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Abstract—Soliton states in a semi-infinite ferromagnetic film with partially pinned spins at its boundary are
found and analyzed within the focusing nonlinear Schrödinger equation (NLSE). It is shown that solitons are
divided into two classes. The first class includes magnetization oscillations with discrete frequencies localized
near the film edge. The second class contains moving particle-like objects whose cores are strongly deformed
at the film boundary; these objects are elastically reflected from this boundary, thus recovering the shape of
solitons typical for a unbounded sample. A series of conservation laws for a wave field is obtained that ensures
the localization of soliton oscillations near the boundary of the sample and the elastic reflection of moving
solitons from this boundary. It is shown that a change in the phase of the internal precession of a soliton
during reflection depends on the character of spin pinning at the edge of the sample.
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1. INTRODUCTION

Yttrium iron garnet films with a thickness from a
few to tens of microns and length from a few to tens of
centimeters have the properties of a ferromagnetic
medium in the range from 1 to 20 GHz. This fre-
quency range has been intensively studied due to the
possibility of exciting exchange–dipole spin waves
propagating along a film. One of the main results of
such a study has been the discovery of spin-wave enve-
lope solitons in ferromagnetic films [1–3]. While in
the theory of linear waves one speaks of the effects of
exchange and dipole–dipole interactions when the
corresponding energies are comparable in an order of
magnitude, the formation conditions and the struc-
ture of even weakly nonlinear solitons are largely
determined by the competition between two types of
spatial dispersion, the exchange and magnetostatic
ones, rather than by their energies [4]. In addition,
taking into account magnetostatics makes the problem
not only non-one-dimensional but also nonlocal and
requires correct consideration of the boundary condi-
tions on the surface of a sample.

To analyze small-amplitude excitations in mag-
netic films, one usually applies the local nonlinear
Schrödinger equation (NLSE):

(1)

The complex field ψ(X, τ) describes the space–
time modulation of a traveling activation wave

where k and ω(k) are the wave number and the fre-
quency of the main harmonic, x and t are the spatial
coordinate and time, and X and τ are the corresponding
slow variables. The deviations of normalized magneti-
zation mi(x, t) (i = 1, 2, 3) from the equilibrium position
(0, 0, 1) are expressed in terms of ψ(X, τ):

(2)
A simplified derivation of the NLSE assumes the

differentiability of the dispersion law of linear spin
waves ω(k) with respect to the wave number k. The
interaction constant g of waves is traditionally calcu-
lated in the limit as k → 0 from the expansion of the
ferromagnetic resonance frequency in terms of the
oscillation amplitude [5]. However, in the region of
small wave numbers (|kd| ≪ 1, d is the film thickness),
the frequency ω(k) of exchange–dipole spin waves is a
nondifferentiable function of k [6]. In [4, 7] the
authors showed that, for wave numbers k and frequen-
cies ω(k) satisfying the conditions

(3)
the nonlinear and nonlocal dynamic equations of a
ferromagnetic plate in the absence of spin pinning at
its surface and with correct consideration of theτ
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INTERACTION OF SOLITONS WITH THE BOUNDARY 677
exchange and magnetostatic interactions can be
reduced to the simplified local model (1). Here L is
the size of the sample, λ is the characteristic size of
magnetic inhomogeneities, a is the lattice constant,
and c is the speed of light. The neighborhoods of zero
dispersion points, where ω(k) ≈ 0 (due to the com-
petition between exchange and magnetostatic disper-
sions), as well as long-wavelength excitations with
|kd| < 1, require separate consideration [4]. During a
step-by-step derivation of the NLSE, the interaction
constant of waves takes into account the inhomogene-
ities in the distribution of magnetization along the
normal to the plate and nontrivially depends on the
wave vector of the main harmonic and the plate thick-
ness. As a result, one can describe the interaction fea-
tures of spin waves with close values of nonzero wave
vectors that are inhomogeneous across the thickness
of the plate and propagate along the plate. These
results allow one to pass from model (1) to observable
quantities in a more detailed manner.

In sufficiently thin films with free surface spins
only the lower branch of the spectrum of exchange–
dipole waves with an almost uniform distribution of
magnetization along the normal to the plane is excited
by an alternating magnetic field [8]. In this branch,
there exist large ranges of wave numbers (3) in which
g > 0 and ω(k) < 0. Hence, the Lighthill criterion [9]

(4)

holds, which allows the formation of bright exponen-
tial solitons from localized pulses of external action. In
this case, model (1) is reduced by scaling transforma-
tions to the standard form of the focusing NLSE:

(5)

In the case of an infinite plate (–∞ < x < ∞),
Eq. (5) is equivalent to the commutativity of two dif-
ferential operators depending on a complex spectral
parameter [10, 11]. Such a representation (U–V-pair)
allows one to find a mapping of the solutions of model
(5) to the scattering data of the auxiliary spectral prob-
lem. In the simplest case, when ψ(x, t) tends to zero as
x → ±∞, the evolution of the scattering data is deter-
mined by linear equations and is explicitly calculated
by the magnetization distribution ψ(x, t = 0) defined
at the initial time. The inverse spectral transformation
makes it possible to find a complete solution of the ini-
tial boundary value problem for NLSE (5) by the scat-
tering data. Strictly speaking, these results are applica-
ble only for unbounded samples. Therefore, the main
applications of NLSE (5) and its generalization were
found in nonlinear optics and fluid dynamics: in
designing optical fiber communication lines and in the
simulation of wave processes in water basins (see [12–
15] and references cited there).
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In the case of finite variation ranges of x, one can-
not obtain a simple mapping of the initial and bound-
ary conditions formulated for the initial fields to the
scattering data. Nevertheless, the traditional inverse
scattering problem method on the whole axis –∞ <
x < ∞ allows one to solve initial boundary value prob-
lems for wave processes on the half-line 0 ≤ x < ∞ [16–
19]. In the case of NLSE (5) for the field ψ(x, t) = χ(x, t)
on the half-line 0 ≤ x < ∞, practically important
boundary conditions 

(6)

(7)
turn out to be integrable.

