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Abstract—In this paper, the problem of scattering 2 → 2(3) of three 1D quantum particles with pair short-
range attraction potentials is considered in the framework of the diffraction approach. The solution to the
scattering problem is constructed in terms of the solution to the model nonhomogeneous boundary-value
problem in a circle of a large radius with radiation conditions on the boundary. Possible physical applications
of the constructed model are studied.
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INTRODUCTION
The ideas of the diffraction approach to the prob-

lem of scattering of three 1D quantum particles were
proposed in the research works [1–3] and got further
development in publications [4–7]. In the above men-
tioned works the problem of scattering of three parti-
cles with pair repulsion potentials was considered.

The present study is dedicated to the case of pair
attraction potentials supporting bound states in each
pair. There will be two stages in the construction of the
solution to the problem of scattering 2 → 2(3). At the
first stage we propose an algorithm to establish a rela-
tion between the scattering amplitudes of processes
2 → 2 and 2 → 3. The relation will be obtained in
terms of a certain external object – the patch function,
the influence of which will be neutralized at the sec-
ond stage. At this (second) stage a numerical mecha-
nism of the reconstruction of the complete solution to
the scattering problem in the whole configuration
space will be proposed. A boundary-value problem for
a nonhomogeneous differential equation in second
order partial derivatives in a circle of a large radius with
a radiation condition on the boundary will be formu-
lated. In the case of the problem of scattering 3 → 3 a
similar algorithm of the solution was proposed in [4]
and realized numerically in [5, 6].

It should be noted that the general algorithm of
construction of the solution to the problem of scatter-
ing 2 → 2(3) for the case of 3D charged particles was
proposed in [8] with respect to reactions connected
with accumulation of antiprotons [9–11]. The pro-
posed study can be regarded as the first step necessary
for the realization of this algorithm in the simplest sit-

uation of 1D particles and finite pair attraction poten-
tials. On the other hand, the proposed model is a com-
pletely finished one and has its own value for example
for describing scattering of nucleons in parallel beams.

FORMULATION OF THE PROBLEM
We consider a system of three quantum particles,

the dynamics of which is described by the Schrödinger
operator

(1)

We assume that pair potentials , i = 1,2,3 are
finite, even, nonpositive and support one bound state.
We rely here on the Calogero criterion [12] (and its
generalization for potentials set on the axis), defining
the number of bound states in the system of two bod-
ies. We assume as well that pair (x, y) – is a pair of
Jacobi coordinates corresponding to the system of
three bodies. Here x ∈ , y ∈ . We assume that the
particles masses and pair potentials are identical.

We consider the problem of scattering 2 → 2(3) of
three particles on the axis, i.e., the coordinate of each
particle is characterized by a real number. To be more
precise, we consider scattering of a bound pair on the
third particle using formalism of the diffraction
approach described in detail in the research works [1,
2, 4]. In the framework of formalism the configuration
space of the problem is plane Γ, each of three pairs of
Jacobi coordinates forms Γ oriented system of coordi-
nates, these systems of coordinates (just as the pairs of
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QUANTUM SCATTERING OF THE BOUND PAIR 643
Jacobi coordinates corresponding to two arbitrary dif-
ferent pair subsystems) are connected by the rotation
transformation. The complete support of potential
(the union of three pair supports of potential) is a
combination of three intersecting at one point beams
– “screens” lj with neighborhoods. In the given case of
finite pair potentials the carrier of the total potential is
the union of three oriented bands in the plane, the
width of each band being defined by the carrier of the
corresponding pair potential. Each of the screens with
index j defines a domain in the configuration space, in
which particles in pair j coincide, i.e. equality xj = 0
holds. Thus, along the “screen” with index j the Jacobi
coordinate yj changes, while orthogonally to the
screen so does the Jacobi coordinate xj. The sign of
coordinate xj is defined by the evenness of particles
permutation in pair j, while the sign of coordinate yj is
defined by the evenness of particle j permutation and
of the center of mass of particles pair k and l. We
assume here that the tripod of indices (j, k, l) is formed
by the permutation of numbers (1, 2, 3).

We also assume that the asymptotic form of the
solution to the Schrödinger equation

satisfying radiation conditions at infinity in the con-
figuration space, is structured as follows

(2)

Here

We are using notations k ∈  and p ∈  for
momenta Fourier conjugate to the Jacobi coordinates
x and y.

We assume that in the initial state the particles of
pair j = 1 are in bound state  with energy κj < 0.

