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Abstract—Momentum and density dependence of single-nucleon potential uτ (k, ρ, β) is analyzed using
a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of
the strength parameters of exchange interaction, two different trends of the momentum dependence of
nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective
mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter
are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density
dependence of 2nd-order and 4th-order symmetry energy are observed depending on neutron and proton
effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution
towards the proton fraction of β-stable npeμ matter at high densities.
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1. INTRODUCTION

The nuclear equation of state (EOS) of isospin-
asymmetric nuclear matter (ANM) plays a key role for
the better understanding of the structure of radioac-
tive nuclei, the reaction dynamics induced by rare
isotopes, and the liquid gas phase transition in ANM.
It has also got importance due to its implications in
certain areas beyond standard nuclear physics, such
as astrophysical phenomena like the structure of neu-
tron stars and the dynamics of supernova collisions
[1–5]. The equation of state (EOS) of nuclear matter
is generally defined as the binding energy per nucleon
as a function of density. At zero temperature, the
binding energy per nucleon of asymmetric nuclear
matter (ANM) can be expressed as a power series of
isospin asymmetry β = ρn−ρp

ρ , where ρn and ρp are
the neutron and proton densities, respectively, and the
total density ρ = ρn + ρp. Up to the 4th-order of the
isospin asymmetry β it can be written as [6]

E(ρ, β) = E(ρ) + Esym,2(ρ)β2 + Esym,4(ρ)β4,
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where E(ρ) = E(ρ, β = 0) represents the binding en-
ergy per nucleon of symmetric nuclear matter (SNM),
Esym,2(ρ) the 2nd-order nuclear matter symmetry
energy, and Esym,4(ρ) the 4th-order nuclear matter
symmetry energy. At normal nuclear matter den-
sity ρ0 the 2nd-order symmetry energy Esym,2(ρ) is
known to be around 30 MeV from the analysis of nu-
clear masses within liquid-drop models, the 4th-order
symmetry energy Esym,4(ρ0) has been estimated to be
less than 1 MeV [7, 8]. At supra-saturation densities
the higher order terms are found to have a significant
contribution to the EOS [9]. Unfortunately, we have
very limited knowledge about the density dependence
of Esym,2(ρ) and Esym,4(ρ). During last few decades
significant progress has been made experimentally
and theoretically for constraining Esym,2(ρ) around
and below normal nuclear matter density [2–5,
10, 11] but at super-normal density its behavior is
largely controversial [12–14], whereas the behavior
of Esym,4(ρ) is found to be model dependent at these
densities [15–21]. Theoretically, almost all many-
body theory calculations discussed in the literature
so far revealed that the 2nd-order nuclear symmetry
energy Esym,2(ρ) positively characterizes the isospin-
dependent part of the EOS of ANM and the higher-
order terms in the isospin asymmetry are not so
important, at least for moderate values of densities
[6]. It may be a good approximation to the EOS
of ANM, but at the same time it may cause large
errors when it is applied to determine some special
conditions. For example, the higher order terms in
the isospin asymmetry presented in the EOS of ANM
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at supra-normal densities can significantly modify
the proton fraction of neutron stars in β equilibrium
[9, 22, 23]. Again, the higher order effects on the
incompressibility of ANM have also been studied
recently [24, 25]. Therefore possible corrections due
to the Esym,4(ρ) term to the EOS of ANM need to be
done more accurately. While extracting information
about Esym,4(ρ), many transport model simulations
have shown that some of the observables in heavy-
ion reactions are significantly useful for the study of
Esym,4(ρ) in a wide density range. In these transport
model simulations of heavy-ion reactions at high and
intermediate energies, the EOS enters the reaction
dynamics and directly affects the final observables
through the single particle potential uτ (k, ρ, β). The
single particle potential of a nucleon depends not only
on the nuclear density and momentum but also on
its isospin, which can be expanded in power series of
asymmetry parameter β as in [26].