The positive or negative surface anisotropy con-
stant β determines the character of spin pinning at the
edge of the film. From the physical viewpoint, the
parameter β takes into account the single-ion anisot-
ropy and/or the external magnetic field on the face x =
0 of the sample. The effective magnetic field and the
anisotropy axis are directed along the normal to the
developed surface of the film.

In the limiting case of β → 0, the first relation in (6)
turns into the Neumann condition ∂xχ|x = +0 = 0 (free
spins at the edge of the plate); in the formal limit as
|β| → ∞, this relation reduces to the Dirichlet condition
χ|x = +0 = 0 (complete spin pinning at the point x = 0).

In [16–19], the authors proposed a modification of
the inverse scattering problem method for solving
NLSE on the half-line for given initial perturbation
χ(x, t = 0) and boundary conditions (6), (7). The inte-
gration scheme is analogous to the method of images
used in solving linear boundary value problems of
electrostatics with certain spatial symmetry. However,
the above-cited works do not contain an analysis of
multisolitons. For instance, in [19] the author dis-
cusses from the very beginning only dispersive waves
without solitons. In the present work, we analyze the
initial boundary value problem in a semi-infinite fer-
romagnetic film in the presence of spin waves and soli-
tons. We show that solitons near the boundary of the
film have qualitatively new properties that are absent
in the infinite medium. We study the changes in the
dynamic properties and the structure of solitons for
different degrees of spin pinning at the boundary x = 0
of the sample and obtain new conservation laws for
nonlinear collective excitations in a semi-infinite film.

The article is organized as follows. In Section 2, we
give formulas from [16, 17] that are necessary for the
theoretical description of the nonlinear dynamics of a
semi-infinite ferromagnetic film. Section 3 gives a
solution of the initial boundary value problem for the
NLSE on the half-line. The advantage of the method
consists not only in the direct relation to the conven-
tional integration scheme of the NLSE on the interval
–∞ < x < ∞ [11], but also in that, in contrast to other
approaches [18, 19], it allows generalization and opens
up the possibility of a detailed analysis of quasi-one-

=+∂ χ − βχ =0[ ]| 0;x x

χ → ∂ χ → → +∞0, and 0 as .x x
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678 KISELEV, RASKOVALOV
dimensional solitons and dispersive waves in semi-
infinite samples with integrable boundary conditions
[20] within the basic Landau–Lifshitz models for the
Heisenberg ferromagnet and for ferromagnets with
anisotropy quadratic in magnetization [4].

In Section 4 we obtain explicit formulas for soliton
excitations in a semi-infinite plate. We show that there
exist two classes of solitons. Multisolitons of the first
class are localized near the edge x = 0 of the film and
represent near-boundary oscillations of magnetization
with specific frequency and amplitude properties. The
second class consists of moving particle-like objects
that are elastically reflected from the edge of the film.
At large distances from the edge of the film, these
objects are transformed into precessing magnetic soli-
tons, typical for an infinite medium, that elastically
collide with each other.

In Section 5, we find a series of local integrals of
motion for a semi-infinite ferromagnetic film each of
which represents the additive sum of contributions of
solitons and quasiparticles of the continuous spectrum
of spin waves. We establish additional conservation
laws that ensure the localization of solitons near the
boundary of a sample or their reflection from the
boundary.

2. STATEMENT OF THE PROBLEM

Recall that, in solving the initial boundary value
problem for the NLSE on the whole axis –∞ < x < ∞,
it is assumed that the field ψ(x, t) is differentiable the
necessary number of times with respect to the vari-
ables x and t. Then Eq. (5) is equivalent to the commu-
tativity of two operators [11],

(8)

where

σi (i = 1, 2, 3) are the Pauli matrices, σ± = (σ1 ± iσ2)/2,
and λ is a complex spectral parameter. Representation
(8) can be rewritten in the integrated form, using the
translation matrix T0(x, y, λ) along the x axis from
point y to point x. Henceforth, when it does not cause
confusion, we do not indicate dependence on time t.
The matrix T0(x, y, λ) satisfies the equations [11]

(9)

∂ − λ ∂ − λ =[ ( ), ( )] 0,x tU V

+ −
λλ = − σ + ψ σ + ψσ3( ) ( * ),
2
iU i

− +

 λλ = σ − ψ 
 

− ∂ ψ − λψ σ − ∂ ψ + λψ σ

2
2

3( ) | |
2

[( ) ( * *) ],x x

V i

i i

0 0

0 0

0 0 0

( , , ) ( , ) ( , , ),
( , , ) ( , , ) ( , );