Functions  satisfy normalization condition

(3)

It should be noted that the first term in expression
(2) corresponds to the incident wave. We can empha-
size that the following relations are valid

The second term in expression (2) corresponds to
the superposition of diverging waves (processes 2 → 2)
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with amplitudes . Here index  j = 1, 2, 3 denotes the
number of pair subsystem, while index τ ∈ {+, –}
defines evenness of the coordinate permutation of
particle j and of the center of mass of the subsystem
with index j. In other words, index τj corresponds to
the sign of Jacobi coordinate yj and thus defines

“semi-screen” . For diverging waves the following
relations are observed:

In should be noted that each diverging wave with
amplitude  is defined only on the semi-screen,
which corresponds to index τj. On the semi-screen
with index –τj it continues by zero.

Finally, the third term in expression (2) corre-
sponds to the process of breakup 2 → 3 and describes
a diverging wave with amplitude A( , P). Now we
seek to construct a set of equations relating amplitudes

 of scattering processes 2 → 2 and amplitude A( ,
P) of process 2 → 3. It should be emphasized that we
know the solution to the Schrödinger equation only in
the asymptotic domain of the configuration space for
X ≫ 1. We introduce a patch function, which will cut o
the solution for bounded and small values of X. Multi-
plying the exact solution to the problem of scattering
(or its certain part) by such a patch function, we obtain
a new function which will remain an exact solution to
the Schrödinger equation for large X, while for
bounded and small values of X it, although not being
an exact solution to the Schrödinger equation any-
more, will generate a known discrepancy different
from zero in the bounded domain of the configuration
space.

This fact allows us to realize the following algo-
rithm of the solution to the problem of scattering. At
the first stage we use the Green formula in a plane and
establish, even if in terms of a certain patch function, a
relation between the scattering amplitudes of pro-
cesses 2 → 2 and 2 → 3. It should be emphasized that
we single out the part of the solution corresponding to
the singular part of the scattering matrix. In other
words, we relate cluster solutions to the problem of
scattering (corresponding to processes 2 → 2) with a
diverging circular wave (corresponding to processes
2 → 3). At the second stage of the solution to the scat-
tering problem we construct a nonhomogeneous
boundary-value problem for the part of the solution,
which is a compliment for the full set of cluster solu-
tions, leading up to the complete solution of the scat-
tering problem. The asymptotic form of this unknown
part of the solution behaves as a diverging circular
wave with a smooth amplitude and satisfies the radia-
tion conditions at infinity. In its turn, cluster waves
“cut o” by limited and small values of X will generate
nonhomogeneity of the boundary-value problem,
which in all cluster solutions with exception of inci-
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644 BUDYLIN, LEVIN
dent wave turns out to be connected to the amplitude
of a diverging wave. Now let us realize the algorithm
described above.

CONSTRUCTION OF EQUATIONS 
CONNECTING THE AMPLITUDES

OF SCATTERING PROCESSES 2 → 2 AND 2 → 3

We introduce radial patch function ζ(X) ∈  as
follows

(4)

We also introduce notation

for the scattered wave corresponding to process 2 → 2,
and notation

for the scattered wave multiplied by patch function.

Now we act by operator H – E upon Hermite con-
jugate exact solution Ψ∗ and upon function :

(5)

Here notation  is used for the discrepancy of

function  in the Schrödinger equation. We multiply

the first of the equations of system (5) by function ,
multiply the second equation in system (5) by function
Ψ*, and subtract the second equation from the first
one and integrate the result in circle BR of radius R >
R2. Having used the Green formula, we arrive at the
following relation

(6)

It should be noted that the set of indices { j, τj}
describes one of six semi-screens, on each of them
equation (6) being realized. We emphasize that the
semi-screen corresponding to the incident wave is the
selected one. Let us consider these two cases sepa-
rately.

(1) First we consider the case: { j, τj} ≠ {1, –}.

Relation (6) with account for explicit form of
asymptotics (2) and of normalization conditions (3)
takes form
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(7)

Notation  is introduced for a narrow arc of the
circle of radius R in the neighborhood of intersection
of the circle and semi-screen . At the ends of arc 

function  vanishes.

