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Abstract—We consider the passage of a plane electromagnetic wave through a 1D absorbing layer sandwiched
between two generally different semi-infinite dielectrics. The transmission, reflection, and absorption spec-
tra of the incident wave, as well as the electric field intensity distribution in the absorbing layer, are obtained
using the transfer matrix method and the method based on the solution of the Cauchy problem for a system
of two first-order differential equations.
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1. INTRODUCTION
The problem of propagation of electromagnetic

waves in heterogeneous layered media is often
encountered in many applications. This problem plays
an especially important role in the development of
various layered photonic structures including dielec-
tric mirrors [1, 2], optical sensors [3, 4], metamaterials
[5, 6], devices based on liquid crystals [7, 8], and oth-
ers [9, 10]. For this reason, a large number of methods
for solving this problem have been developed, which
include the direct solution of the wave equation [11],
classical methods of the transfer-matrix [12, 13] and
the Green’s function [14, 15], the invariant embedding
method [16], etc.

The transfer-matrix method deserves special atten-
tion because it is one of the most popular techniques,
which is also used in deriving many other methods.
This method is especially effective for layered media
since the transfer matrix relating the field amplitudes
at different interfaces can easily be obtained for each
homogeneous layer. In this case, the transfer-matrix
method is very convenient for numerical calculations
as well as for analytic approach. In addition, this
method can be extended to media with heterogeneous
layers (e.g., with a linear or a parabolic profile).

The Green function method is also frequently
used, especially in solving problems for 2D and 3D
structures. It also makes it possible to calculate the
photonic density of states within the layer under inves-
tigation, which is a useful tool in analysis of various
photonic structures. It should be noted that each of
the aforementioned methods has its own advantages
and limitations; for this reason, new methods are
being developed [17–21], which are better optimized
for numerical calculations or make it possible to sim-

plify analytic expressions for problems with specific
conditions.

A new method has been proposed earlier [22–24]
for determining the transmission and reflection coef-
ficients for a heterogeneous layer with a continuous
dependence of the refractive index, which is based on
solving a system of two first-order ordinary differential
equations. The advantages of this method include its
applicability to a medium with an arbitrary continuous
coordinate dependence of the refractive index. In par-
ticular, in the method proposed in [24], it is presumed
that a heterogeneous layer is in contact with two
dielectrics, the refractive indices of which coincide
with the values in the layer at the corresponding inter-
faces, which ensures the continuity of refractive index
n at both interfaces and their zero contribution to the
reflectance of the transmitted wave. This simplifies
the solution of the scattering problem and the determi-
nation of the field distribution in the layer in the above
conditions; however, the continuity condition for the
refractive index at the layer boundaries is often not sat-
isfied in actual practice. For this reason, scattering of
waves at the interfaces must be taken into account
additionally.

An analogous problem has already been considered
by other authors (e.g., in [25]); however, they have
presumed, in particular, the absence of absorption and
amplification of radiation in the medium, which
requires separate account in the derivation of expres-
sions. In this study, we derive expressions for the
reflection and transmission coefficients, as well as the
electric field intensity distribution within a heteroge-
neous layer with absorption (amplification), after
which the derived expression are used in the solution
of various problems.
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Fig. 1. Transmission of a plane electromagnetic wave
through an isotropic 1D layer with an arbitrary depen-
dence of the refractive index.
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2. MODEL AND METHODOLOGY
Let us first consider the problem of scattering of a

plane wave from a heterogeneous 1D layer (Fig. 1),
which has an infinitely large length along the x and y
axes, is located between planes z = 0 and z = L, and its
refractive index n is an arbitrary continuous function
of z only. We assume that the plane of incidence coin-
cides with the xy plane, and the wave is incident at
angle α to the normal to the layer boundary, which
coincides with the xy plane. We also assume that the
layer of the medium is isotropic and nonmagnetic
(μ = 1), and the medium is nonabsorbing (Im n ≡ 0).
Domains z < 0 and z > L are filled with homogeneous
dielectrics with refractive indices nl and nr, respec-
tively.

The electric field s of the incident, ref lected, and
transmitted waves will be denoted by Ei, Er, and Et. We
represent these fields in the form

(1)

where ns and np are unit vectors of the s- and p-polar-

izations and  and  are the corresponding
amplitudes of the incident, reflected, and transmitted
waves. Complex transmission and reflection coeffi-
cients for the s and p waves can be written as

(2)

2.1. Heterogeneous Layer with a Continuous Refractive 
Index at the Boundaries

In accordance with the approach developed earlier
in [24], complex amplitude coefficients ts, p and rs, p for
a layer with refractive index n(z), which is in contact
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on both sides with isotropic dielectrics with refractive
indices nl = n(0) and nr = n(L), can be written in form

(3)

where the asterisk indicates complex conjugation,
k(z) = (2π/λ)n(z)cosβ(z), β(z) is the angle of refrac-
tion, and λ is the wavelength of incident radiation.
Functions Qs, p and Fs, p are the solutions to the system
of differential equations

(4)

(5)

with initial conditions

In system of equations (4), (5), we have

(6)