( , , ) ( , ) ( , , ) ( , , ) ( , )

x

y

t

T x y U x T x y
T x y T x y U y

T x y V x T x y T x y V y

∂ λ = λ λ
∂ λ = − λ λ

∂ λ = λ λ − λ λ
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with the conditions T0(x, x, λ) = I and detT0(x, y, λ) =
1 and has the superposition property

In particular, the relation T0(x, y, λ) = (y, x, λ)
holds. The matrix functions U(λ) and V(λ) have a spe-
cial form:

(10)

Therefore, Eqs. (9) imply the involution property

(11)
Let us proceed to the consideration of the NLSE

(5) for the field ψ(x, t) = χ(x, t) on the half-line 0 ≤ x <
∞ for boundary conditions (6), (7). To include this
problem in the scheme of the inverse problem method,
we extend the field χ(x, t) to the whole axis in an even
way. To this end, we define ψ(x, t) as a continuous
piecewise differentiable function

(12)

The function ψ(x, t) is continuous at the point x = 0:

but its first derivative experiences a jump [16, 17]:

These relations allow us to consider the previous
boundary condition (6) as additional constraint on the
field ψ(x, t) at the point x = 0:

(13)

that are analogous to similar constraints in the proce-
dure of integration of the linearized NLSE on the half-
line 0 ≤ x < ∞ by the image method. Here Δ f |x = 0 =
f(x = +0) – f(x = –0).

We can verify by direct calculation that the con-
straint (13) is equivalent to the relation [20]

(14)
where V±(λ) ≡ V(λ)|x = ±0, K(λ) = λI + iβσ3, and I is the
identity matrix. To take into account the relation (14),
we modify T0(x, y, λ) and introduce a new translation
matrix T(x, y, λ) [16],

(15)

which includes the factors K(λ) and K–1(λ). From rep-
resentation (15) we conclude that the new translation
matrix is not unimodular:

(16)

0 0 0( , , ) ( , , ) ( , , ).T x z T z y T x yλ λ = λ
−1

0T
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−
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It satisfies the relations

(17)

and

(18)
When x ≠ 0 and y ≠ 0, taking into account (14) and

(15), we obtain the following differential equations for
T(x, y, λ):

(19)

which are the same as Eqs. (9) for an infinite plate.
This allows us to include the boundary value problem
(6), (7) for the NLSE (5) on the half-line 0 ≤ x < ∞ in
the scheme of the inverse scattering problem on the
whole axis –∞ < x < ∞. At the same time, the speci-
ficity of extending the field ψ(x, t) (12) leads to the
modification of the calculations. Let us dwell on this
in more detail.

3. INTEGRATION OF THE NLSE 
ON THE HALF-LINE 

BY THE IMAGE METHOD
3.1. Direct Scattering Problem

Following the scheme of the inverse scattering
problem on the whole axis –∞ < x < ∞ [11], we intro-
duce the matrix functions

(20)

which are the Jost basis solutions of the auxiliary linear
system [11, 16]

(21)
The asymptotic behavior of these solutions

is consistent with condition (7).
We can easily verify that, for x ≥ 0, the matrix p(x, t)

in the expansion of the Jost solution T+(x, t, λ) in
inverse powers of λ (as λ → ∞),

satisfies the relation

Hence we immediately obtain an explicit solution
of NLSE (5) for x ≥ 0 in terms of the matrix element
[T+(x, t, λ)]21:

−

λ = ≠
λ = λ ≠1

( , , ) for 0,

( , , ) ( , , ) for

T x x I x

T x y T y x x y

−+ − λ = − + λ = λ1( 0, 0, ) ( 0, 0, ) ( ).T T K

( , , ) ( , ) ( , , ),
( , , ) ( , , ) ( , );

( , , ) ( , ) ( , , ) ( , , ) ( , ),

x

y

t

T x y U x T x y
T x y T x y U y

T x y V x T x y T x y V y

∂ λ = λ λ
∂ λ = − λ λ

∂ λ = λ λ − λ λ

( )± →±∞

λ λ = λ − σ
  

3( , , ) lim ( , , )exp
2y

i yT x t T x y

± ±∂ = .xT UT

±
λ σ λ → − → ±∞ 

 
3( , , ) exp as

2
i xT x t x

( )+
λ σ λ = + + − λ  

3( , )( , ) ... exp ,
2

i xp x tT x I

+ −σ = χ σ + χσ3[ , ] 2( * ).p
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
(22)

The evenness ψ(x, t) = ψ(–x, t) (12) leads to an
additional symmetry of the matrices U and V:

with regard to which system (19) implies the propor-
tionality of the matrix functions T(x, y, λ) and
σ3T(‒x, –y, –λ)σ3. The proportionality factor is fixed
by equality (18):

(23)

Here we used the relation

Since K*(λ*) = σ2K(λ)σ2, formulas (11) and (15)
preserve the previous reduction for the new translation
matrix:

(24)
From (16), (23), and (24) we obtain the key prop-

erties of the Jost functions for λ ∈ R:

(25)

On the real λ axis, the fundamental solutions are
determined simultaneously; therefore, they are related
by the transition matrix T(λ):

(26)
whose algebraic structure is determined by the reduc-
tions (25):

(27)

Introduce the notation  for the ith column of
the matrix T± = ( , ). The columns (x, λ)

and (x, λ) of the Jost solutions are analytically
continued from the real axis to the domain Imλ > 0,
and the columns (x, λ) and (x, λ) are analytical
functions in the lower half-plane Imλ < 0 except, pos-
sibly, simple poles of the matrix T+(x, λ) for x < 0 at
the points λ = ±iβ, which are inherited from the
matrix K–1(λ).