There are many theoretical models which give the
mostly similar description of momentum and den-
sity dependence of uτ (k, ρ, β) and usym,1(k, ρ) around
Fermi momentum at saturation and sub-saturation
densities, whereas the results significantly differ from
each other at high momenta and high densities. From
a proper analysis of various theoretical approaches
used in the literature so far, it can be ensured that
the nonrelativistic finite-range effective interactions,
undoubtedly give us a nice platform to simulate the
momentum and density dependence of the isoscalar
and isovector parts of the nuclear mean field and
hence can predict how different properties of nuclear
matter are connected to each other. In some of the
earlier works [27, 28] the momentum and density
dependence of uτ (k, ρ, β) and usym,1(k, ρ) were an-
alyzed using a simple parameterization of the finite-
range effective interactions, which satisfactorily de-
scribed these quantities at high momenta and high
densities. In the present work, we have discussed
the existing controversies on two opposite types of
neutron and proton effective mass splitting and the
extremely divergent nature of nuclear symmetry en-
ergy Esym,2(ρ) and Esym,4(ρ) at high densities using a
simple density dependent finite range effective inter-
action. In addition, we also study the effect of nuclear
symmetry energy on the proton fraction Yp of the β-
equilibrium npeμ matter.

This paper is organized as follows. In Section 2
we discuss the formulation of the 1st-order and 2nd-
order symmetry potential in ANM. Then we have pre-
sented the 2nd-order and 4th-order symmetry energy
in terms of the single-nucleon potential. We have
also discussed how the momentum dependence of
the 1st-order symmetry potential is connected to the
momentum dependence of the effective mass as well

as the density dependence of the 2nd-order and 4th-
order symmetry energy. The contribution of the 4th-
order symmetry energy on the proton fraction Yp of
the β-equilibrium npeμ matter is also studied. We
have presented our conclusions in Section 3.

2. FORMALISM

To study the nuclear EOS and the momentum and
density dependence of the single-nucleon potential
of ANM we have used a simple density-dependent
finite-range effective interaction [28, 29].

Veff(r) = t0(1 + x0Pσ)δ(r) (1)

+
t3
6

(1 + x3Pσ)
[

ρ(R)
1 + bρ(R)

]γ

δ(r)

+ (W + BPσ − HPτ − MPσPτ )f(r),

where f(r) represents a short-range interaction of
the conventional form, such as Yukawa, Gaussian, or
exponential, and specified by a single range parame-
ter Λ. The other symbols in equation (1) have their
usual meanings. This form of effective interaction
is very similar to the Skyrme-type of interactions
except for the fact that the t1 and t2 terms in the
latter case have been replaced by the short-range
interaction (W + BPσ −HPτ −MPσPτ )f(r). Such
a replacement is essential to ensure the description
leading to vanishing exchange interaction between
a pair of nucleons of very large relative momenta.
Pσ = 1

2(1 + σ1σ2) and Pτ = 1
2(1 + τ1τ2) are the spin-

and isospin-exchange operators respectively. This
simple effective interaction is found to have a zero
range density-dependent part similar to skyrme-type
interaction and long-range density independent part
of conventional form such as Yukawa, Gaussian and
Exponential.

The energy density in ANM derived from this ef-
fective interaction can be written as

H(ρn, ρp) =
∫

[fn(k) + fp(k)] (2)

× (c2
�

2k2 + m2c4)1/2d3k

+
1
2

[
El

0

ρ0
+

El
γ

ργ+1
0

(
ρ

1 + bρ

)γ
]

(ρ2
n + ρ2

p)

+

[
Eul

0

ρ0
+

Eul
γ

ργ+1
0

(
ρ

1 + bρ

)γ
]

ρnρp

+
El

ex

2ρ0

∫∫
[fn(k)fn(k′) + fp(k)fp(k′)]

× gex(|k − k′|)d3kd3k′

+
Eul

ex

2ρ0

∫∫
[fn(k)fp(k′) + fp(k)fn(k′)]
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× gex(|k − k′|)d3kd3k′,

where ρn and ρp are neutron and proton density,
respectively with total nuclear density ρ = ρn + ρp.
fτ (k)(τ = n, p) are the respective single-particle
momentum distribution functions normalized to the
local density ρτ =

∫
fτ (k)d3k.

At zero temperature f(k) is described by a step
function f(k) = g

(2π)3
θ(kf − k), where g is the spin–

isospin degeneracy factor and kf =
(

3π2

2 ρ
) 1

3
is the

Fermi momentum. gex(|k − k′|) is the normalized
Fourier transform of the short range interaction f(r)
and for the Yukawa form of functional f(r) it is ex-
plicitly given as

gex(|k − k′|) =
1

1 + |k − k′|2/Λ2 .