It should be noted that discrepancy  differs from

zero in the neighborhood of semi-screen , in which
patch function ζ(X) changes from ζ = 0 to ζ = 1, and
precisely, R1 < X < R2. The width of the neighborhood
is defined by the width of the carrier of pair potential

. Thus  ~ O , while the area of integra-

tion domain in the integral in the right-hand side of
equation (7) also has order R2 – R1. The integral value
in the left-hand side of equation (7) is defined by the
method of stationary phase.

Finally,

(8)

Angular variable θ defining the point at the bound-
ary of circle BR, is changed in the interval [0, 2π). Sta-

tionary points , from which the main contribution
to the integrals along the boundary of circle BR comes,
coincide with six values defining the intersections of
semi-screens  with circumference ∂BR. We have also
taken into account that in the sense of the above anal-
ysis the second term under the integral in the right-
hand side of equation (7) has the next order of small-
ness compared to the main contribution.

A relation between amplitudes  of scattering
processes 2 → 2 and amplitude A( , P) of scattering
process 2 → 3 in accordance with equation (8) takes
form
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(9)

(2) Now let us consider the case: {j, τj} = {1, –}.
Repeating the computations described in the previ-

ous section, it is not too di cult to see that constraint
equation (9) will be modified. And precisely, relation
(6) with account for the explicit asymptotic form (2)
and normalization condition (3) leads in this case to
the following equation

(10)

Now in the integral term in the right-hand side of
equation an additional term has appeared, corre-
sponding to the incident wave. Repeating the compu-
tations held in case {j, τj} ≠ {1, −} and taking into
account the additional term, we obtain the final
expression

(11)

It should be noted that the contribution of the sec-
ond term turns out to be negligibly small due to esti-
mation
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Thus with an accuracy to the values of the next
order of smallness, the following constraint equation
holds

(12)

The obtained constraint equations (9) and (12)
turn out to be sufficient for constructing the bound-
ary-value problem to completely solve the problem of
scattering.

CONSTRUCTION OF THE BOUNDARY-VALUE 
PROBLEM FOR A DESCRIPTION 
OF THE COMPLETE SOLUTION

Now let us construct the boundary-value problem
for complete solution Ψ of scattering problem 2 →
2(3), based on the obtained above system of bonds (9)
between scattering amplitudes  of scattering pro-
cesses 2 → 2 and amplitude A( , P) of scattering pro-
cess 2 → 3.

Let us write the complete solution of scattering
problem Ψ as follows

(13)
where the first term in expression (13) contains an
incident wave and a set of scattered waves correspond-
ing to scattering processes 2 → 2, cut o by function
ζ(X) (4) on exterior of a circle of large radius with the
center in the origin of coordinates

Unknown function Φ(X, P) is a complement for
the first term ξ(X, P) to the complete solution. An
analogous approach was applied, for example, in [5].
We will follow similar ideas. According to expression
(2), the asymptotic form of function Φ(X, P) for X →
∞ takes form

(14)

where A( , P) is a smooth function on the circumfer-
ence.

Since function Ψ is an exact solution to the
Schrödinger equation, for function Φ(X, P) we obtain
equation
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It should be noted that the right-hand side of equa-
tion (15) S(X, P) is defined with an accuracy to six
coefficients . In its turn, the coefficients are deter-
mined in accordance with (9) and (14) in terms of
determined values of function Φ(X, P) on the circum-
ference of radius R. It should also be noted that equa-
tion (15) on function Φ is nonhomogeneous, since the
incident wave does not depend on coefficients  and
thus does not depend on Φ.

Now we consider nonhomogeneous equation (15)
in a circle of large radius R in plane Γ with boundary
conditions of form

(16)

The solution to the formulated boundary-value
problem in summation with function χ gives, accord-
ing to (13), a complete solution to the initial problem
of scattering.

CONCLUSIONS

The constructed model can be considered as a real-
ization of the method proposed in the research work
[8] for a description of the mechanism of accumula-
tion of antiprotons [13, 14] in a simpler situation of 1D
particles and short range pair potentials. Being a nec-
essary step for the realization of a complete situation
described in [8], the proposed model has a value of its
own. In the framework of the proposed model one can
consider for example a problem of scattering in paral-
lel beams [15–17]. In the situation when the angle of
scattering of break-up products turns out to be small,
scattering of a two-body cluster on the third particle in
the main order is determined precisely by the above
described algorithm.

It should be also noted that the proposed algorithm
of solution to the scattering problem of three particles
on the axis offers scope for analytical (and numerical)
research of the problem of one-dimensional scattering
3 → 2(3) with pair potentials of attraction, developing
results of the study [6].
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