( )21( , ) lim [ ( , , )] exp .
2

i xx t T x t+λ→∞
λ χ = − λ λ
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3 3

3 3
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3
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2 (sgn 1)/2
3 3

2 2
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x

T x

T x x T x
T x T x

±
2

±
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From (26) we obtain a representation for a(λ) in
the form

(28)

This implies that the function a(λ) admits an ana-
lytical continuation to the upper half-plane Imλ > 0,
where it generally has zeros that are assumed to be
simple. Moreover, this function may have a zero at the
point λ = i|β| (see (15), (20), and (28)). We can show
that an element (λ) of the transition matrix is contin-
ued from the real axis to the domain Imλ < 0, where it
is expressed in terms of a(λ*): (λ) = a*(λ*).

The reduction a*(–λ) = –a(λ) (27) is transferred
from the real axis to the domain Imλ > 0, where it
takes the form

(29)

According to (29), the zeros of the function a(λ)
either appear in pairs,

(30)

or are purely imaginary,

(31)

If a(λi) = 0, then we conclude from (28) that the

columns (x, λj) and (x, λj) are proportional:

(32)

The continuation of the composition of the last two
equalities in (25) to the complex λ plane gives a rela-
tion

(33)

where the values of λ are chosen in the analyticity
domains of the corresponding columns. In particular,
from (33) we obtain

(34)

where Imλ > 0.
Using (32) and (34), we derive a relation between

the normalization constants:

(35)

(36)

The constraint (36) is valid only for νs > |β|.

(1) (2)

2 2 (1 sgn )/2 (1) (2)

det[ ( , ), ( , )]( )
det ( , )

[ ] det[ ( , ), ( , )].x

T x T xa
T x
T x T x

− +

+
−

− +

λ λλ =
λ

= λ + β λ λ

a

a

−λ = − λ*( *) ( ).a a

*{ , }, Im 0,
1,2,..., , 1,2,...,2 ;

j k k k

k N j N
λ = λ −λ λ >
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λ = ν ν > ={ }, 0, 1,2,..., .j s si s M

−
(1)T +

(2)T

(1) (2)( , ) ( ) ( , ).j j jT x T x− +λ = γ λ λ

1 1
2 2 (sgn 1)/2
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[ ] ,x

T x x T x± λ = ± σ − −λ σ
× λ + β

∓

∓

(1) (2) 2 2 (sgn 1)/2
1

(2) (1) 2 2 (sgn 1)/2
1

*( , ) sgn ( , *)[ ] ,

*( , ) sgn ( , *)[ ] ,

x

x

T x x T x
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+
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−
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λ = − σ − −λ λ + β
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2 2*( ) *( ) ( ), 1,2,..., ;k k k k Nγ λ γ −λ = − λ + β =

2 2 2| ( )| 0, 1,2,..., .s si s Mγ ν = ν − β > =
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In the limit of large λ, the Jost functions have the
following asymptotics [16]:

(37)

The element a(λ) of the transition matrix is recov-
ered by its zeros, poles, the asymptotic behavior for
large λ, and the reflection coefficient b(λ) [11, 16]:

(38)

The numbers N and M in (38) define, respectively,
the number of complex (30) and purely imaginary (31)
zeros of the coefficient a(λ).

To specify the relation between the parameter α
and the anisotropy constant β in (38), we construct an
appropriate representation for the elements of the
transition matrix. Such a representation follows from
(26) with regard to (15) in the limit as x → +0:

(39)
Using (33), we express T–(–0, λ) in terms of

T+(+0, λ) for x → +0,

and rewrite (39) as

(40)
Taking into account that detT+(+0, λ) = 1, from

(40) we obtain formulas for the elements of the transi-
tion matrix that are useful for further analysis:

(41)

(42)

Recall that a(λ) is an analytical function in the
upper half-plane of the parameter λ. In (41) it is
expressed in terms of the elements of the column

(λ), which are analytical in the same domain. On

( )
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∏ ∏



1 1
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2 2
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2
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i
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i
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INTERACTION OF SOLITONS WITH THE BOUNDARY 681
the contrary, the function b(λ) does not have any defi-
nite properties of analyticity and is defined only for
λ ∈ R. Therefore, on the right-hand side of (42), we
should take the limits of the components of (λ)
and (λ) from their domains Imλ > 0 and Imλ < 0
to the contour –∞ < λ < ∞.

In the limit as λ → +i0, representation (41) gives the
following value with regard to the last formula in (25):

On the other hand, in view of the evenness of the
function |b(μ)|2, we obtain

from the dispersion relation (38). Thus, the relation
between the parameters α and β is given by the equality

(43)
which depends on the number of imaginary zeros of
the coefficient a(λ).

Using the auxiliary linear equation (21), we have
constructed a mapping of the solutions of the original
initial boundary value problem for the NLSE on the
half-line to the complete set of scattering data. This set
contains the spectral densities b(λ), where

the discrete zeros λj of the coefficient a(λ) (Imλj > 0), and
the normalization constants γ(λj) (j = 1, 2, …, 2N + M).
In the new variables, the problem of integration of the
NLSE reduces to the solution of linear problems. The
last equation in (19) implies a typical dependence of
the scattering data on time:

(44)

The values of the integration constants b(0, λ), λj,
and γ(0, λj) are obtained from Eq. (21) by a given ini-
tial distribution of magnetization χ(x, t = 0).