The parameters El
0, Eul

0 , El
γ , Eul

γ , El
ex, Eul

ex are related
to the interaction parameters as

El
0 = ρ0

[
t0
2

(1 − x0) (3a)

+
(

W +
B

2
− H − M

2

)∫
f(r)d3r

]
,

Eul
0 = ρ0

[
t0
2

(2 + x0) +
(

W +
B

2

)∫
f(r)d3r

]
, (3b)

El
γ =

t3
12

ργ+1
0 (1 − x3), (3c)

Eul
γ =

t3
12

ργ+1
0 (2 + x3), (3d)

El
ex = ρ0

(
M − W

2
+

H

2
− B

)∫
f(r)d3r (3e)

and

Eul
ex = ρ0

(
M +

H

2

)∫
f(r)d3r (3f)

The neutron and proton single-particle potential,
which is derivable from the energy density, H(ρn, ρp)
can be expressed as

uτ (k, ρ, β) =

[(
El

0 + Eul
0

2

)(
ρ

ρ0

)
(4)

+

(
El

γ + Eul
γ

2

) (
1 + bρ + γ

2

)
(1 + bρ)γ+1

(
ρ

ρ0

)γ+1

+
(

El
ex + Eul

ex

2

)(
ρ

ρ0

)
I(k, ρ)

]

±
[(

El
0 − Eul

0

2

)(
ρ

ρ0

)

+

(
El

γ − Eul
γ

2

)(
1

1 + bρ

)γ (
ρ

ρ0

)γ+1

+
(

El
ex − Eul

ex

2

)(
ρ

ρ0

)
I(k, ρ)

]
β

+

[(
El

γ − Eul
γ

2

)(γ

2

)(
1

1 + bρ

)γ+1 (
ρ

ρ0

)γ+1
]
β2

for the interaction defined in Eq. (1), where

I(k, ρ) =
3Λ2(Λ2 + k2

f − k2)

8kk3
f

(5)

× In

[
Λ2 + (k + kf )2

Λ2 + (k − kf )2

]
+

3Λ2

2k2
f

− 3Λ3

2k3
f

[
tan−1

(
k + kf

Λ

)
− tan−1

(
k − kf

Λ

)]

for the Yukawa form of interaction.
The +/– before the 2nd square-bracketed term in

Eq. (4) is for neutron and proton, respectively.

For the charge symmetry of nuclear interaction
under the exchange of neutron and proton, the nu-
clear single-particle potential or mean field can be
expanded in a power series of asymmetry parameter
β as [26]:

uτ (k, ρ, β) = u0(k, ρ) (6)

± usym,1(k, ρ)β + usym,2(ρ)β2,

where u0(k, ρ) = un(k, β = 0, ρ) = up(k, β = 0, ρ) is
the single-nucleon potential in SNM, usym,1(k, ρ) be-
ing the well-known nuclear symmetry potential [6]
(where usym,1 is denoted by usym) and the higher order
term usym,2 being called as the 2nd-order symmetry
potential here.

u0(k, ρ) = uτ (k, ρ, β)|β=0 (7)

=
(

El
0 + Eul

0

2

)(
ρ

ρ0

)

+

(
El

γ + Eul
γ

2

) (
1 + bρ + γ

2

)
(1 + bρ)γ+1

(
ρ

ρ0

)γ+1

+
(

El
ex + Eul

ex

2

)(
ρ

ρ0

)
I(k, ρ).

For the interaction defined in Eq. (1)

usym,1(k, ρ) = ± 1
1!

δuτ (k, ρ, β)
δβ

∣∣∣∣
β=0

(8)

PHYSICS OF ATOMIC NUCLEI Vol. 79 No. 1 2016



4 BABITA SAHOO et al.

=
(

El
0 − Eul

0

2

)(
ρ

ρ0

)

+

(
El

γ − Eul
γ

2

)(
1

1 + bρ

)γ (
ρ

ρ0

)γ+1

+
(

El
ex − Eul

ex

2

)(
ρ

ρ0

)
I(k, ρ),

usym,2(k, ρ) =
1
2!

δ2uτ (k, ρ, β)
δβ2

∣∣∣∣
β=0

(9)

=

(
El

γ − Eul
γ

2

)(γ

2

) (
1

1 + bρ

)γ+1 (
ρ

ρ0

)γ+1

.

Neglecting higher order term, equation (6) re-
duces to Lane potential [30, 31]. But at higher
asymmetries these higher order terms cannot be ne-
glected [31].

