order g2 are taken consistently into account.
In contrast to the usual quantum-mechanical method
implemented within the quasiparticle–phonon model,
our approach contains new effects associated with
ground-state correlations and caused by integration
of three Green’s functions. It turns out that, in the
problem being considered, these effects are sizable,
making a significant contribution to B(E2)—for ex-
ample, they increase B(E2) for the first transition
in 208Pb by a factor of 1.5. This is the main result
of our present study. We have also shown that, in
calculating probabilities for transitions between for
single-phonon states, it is necessary to take simul-
taneously into account nuclear-polarizability effects
and effects associated with ground-state correlations.
It is of great interest to perform further calculations
for transitions between single-phonon states in nuclei
that involve pairing. The use of a more consistent
approach to the problem being considered is also
highly desirable.
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