3.2. Inverse Scattering Problem
The spectral function b(λ, t) parameterizes spin-

wave trains that spread in time due to the dominance
of dispersion phenomena over the effects of compres-
sion of wave packets due to the interaction of harmon-
ics. The zeros λj of the coefficient a(λ) parameterize
structurally stable particle-like objects—solitons. In
the absence of dispersive waves, long-lived magnetic
solitons correspond to the coefficient a(λ) with zeros
under the condition b(λ) =  ≡ 0.

To theoretically describe the evolution of the initial
magnetization distribution in a semi-infinite plate
with boundary conditions (6), (7), we should pass
from the scattering data to the observable quantity

+
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χ(x, t). A specificity of the works [16, 17] consists in
that the inverse mappings on the intervals

turn out to be different and can be considered inde-
pendently. Although the finally constructed solutions
of the NLSE, the real one for x > 0 and the fictitious
one for x < 0, are related by symmetry (12), the corre-
sponding Jost functions do not have such a property.

To construct the sought solutions ψ(x, t) = χ(x, t)
of the Cauchy problem for the NLSE (5) with the
boundary conditions (6), (7) on the interval 0 < x < ∞,
we proceed from the first column of the matrix rela-
tion (26) of the Jost functions on the real λ axis. We
write the corresponding equality in a form convenient
for further calculations:

(45)

where r(λ) = b(λ)/a(λ). For now, we omit the depen-
dence on time t.

Recall that the vector function (x, λ)a‒1(λ) ×
exp(iλx/2) is analytical in the domain Imλ > 0 every-
where except the poles, which coincide with the zeros of
the coefficient a(λ) (38). In the general case, the posi-
tions of these zeros are determined by formulas (30) and
(31). For α < 0, the element a(λ) has an additional spe-
cial zero λ = i|α| in the domain Imλ > 0. The function

(x, λ)exp(iλx/2) is analytical in the lower half-
plane of λ. The asymptotic behavior of these functions
for x > 0 and λ → ∞ is given by the formulas (see (37)
and (38))

(46)

The construction of linear integral equations of the
inverse scattering problem for the NLSE on the half-
line (for 0 < x < ∞) differs from that on the whole axis
[10] only by the presence of additional reductions and
the appearance of a special zero λ = i|α| with α < 0 of
the function a(λ). Let us discuss what this leads to.

Consider a piecewise analytical function of the
parameter λ:
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In view of estimates (46), the values of this function
at any point of the λ plane are expressed by the Cauchy
theorem [10] in terms of the integral of the jump of the
function F(x, λ) along the real axis when crossing this
axis, as well as in terms of the residues of the function

(x, λ)a–1(λ)exp(iλx/2) at the zeros of the denomi-
nator a(λ). For α > 0, only the residues at the points
λ = λj (30) and (31) remain, at which, according
to (32), we have

In contrast to [10], now the derivatives a'(λj) and
the normalization constants γ(λj) are related by the
reductions (29), (35), and (36). For α < 0, the element
a(λ) has a special zero λ = i|α| in its analyticity domain;
therefore, the function F(x, λ) may have a pole at this
point. Actually, there is no such a pole because,
according to the reduction (36), γ(i|α|) = 0, and hence

(x, i|α|) = 0 for α < 0 and x > 0.

The integral representation for the piecewise ana-
lytical function F(x, λ) has the form

(48)

where

The quantities cn and r(μ) in this and subsequent
formulas depend on time:

The last property in (25) is transferred from the real
λ axis to the complex plane and takes the following
form for the columns (x, λ) and (x, λ):

(49)

Together with (49), representation (48) yields a
closed system of linear integral equations for calculat-
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ing the functions (x, λ) for –∞ < λ < ∞ and dis-
crete values of y(x, λn) (Imλn > 0):

(50)

After the solution of Eqs. (50) is found, formula
(48) gives the values of the function F(x, λ) at all points
of the upper and lower λ half-planes.

For soliton states, the reflection coefficient
r(μ) ≡ 0; hence, the function F(x, λ) has no jump on
the real axis λ. Therefore, only algebraic equations
remain for calculating the functions y*(x, λn) and
y(x, λn). After straightforward transformations, we can
eliminate y*(x, λn) and obtain a closed system of linear
equations for calculating y(x, λn):

(51)

The formulas for multisolitons are simplified if we
introduce

(52)

instead of the functions γ(λ, t) and a(λ). Then
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where f(λ) = (λ + iα)/(λ – iα).
It follows from system (51) that the projections of

the vectors y(x, t, λn) are independent. According to
(47), (48), and (22), the soliton solutions of the NLSE
are expressed in terms of the second projections of
these vectors:
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and by construction satisfy the boundary condition (6)
with relation (43):

(55)

where M is the number of zeros of the coefficient (λ)
of the form λ = iνs (νs > |α|).

4. ANALYSIS OF SOLITONS 
IN A SEMI-INFINITE 

FERROMAGNETIC FILM

4.1. Precessing Solitons Localized near the Edge of the Film

First we discuss collective excitations, which are
parameterized by imaginary zeros of the function

(λ) (52). It turns out that all of them correspond to
stationary solitons whose cores have oscillatory
degrees of freedom and are localized near the edge
x = 0 of the film.