The complete calculation of neutron and proton
mean fields as well as EOS of ANM requires the
fixation of nine adjustable parameters, namely, Λ, b,
γ, El

0, Eul
0 , El

γ , Eul
γ , El

ex, and Eul
ex . These parame-

ters are constrained on the basis of the information
available from the optical model fits to the nucleon-
nucleus scattering at intermediate energies, satura-
tion properties of SNM, transport model analysis of
flow data heavy-ion (HI) collisions, monopole mode
of vibrations in finite nuclei. However, to describe
the mean-field properties and the EOS of SNM, only
six parameters, namely, Λ, b, γ, E0, Eγ and Eex are
required. In this context, it may be noted here that
the El

0, Eul
0 , El

γ , Eul
γ , El

ex and Eul
ex are related to E0,

Eγ , Eex as in [28].
The parameters Eex and Λ are determined so as to

give the correct momentum dependence of the mean
field in SNM at normal nuclear density ρ0 and at zero
temperature as demanded by the optical model fits
to nucleon–nucleus scattering data at intermediate
energies [32]. The parameter “b” appearing in the
density-dependent part of the interaction is fixed by
requiring the condition that the velocity of sound in
nuclear matter at zero temperature should not exceed
the velocity of light at high densities. The remaining
two strength parameters (El

0 + Eul
0 ) and (El

γ + Eul
γ )

can be obtained from the saturation conditions, i.e.,
(1) Energy per particle E(ρ0) = 923 MeV and (2)

ρdE(ρ)
dρ

∣∣∣∣
ρ=ρ0

= 0.

In this calculation we have considered the stan-
dard values of mc2 = 939 MeV and (c2

�
2k2

f +
m2c4)1/2 = 976 MeV corresponding to ρ0 =
0.1658 fm−3. Lastly, the exponent γ is fixed from
the value of incompressibility K(ρ0) = 210 MeV. The
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Fig. 1. Pressure–density relation for EOS of SNM at
γ = 0.2362 and compared with the Danielewicz et al. [1]
extracted from the flow data in heavy-ion collisions shown
by the bounded region.

behavior of SNM around the normal density ρ0 is
determined by energy per particle E(ρ0) and incom-
pressibility K(ρ0). Although different theoretical
models predict similar values for E(ρ0), they differ
widely in the values of K(ρ0). Studies on monopole
vibrations in finite nuclei using Skyrme-type in-
teractions [33, 34] as well as Gogny-type effective
interactions [35] have approximately constrained the
value of K(ρ0) in the range 200–240 MeV. Again,
the centroid energies for giant monopole resonances
in finite nuclei depend solely on the value of K(ρ0)
[35, 36]. The parameterγ determines the stiffness of
the EOS of SNM at high density and can be fixed
by using the pressure–density relationship extracted
from the analysis of the flow data in high-energy
heavy-ion collisions [1] which is presented in Fig. 1 by
the bounded region in the density range 2 � ρ/ρ0 �
4.6 (i.e., 0.33 fm−3 � ρ � 0.762 fm−3). In the same
figure the pressure–density curve calculated with the
interaction given in Eq. (1) for γ value equaling to
0.2362 corresponding to the incompressibility value
K(ρ0) = 210 MeV is also shown. It is clear from
Fig. 1 that the results with the interaction given in
Eq. (1) compare quite well within the experimentally
allowed region.

Once the parameters are fixed by the mean field
properties and EOS of SNM, the calculation of neu-
tron and proton mean field properties as well as the
EOS of ANM would require the correct splitting of
the three parameters like (El

0 + Eul
0 ), (El

γ + Eul
γ ) and

(El
ex + Eul

ex) into two specific channels for interactions
between like and unlike nucleons. But there are no
such experimental/empirical constraints on the split-
ting of these three combined parameters except for the
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value of nuclear symmetry energy Esym(ρ0) at normal
nuclear matter density from the liquid-drop model.
Different choices of these splitting can therefore lead
to extremely divergent and even contradicting results
on the momentum and density dependence of isovec-
tor part of nuclear mean field usym,1(k, ρ). The value
of usym,1(k, ρ) can be calculated at Fermi momentum
kf0 and at normal nuclear matter density ρ0 for differ-
ent sets of the parameter of (El

ex + Eul
ex ) for requiring

the symmetry energy coefficient Esym,2(ρ) = 30 MeV
from the empirical liquid-drop mass formula [37, 38],
and the nucleon effective mass m∗

0
m (kf0 , ρ0) = 0.67

in SNM. For the Yukawa form of the exchange in-
teraction having the same range but with different
strengths (Eex) for interactions between two pairs of
like (El

ex) and unlike (Eul
ex ) nucleons given in set A1

and set A2 usym,1(k, ρ) is plotted as a function of
momentum in Fig. 2.