Let M = 1, (λ) = (λ – iν)/(λ + iν), and ν > |α|.
From (53) we find | (iν)| =  and write
an expression for c1(t) ≡ c(t) in the form

(56)

where δ0 is an arbitrary real constant. Then system (51)
yields the components of the vector y(iν):

(57)

where Δ(x) = eνx + |c(t)/(2ν)|2e–νx, and formulas (54)
and (55) give a soliton solution of the NLSE:

(58)

with the boundary condition ∂xlnχ|x = 0 = –α (55). The
soliton (58) adjoins the edge x = 0 of the film. Accord-
ing to formulas (2), magnetization components in the
core of the soliton (58) perform precession with fre-
quency ω = ν2 around the normal to the plane of
the film.

For α = 0, expression (58) simplifies:

(59)

and describes a soliton in the absence of spin pinning
at the boundary x = 0 of the sample. In this case, the
width of the soliton is l  ν–1, the precession fre-
quency is ω = ν2, and the maximum amplitude A = ν
satisfies algebraic constraints that admit experimental
verification:
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For a semi-infinite film in the absence of spin pin-
ning at its boundary, when ∂xχ|x = 0 = 0, the energy of
the model (5) is expressed as

The terms in brackets take into account the contri-
bution of exchange–dipole interactions, interaction
with a constant external magnetic field, and the bulk
uniaxial magnetic anisotropy energy [5, 7]. The soli-
ton (59) is localized near the boundary x = 0 of the
film because it is attracted to its imaginary image
χ(‒x, t) in the nonphysical region –∞ < x < 0.

The partial pinning of spins at the boundary of the
film and the boundary condition [∂xχ – βχ]|x = 0 = 0 are
associated with the appearance of the surface magnetic
anisotropy energy in the Hamiltonian of the system:

When the surface anisotropy constant β is positive,
it is energetically favorable for the soliton to move back
from the boundary of the sample. When β < 0, on the
contrary, the total energy of the system decreases when
the soliton moves closer to the film edge x = 0. The
compression rate of the soliton core increases with
increasing |β|. In the general case, the parameter α of
multisolitons is related to the surface magnetic anisot-
ropy constant β by formula (43). For the soliton (58),
M = 1, and hence β = –α. The structure of such a soli-
ton near the film edge x = 0 changes quantitatively and
qualitatively under the variation of the magnitude and
sign of the parameter α (see Fig. 1).

It is interesting that, for partial spin pinning at the
edge of the film (for |α| < ∞), the precession frequency
of the soliton (58) is always higher than a certain
threshold value

For a two-soliton excitation with two imaginary zeros
λ = iν1, 2 (52), the functions c1, 2(t) (53) are given by

where δ1, 2 are arbitrary real constants. Calculations
similar to previous ones give a solution of the NLSE:
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Fig. 1. A soliton localized near the edge of the sample for (a) α = 0, (b) α < 0 and 2νx0 = ln[(ν + |α|)/(ν – |α|)], and (c) α > 0. 

(a)

� �

0 x 0 0xx0 x

(b) (c)
|�| |�| |�|

 2 2� ��  2 2� ��

Fig. 2. Two-soliton excitation (60) for α = ε|α|, ε = 1 (solid
lines) and ε = –1 (dashed lines) in the extreme positions
corresponding to the values of |χ|(x = 0) = |χ|min and
|χ|(x = 0) = |χ|max.

0 x

|χ|

|χ|max

|χ|min
where f(–iν) = (ν – α)/(ν + α).

In this case, M = 2; therefore, the field (60) satisfies
the boundary condition ∂xlnχ|x = 0 = α (55). It
describes a nonlinear superposition of two solitons
(58). Such solitons are localized near the edge x = 0 of
the sample in layers of thickness of about  and .
Magnetization in the cores of the solitons precesses
with frequencies  and  around the normal to the
developed surface of the film.

Due to the interaction of solitons, the amplitude of
each of them oscillates with frequency |  – |. While,
for a single-soliton state (58), the magnetization com-
ponent m3 at the film edge was constant, for a two-
soliton excitation it performs oscillations with fre-
quency |  – | between two limiting values (see
(Fig. 2):

(61)

In the absence of spin pinning (for α = 0), from
(61) we obtain

In the general case, multisolitons parameterized by
different sets of imaginary zeros (31) of the coefficient

(λ) describe a series of long-lived near-boundary
oscillations of magnetization with discrete frequencies
of amplitude and phase modulations of the field χ(x, t).
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4.2. Reflection of Moving Solitons
from the Edge of the Film

Each pair of complex conjugate zeros of the func-
tion (λ) (30) parameterizes one moving particle-like
object. At large distances from the edge of the film,
this object takes the form of a soliton typical of the
infinite medium. Paired interactions of solitons are
elastic: after a collision, only the initial phase of inter-
nal oscillations and the coordinate of the center of
each soliton are changed. At the same time, near the
film edge, the core of the moving soliton is strongly
deformed due to the interaction with this edge. The
interaction with the edge can be formally interpreted
as the interaction of a real soliton with a fictitious
image soliton. Therefore, the collision of each soliton
with the edge of the film is also elastic. Let us explain
this assertion by an example of a simple soliton that is
parameterized by two zeros λ = λ0, –  (Imλ0 > 0) of
the coefficient (λ) (52):
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From (53) we find the functions c1, 2(t):

where γ0 is an arbitrary complex constant and f(λ) =
(λ + iα)/(λ – iα). Formulas (51) and (54) define a
soliton solution of model (5),