A1) El
ex =

Eex

2
, A2) Eul

ex =
Eex

2
.

Figure 2 indicates that usym,1(k, ρ) has a value 26 ±
12 MeV at k = 0 and decreases as a function of
momentum (k) for the parameter set A1 where El

ex
is greater than Eul

ex and increases as a function of k

for the parameter set A2, where Eul
ex is greater than

El
ex. It needs to be noted here that the momentum de-

pendence of the Lane potential [30], ν1 = 4usym,1(k =
kf0 , ρ0) exhibits a large uncertainty at normal nuclear
matter density ρ0, as extracted from nucleon–nucleus
scattering data and reactions as well as BBG calcu-
lations using realistic nucleon–nucleon interactions
[30, 39, 40]. Figure 2 also represents that for all
the sets of parameters A1 and A2 the value of the
Lane potential ν1 = 4usym,1(k = kf0 , ρ0) lies within
the range ν1 = 100 ± 50 as quoted in [39]. The values
of t3, γ, bρ0, Λ, El

0, Eul
0 , El

γ , Eul
γ , El

ex and Eul
ex for two

sets of parameters (specifically, A1 and A2) are given
in Table 1.

2.1. 2nd-Order Symmetry Energy in Terms
of Nuclear Mean Field in ANM

The 2nd order nuclear symmetry energy Esym,2(ρ)
is usually defined by the relation

Esym,2(ρ) =
1
2ρ

[
δ2H(ρn, ρp)

δβ2

]
β=0

. (10)

The behavior of nuclear symmetry energy at sub-
saturation density has been studied experimentally
and theoretically from the isospin diffusion data in
the HI collisions from the NSCL/MSU [2, 41,
42]. Using the isospin- and momentum-dependent
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Fig. 2. usym,1(k, ρ) is plotted as a function of k for param-
eter sets A1 and A2.

IBUU04 transport model with in medium NN cross
sections, the isospin diffusion data were found to be
consistent with density dependent symmetry energy
of Esym,2(ρ) ≈ 31.6(ρ/ρ0)γ with γ = 0.69−1.05 at
subnormal density [2, 42, 43]. But the high density
behavior of 2nd order symmetry energy as predicted
by different model calculations [44–47] is extremely
divergent and very much contradictory. Basically, it
can be classified into two groups [48], first, soft de-
pendence, where the symmetry energy first increases
with density, attains a maximum value and then
decreases and second, termed as stiff dependence,
where the symmetry energy increases monotonically
with density. According to the Isospin-dependent
Boltzmann Uehling Uhlenbeck (IBUU) transport
model [49], the isospin part of mean field usym,1(k, ρ),
gives more complete information than the symmetry
energy for the same mean-field approximation at
zero temperature. But the momentum and density
dependence of the isovector part of the mean field
usym,1(k, ρ) is very much contradictory for different
theoretical models. From all these theoretical pre-
dictions the momentum dependence of usym,1(k, ρ)
can also be classified into two groups: (i) when
usym,1(k, ρ) increases with momentum, (ii) when
usym,1(k, ρ) decreases with momentum. The density
dependence of symmetry energy Esym,2(ρ) can be
directly connected to the momentum and density
dependence of usym,1(k, ρ) around Fermi momentum
by using Eq. (10),

Esym,2(ρ) =
�

2k2
f

6m

[(
m∗

0(kf , ρ)
m

)2

(11)
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Sets of Interaction Parameters

Set El
ex, MeV Eul

ex , MeV El
γ , MeV Eul

γ , MeV El
0, MeV Eul

0 , MeV t3, MeV γ Λ, fm−1 bρ0

A1 –60.9 –182.7 101.2 202.4 –101.5125 –166.8875 10 975.87 0.2362 2.47 0.0536

A2 –182.7 –60.9 101.2 202.4 –16.08 –252.32

+
�

2k2
f

m2c2

]−1/2

+

[
usym,1(k, ρ)

2

−
(

El
ex − Eul

ex

4

)(
ρ

ρ0

)
{I(k, ρ) − I(kf , ρ)}

]
.