(62)

which satisfies the boundary condition (55) with M = 2:

(63)
The validity of (63) can be easily verified by a

straightforward calculation with regard to the equali-
ties

Formula (62) describes the propagation of a parti-
cle-like excitation from the bulk of the plate, where
0 < x < ∞, to the boundary x = 0, its reflection from
the boundary, and the subsequent propagation into
the bulk of the sample again. Let us show that, at large
distances from the edge of the plate, the excitation (62)
is transformed into a moving precession soliton, the
same, as in an infinite sample. To this end, we notice
that the character of the solution (62) for x ≫ 1 is
determined by the competition between the terms in
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the numerator with exponential factors exp[±u(x +
νt)/2] and exp[±u(x – νt)/2] and the leading terms in
the denominator with coefficients e±ux and e±uνt, where
ν + iu = 2λ0. Since Imλ0 > 0, the parameter u is always
positive. Assume for definiteness that the parameter ν
is also positive. The values of u and ν define, respec-
tively, the size l0  u–1 of the soliton and its velocity.
Indeed, for x ≫ 1 in the limit as t → ±∞, the structure
of a soliton in the co-moving reference frame is
described by the following expression for x  νt =
const:

(64)

Formulas (64) define a simple soliton in an infinite
sample [10, 11] that moves along the x axis with the
velocity ±ν. It follows from (64) that, at large dis-
tances from the edge x = 0 of the film, the only result
of the interaction of the soliton with the boundary is a
change in the phase of the internal precession and a
shift of the soliton center. The magnetization of soli-
ton in its co-moving reference frame performs a pre-
cession performs a precession with frequency Ω =
(u2 + ν2)/4 around the normal to the film plane. The
change in the initial phase of the soliton precession
after its reflection from the boundary has the form

The phase shift depends on the pinning parameter
of surface spins α (α2 = β2), as well as on the complex
number λ0 = (ν + iu)/2, instead of which we can use
appropriate observable parameters, for example, the
width u–1 and the velocity ν of the soliton, or the
velocity ν of the soliton and its precession frequency
Ω. Hence, the measurement of the phase shift of the
soliton after its reflection from the sample boundary
gives information about the parameter α. This fact can
be used for diagnosing the state of spins at the film
edge. In [21], the authors theoretically predicted and
experimentally confirmed the reflection of a longitu-
dinal deformation soliton from the end face of a non-
linear elastic rod. Similar processes are also typical for
solitons in ferromagnetic films.

Complete spin pinning at the edge of a film corre-
sponds to the Dirichlet condition

(65)
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Fig. 3. Soliton (66) at times t = ±t0, t0 ≫ 1 (solid lines), t = 0 for α = ∞ (dashed line), and t = 0 for α = 0 (dash-and-dot line).

0 x

|χ|

|Imλ0|

Δx
which is obtained from the general condition (55) in
the limit |β| = |α| → ∞. In this case, the function (λ)
(52) does not have purely imaginary zeros, since their
existence contradicts the constraint (36). This implies
that, for complete spin pinning, there are no long-
lived localized oscillations near the face x = 0 of the
plate. At the same time, the plate allows the formation
of moving multisolitons. In the limit α → ∞, the func-
tion f(–λ0) → –1; therefore, from (62) we immedi-
ately obtain an analytical expression for the simplest of
such solitons:

(66)

where ν + iu = 2λ0 and θ ≡ –1. We can easily check
that (66) satisfies the boundary condition (65).

The opposite case of free spins (α = 0) is described
by the same expression (66) with θ ≡ 1. In this case,
f(‒λ0) = 1. In both cases of α = 0 and α → ∞, after
reflection from the boundary, the soliton has the same
shift of the center of gravity Δx = x+ – x– = 4u–1lnγ0
(Fig. 3).
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5. INTEGRALS OF MOTION FOR NONLINEAR 
EXCITATIONS IN A SEMI-INFINITE FILM

The considered procedure can be interpreted as a
nonlinear analog of the solution of a boundary value
problem for a linear differential equation by the Fou-
rier method. Indeed, in a small-amplitude limit in the
absence of solitons, when the relations

hold, the wave field χ(x, t) found by formulas (48) and
(22) has the form

(67)

and, consequently, is related to the reflection coeffi-
cient r(μ) of the scattering problem by standard Fou-
rier transform. When passing to the right-hand side of
(67), we took into account that b(λ) (27) is an odd
function. We can easily check by direct calculation
that formula (67) gives a solution of the linearized
equation (5) on the interval 0 < x < ∞ with boundary
conditions (6), (7).

It is well known that distant Fourier components of
functions that have no singularities on the real axes are
exponentially small [22]. In this problem, since the
field χ(x) is extended to the whole real axis, its deriva-
tives have jumps at the point x = 0. When the wave
field ψ(x) or its derivatives have jumps on the real axis,
the exponential decay of its Fourier components r(μ)
as μ → ∞ turns into a power-law decay [22]. This
property of Fourier transforms is inherited by the
spectral densities b(μ) of the inverse scattering prob-
lem. In this section, we obtain a power-law expansion
for the coefficient b(μ) as μ → ∞. To construct purely
soliton excitations in a semi-infinite plate, the differ-
ence of the functions b(μ) from those in the infinite
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plate is not significant since, for solitons, b(μ) ≡ 0 by
definition. At the same time, we show that the condi-
tion b(μ) ≡ 0 leads to additional conservation laws for
the wave field at the boundary of the sample that
ensure the localization of soliton oscillations near the
edge of the film and the elastic reflection of moving
solitons from the sample boundary.