Using the above sets of parameters (A1 and A2),
Esym,2(ρ) is plotted as a function of ρ in Fig. 3 and is
also compared with the experimental result obtained
from Esym,2(ρ) ≈ 31.6(ρ/ρ0)0.69 [43]. It is found that
the experimental result compares quite well with the
results obtained from the theoretical calculations us-
ing the interaction given in Eq. (1) at low densities.
Again, it is observed that for parameter set A1, the
2nd-order symmetry energy Esym,2(ρ) shows soft de-
pendence of density, while for the parameter set A2,
the 2nd-order symmetry energy Esym,2(ρ) shows stiff
dependence.

The 1st part of Eq. (11) represents the kinetic
part of the symmetry energy which shows the effec-
tive mass contribution of the SNM and hence shows
similar density dependence for all sets of parameters
and the 2nd part represents the potential part which
is due to the symmetry potential contribution and
shows different density dependence for different sets
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Fig. 3. Esym,2(ρ) is plotted as a function of ρ/ρ0 for
parameter sets A1 and A2 and is compared with the
experimental result Esym,2(ρ) ≈ 31.6(ρ/ρ0)

0.69.

of parameters. Hence, it is clear that the uncertainties
observed in the density dependence of the 2nd-order
symmetry energy are essentially due to the potential
part.

2.2. The 4th-Order Symmetry Energy in Terms
of Nuclear Mean Field in ANM

The 4th-order symmetry energy can be obtained
by using the relation

Esym,4(ρ) =
1

4!ρ

[
δ4H(ρnρp)

δβ4

]
β=0

(12)

=
�

2k2
f

162m

[(
m∗

0(kf , ρ)
m

)2

+
�

2k2
f

m2c2

]−1/2

+
1

648

(
El

ex + Eul
ex

2

)

×
[
I ′′′(kf , ρ) − 6I ′′(kf , ρ) + 10I ′(kf , ρ)

]

+
1
72

(
El

ex − Eul
ex

2

)[
I ′′(kf , ρ) − 2I ′(kf , ρ)

]
,

where

I ′(kf , ρ) = k
δI(k, ρ)

δk

∣∣∣∣
k=kf

I ′′(kf , ρ) (13)

= k2 δ2I(k, ρ)
δk2

∣∣∣∣
k=kf

I ′′′(kf , ρ) = k3 δ3I(k, ρ)
δk3

∣∣∣∣
k=kf

.

The 1st part of Esym,4(ρ) represents kinetic energy
as well as effective-mass contribution, 2nd part arises
from the momentum-dependent isoscalar part of the
nuclear mean field u0(k, ρ) and the 3rd part arises
from the momentum-dependent isovector part of the
nuclear mean field usym,1(k, ρ). Various contribu-
tions to the 4th-order symmetry energies Esym,4(ρ)
in different cases are compared in Figs. 4a and 4b.
The contributions of kinetic energy part and momen-
tum dependent isoscalar part of the nuclear mean
field u0(k, ρ) part of Esym,4(ρ) are positive and show
similar density dependence for all sets of parameters.
Isovector part of the nuclear mean field usym,1(k, ρ)
plays the most important role in the determination
of high density behaviour of Esym,4(ρ). It shows
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Fig. 4. (a) Ekin
sym,4(ρ) and Epot

sym,4(ρ) are plotted as a function of ρ/ρ0 for parameter set A1. (b) Ekin
sym,4(ρ) and Epot

sym,4(ρ) are
plotted as a function of ρ/ρ0 for parameter set A1.

increasing trend with density for the parameters A1
and a decreasing trend for the case of A2.

In order to investigate the effect of higher order
symmetry energy Esym,4(ρ) on EOS of ANM, the ra-
tio of 4th-order symmetry energy to 2nd-order sym-

metry energy, i.e., Esym,4(ρ)
Esym,2(ρ) is calculated. For different

sets of parameters A1 and A2 this ratio is plotted as
a function of density ρ

ρ 0
in Fig. 5. It is found that

at normal nuclear matter densityρ0 this ratio has a
very small value about 6% to 7% for parameter set
A1 and 3% to 4% for parameter set A2. At high
density around 5ρ0 it increases up to 13 to 14% for
parameter set A1 and decreases up to 1 to 2% for
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Fig. 5. Esym,4(ρ)/Esym,2(ρ) is plotted as a function of ρ/ρ0

for parameter set A1, A2 and the result is compared with
FSU GOLD model.

parameter set A2. It can be noted here that in low

density limit, lim
ρ→0

Esym,4(ρ)
Esym,2(ρ) = 1/27 as expected from

the free Fermi-gas model [9]. In Fig. 5 the ratio
Esym,4(ρ)
Esym,2(ρ) for FSU GOLD interaction is also shown for

the sake of comparison.