We obtain a series of local integrals of motion for
solitons and dispersive waves in a plate from the
expansion of the time-independent functional a(λ) in
powers of λ–1.We apply formula (41) for a(λ) into
which we introduce the representation of the Jost
function T+(+0, λ) in the form

(68)
The expansion of the antidiagonal matrix W(x, λ)

for x ≥ 0 in inverse powers of λ was obtained in [11]:

(69)

Here ω1 = χ(x), and the following coefficients are
defined recursively:

For n = 1, the second term on the right-hand side
of the equality is absent. The diagonal matrix Z(+0, λ)
is expressed in terms of ωn(x):

(70)

After straightforward calculations, we find the first
most important integrals of motion [16]:

(71)

where

is the number of spin deviations [23, 24] and

is the Hamiltonian (energy) of magnetic oscillations in
the film.

On the other hand, the series in powers of λ–1 for
the function a(λ) follows immediately from (38).
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Recall that β = (–1)Mα. A comparison of two expan-

sions for a(λ)/  yields explicit formulas for N
and H in the presence of solitons and dispersive waves
in a semi-infinite plate:

(72)

The quantity

has the meaning of the density of spin-wave modes
with wave number μ. The discrete terms in (72) corre-
spond to the additive contributions of different soli-
tons to the integrals of motion.

Let us show that, for a semi-infinite plate with
boundary conditions (6), (7), in contrast to the case of
an infinite sample, the spectral density of spin waves
b(λ) in the limit λ → ∞ exhibits a power-law, rather
than an exponential, decay. To this end, we apply for-
mula (42). The calculations are simplified if, using
relations (49), we express the right-hand side of equal-
ity (42) in terms of the same functions that were used
in formula (41) for the coefficient a(λ):

(73)

Using (68)–(70) and (73), we find an asymptotic
expansion for the function b(λ) for λ ≫ 1:

(74)

The first term of the series has the form

Of course, for pure soliton states, all pre-exponen-
tial factors in (74) vanish. For the simplest soliton
(58), we can easily verify by direct calculation that the
following identity is valid:

Thus, for multisolitons in a semi-infinite plate
(0 ≤ x < ∞), there exists a series of nontrivial relations
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between the field χ(x, t) and its spatial derivatives at
the boundary x = 0 of the sample.

6. CONCLUSIONS
In this work we have shown that, in a semi-infinite

plate at any localized initial distribution of magnetiza-
tion, there exists, in addition to the series of local inte-
grals of motion each of which is a sum of additive con-
tributions of solitons and dispersive waves, a series of
new conservation laws for the wave field at the edge of
the film. The latter provide the possibility of localiza-
tion of soliton-like oscillations of magnetization near
the boundary of the sample and the elastic ref lection
of moving solitons from this boundary.

The formulas obtained for multisolitons can be
used as test ones for the analytical description of soli-
ton states near the boundaries of finite-size samples.
They are useful for verifying numerical calculations
and can serve as a basis for new experiments on the
diagnostics of spin pinning at the surface of a sample
by measuring the phase shift of solitons after their
reflection from the boundary.

In conclusion, we discuss the conditions under
which solitons are generated in a semi-infinite film.
Let λ, T, and A be the characteristic spatial and tem-
poral scales of spin wave modulation and the ampli-
tude of spin waves, respectively. Since the effects of
dispersion and nonlinearity during the formation of
solitons are balanced, from the dimensional NLSE (1)
we obtain the estimates

Here ω(k) is the frequency of the main harmonic
depending on the wave number k, and g is the interac-
tion constant of waves. Recall that the Lighthill crite-
rion (4) holds in the excitation region of solitons. Sup-
pose that solitons are formed (at the boundary or in
the bulk of the film) by pulses of duration τext. Then λ

 cgτext, where cg = ∂kω(k) is the group velocity of spin
waves, and we obtain the following estimate for the
threshold pump amplitude starting from which soliton
generation becomes possible:

In this case, the formation of envelope solitons is
conditioned by the inequality λ ≫ k–1. According to
[4, 7], for τext = 10–20 ns, the wave numbers k > 103–
104 cm–1 in the existence region of soliton states. The
consideration of smaller wave numbers is not allowed.
The point is that the dispersion law ω(k) is not differ-
entiable at the point k = 0, and the nonlinear dynamics
of the magnetic film is described in the neighborhood
of this point by a different equation with a nonlocal
dispersion term [25]. The nonlocal part of the magne-
tostatic dispersion smoothes out the inhomogeneities

2
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gA gA
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in the distribution of magnetization in the film. As a
result, exponential solitons typical for the local NLSE
are absent in the long-wavelength limit. Instead, new
weakly localized algebraic-soliton-type exchange–
dipole states are formed.

The generation of solitons localized near the edge
of a film by external pulses occurs in a threshold man-
ner with respect to the pump amplitude. The change
in the number of such solitons should give rise to dis-
crete frequencies of resonant oscillations of magneti-
zation near the edge of the sample and should mani-
fest itself in characteristic frequency and amplitude
modulations of the magnetization component perpen-
dicular to the plane of the film.
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