2.3. Contribution of 2nd-Order and 4th-Order
Symmetry Energy on Proton Fraction of β-Stable

Neutron Star Matter

On the basis of two different splittings of El
ex and

Eul
ex , two different forms of the 2nd-order symme-

try energy Esym,2(ρ) and 4th order symmetry energy
Esym,4(ρ) have been discussed, from which differ-
ent predictions on several properties of neutron stars
can be studied. To observe the contribution of the
2nd-order and the 4th-order symmetry energy on the
EOS of asymmetric nuclear matter, we calculate the
proton fraction Yp = ρp

ρ = 1−β
2 in β-stable neutron

star matter where the isospin asymmetry β is close
to 1. The chemical composition is determined by the
requirement of charge neutrality and β equilibrium.

For the β-stable neutron star matter n → p +
e− + ῡe and p + e− → n + ῡe.

The equilibrium condition requires that the re-
spective chemical potentials satisfy

μn = μp + μe + μῡ (14)

and the charge neutrality requires

ρp = ρe = ρYp. (15)

The electron density ρe in the nonrelativistic limit for
noninteracting electron can be denoted as a function
of its chemical potential as ρe = 1

3π2 μ3
e. But neutrinos
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do not accumulate in neutron stars, hence, few sec-
ond after their birth μῡ = 0. Below the muon thresh-
old density (μe < mμc2 ≈ 105.6 MeV) the charge
neutrality condition leads to the following relation [9,
50]

μe = μn − μp = 2
δE(ρ, β)

δβ
, (16)

c�(3π2ρYp)
1
3 = 4βEsym,2(ρ) + 8β3Esym,4(ρ). (17)

As the baryon density exceeds the muon threshold
density, where μe > mμc2 ≈ 105.6 MeV, the ener-
getic electrons convert to negative muons. In this
case the constituents of neutron stars are neutrons,
protons, electrons, and muons [51]. The chemical
potential equilibrium condition for the (npeμ) system
reads

μe = μμ = μn − μp (18)

= 4βEsym,2(ρ) + 8β3Esym,4(ρ).

The charge neutrality condition is

ρp = ρe + ρμ. (19)

The muon density can be expressed as a function of
its chemical potential

ρμ =
1

3π2
[μ2

μ − (mμc)2]3/2θ(μμ − mμ), (20)

where θ(x) is the Heaviside step function [51].

The charge neutrality condition can be written as

3π2(c�)3ρYp − μ3
μ (21)

− [μ2
μ − (mμc)2]3/2θ(μμ − mμ) = 0,

The equilibrium proton fraction Yp for (npe) and
(npeμ) systems can now be derived by solving
Eq. (18) and (21), respectively, considering terms up
to Esym,2(ρ) as well as up to Esym,4(ρ). The obtained
proton fraction for β-equilibrium (npe) and (npeμ)
nuclear matter is plotted as a function of density up
to the 2nd-order symmetry energy Esym,2(ρ) and 4th-
order symmetry energy Esym,4(ρ) for the above sets of
parameters A1 and A2 in Figs. 6a and 6b.

It is found that for all sets of parameters the pro-
ton fraction for(npeμ) matter is larger than that for
the (npe) nuclear matter. Further it is seen that at
high density (= 5ρ0) for the term up to the 4th-order
symmetry energy Esym,4(ρ) the proton fraction Yp for
(npeμ) matter increases from 14.1% to 15.9% for set
A1, from 20.7% to 21.2% for set A2. These results
indicate that the 4th order symmetry energy Esym,4(ρ)
may have considerable effects on the proton fraction
Yp in β-stable (npeμ) nuclear matter. In other words,
the EOS of asymmetric nuclear matter including the
term up to the 4th-order symmetry energy could be
a good approximation for the determination of the
proton fraction in β-stable (npeμ) nuclear matter.

3. CONCLUSIONS

In this paper we have expressed analytically the
2nd-order and the 4th-order symmetry energy in
terms of nuclear mean field in isospin asymmetric nu-
clear matter using a simple density-dependent finite-
range effective interaction having Yukawa form. The
density dependence of symmetry potential usym,1(k, ρ)
is studied around Fermi momentum and its role on
the 2nd-order and the 4th-order symmetry energy
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is observed. The calculations are carried out with
the Yukawa form of exchange interaction having the
same range but with different strengths for interac-
tions between two like and unlike nucleons, namely
set A1 and A2.

Using the derived analytical formula, the 2nd-
order symmetry energy is separated into kinetic
part and potential part. We have discussed the
effective contribution of these two parts towards the
2nd-order symmetry energy parameter for the same
density-dependent finite-range effective interaction
of Yukawa form. The results so obtained indicate that
the kinetic part of the 2nd-order symmetry energy
represents the effective mass contribution of symmet-
ric nuclear matter, which is a well-known quantity
and it gives the same density dependence for all sets
of parameters. The contribution of the potential part
is due to the symmetry potential which is not a very
well determined quantity and gives different density
dependence for different sets of parameters. This
indicates that the different density dependence of
symmetry energy for different interactions is essen-
tially due to the variation of the symmetry potential.

The density dependence of the 4th-order symme-
try energy Esym,4(ρ) is studied for the above sets of
parameters A1 and A2. It is found that, for parameter
set A1, where El

ex is greater than Eul
ex , the symmetry

energy Esym,4(ρ) shows a stiff dependence, while for
the parameter set A2, where Eul

ex is greater than El
ex,

the symmetry energy Esym,4(ρ) shows a soft depen-
dence of density. The analytical expression of the 4th-
order symmetry energy Esym,4(ρ) is also separated
into three parts. The 1st part of Esym,4(ρ) represents
the kinetic energy as well as effective mass contribu-
tion of SNM, 2nd part arises from the momentum-
dependent isoscalar part of the nuclear mean field
u0(k, ρ) and the 3rd part arises from the momentum-
dependent isovector part of the nuclear mean field
usym,1(k, ρ). The contribution of the kinetic energy
part and momentum dependent isoscalar part of the
nuclear mean field u0(k, ρ) part of Esym,4(ρ) are pos-
itive and show the similar density dependence for all
sets of parameters. The isovector part of the nuclear
mean field plays the most important role in the de-
termination of high-density behavior of Esym,4(ρ). It
shows an increasing trend with density for parameters
A1 and a decreasing trend for the case of A2. It
is concluded that different density dependence of the
2nd order as well as the 4th order symmetry energy for
different sets of parameters is only due to the variation
of usym,1(k, ρ).

We also investigate the 4th-order Esym,4(ρ) cor-
rections to the EOS of the isospin ANM. Our results
indicate that around normal nuclear matter density

the value of Esym,4(ρ) is very small (≈1 MeV). At
higher densities around 5ρ0 it reaches up to 6 MeV
to 7 MeV for the parameter sets A1 where the ratio
Esym,4(ρ)
Esym,2(ρ) can reach up to 13% to 14% and for the the

parameter sets A2 it diminishes up to 0.5 MeV to

0.8 MeV and the ratio Esym,4(ρ)
Esym,2(ρ) decreases up to 1%

to 2%. These results imply that the effect of the 4th-
order symmetry energy Esym,4(ρ) may become non-
negligible at higher densities.

Finally we have studied the contribution of the
2nd-order and the 4th-order symmetry energy on the
proton fraction of β-stable (npe) and (npeμ) nuclear
matter for the above sets of parameters A1 and A2.
It is found that for all sets of parameters the pro-
ton fraction for (npeμ) matter is larger than that for
the (npe) nuclear matter. Further it is seen that at
high density (= 5ρ0) for the term up to the 4th-order
symmetry energy Esym,4(ρ) the proton fraction Yp for
(npeμ) matter increases from 14.1% to 15.9% for set
A1, from 20.7% to 21.2% for set A2. These results in-
dicate that the 4th-order symmetry energy Esym,4(ρ)
may have considerable effects on the proton fraction
Yp in β-stable (npeμ) nuclear matter. In other words,
the EOS of asymmetric nuclear matter including the
term up to the 4th-order symmetry energy could be
a good approximation for the determination of the
proton fraction in β-stable (npeμ) nuclear matter.
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