The total field in each of the media can be written
as follows:

(7)

where subscripts 0, 1, and 2 indicate the fields corre-
sponding to the media on the left of the 1D layer of the
photonic crystal, in this layer, and on the right of it.
Total field Ein within the 1D layer is related with
remaining fields (1) via boundary conditions. For Ein,
we have

(8)

Finally, the electric field intensity in the layer is
defined as

(9)
Let us now assume that there is absorption (ampli-

fication) of radiation within the layer (Imn ≠ 0).
According to the results obtained in [26], to correctly
account for radiation absorption (or amplification), it
is necessary to replace complex conjugation in all expres-
sions by the inversion of the wavevector (k → –k). Then
expressions (3) and (8) take form
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(11)

Here, functions  and  are solutions to sys-
tem (4), (5), while functions  and  are solu-
tions to the system of equations, which is obtained
from (4), (5) after the substitution k → –k.

2.2. Reflection at the Layer Boundaries

It should be recalled that we have considered until
now the situation in which the refractive index is con-
tinuous at the layer boundaries, i.e., nl = n(0) and nr =
n(L). This condition often does not hold in practice,
for example, when the layer borders air on both sides
(nl = nr = 1). For this reason, it is important to gener-
alize this method to the case of arbitrary media on the
left and right of a heterogeneous layer. This can be
done, for example, using the Ambartsumyan method
for the summation of layers [27, 28] or the transfer-
matrix method [12, 13]. Let us consider here the trans-
fer-matrix method.

Transfer matrix Ms, p of the entire structure, which
connects the amplitudes of the incident, reflected,
and transmitted wave, can be written in form

(12)

The second matrix determines the variation of the
field amplitude during the propagation within the het-
erogeneous layer, while the first and third matrices
determine the variation of the field amplitude during
reflection from the right and left boundaries, respec-
tively. The coefficients in the first and third matrices
can easily be obtained using the Fresnel formulas:

(13)

Here, kl = (2π/λ)nlcosα and kr = (2π/λ)nrcosγ. The
expressions for the p polarization can be obtained
analogously. On the other hand, matrix Ms, p can be
expressed in terms of the reflection and transmission
coefficients of the entire structure:

(14)
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Therefore, evaluating matrix (12) and equating it to
matrix (14), we can obtain sought quantities  and

. We write here the explicit expressions for the s
polarization:

(15)

(16)

Analogously, we can obtain the expression for the
field distribution within the heterogeneous layer. For
this, we express the amplitudes of the wave at point z
within the layer (0 < z < L) in terms of the field at point
z = 0:

(17)

Here, (z) and (z) are the transmission and
reflection coefficients for a part of the layer of thick-
ness z,  is the amplitude of the incident wave at
point z = 0, and (z) and (z) are the amplitudes
of the waves propagating in the layer to the right and to
the left, respectively. The total field amplitude at
point z is defined as the sum of the waves, Es, p(z) =

(z) + (z):

(18)

3. NUMERICAL RESULTS AND DISCUSSION
In this section, we apply our modified method to

two problems of scattering of a plane wave by various
structures. Let us first consider an absorbing photonic
crystal (PC) with a refractive index varying over the
amplitude modulation length (apodized lattice):

(19)

where κ is the absorption coefficient and
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Fig. 2. (a) Transmission and (b) absorption spectra of an
apodized PC with absorption coefficient κ = 0.003 (blue
curve) and without absorption (black curve). Structure
parameters: n1 = 1.5, n02 = 0.3, δn = 0.3, L = 6000 nm,
Λ = 200 nm, and nl = nr = 1.
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Fig. 3. (a) Field distribution within an apodized PC with
absorption coefficient κ = 0.003 at wavelength λ = 629 nm
(green dashed lines in Fig. 2). (b) Absorption spectrum of
an apodized PC like in Fig. 2, but for the radiation inci-
dence in the opposite direction (from the medium on the
right of the PC).
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Figure 2 shows the transmission spectrum |T|2 and
absorption spectrum A = 1 – |T|2 – |R|2 for the normal
incidence in the cases without absorption (κ = 0) and
with absorption (κ = 0.003). The transmission spec-
trum clearly shows the characteristic range 650–
800 nm with a transmission minimum known as the
photonic bandgap (PBG). The addition of absorption
reduces transmission through the structure in the
entire spectral range except PBG. Because of apodiza-
tion, the long-wavelength edge of the PBG has a more
complex structure as compared to an ideal PC. This is
due to the fact that at these wavelengths, the field has
an increased localization within the PC, but low trans-
mission. This also explains the absorption peaks at the
long-wavelength PBG boundary.

Figure 3a shows the field distribution within an
active PC at wavelength λ = 629 nm. It can be seen
that the envelope of the distribution gradually
decreases during the propagation along the PC.
Figure 3b shows the absorption spectrum for an elec-
tromagnetic wave incident from the medium to the
right of the same PC. The transmission spectra for the
JOURNAL OF EXPERIMENTAL AN
wave incident from the left and from the right fully
coincide; however, the reflection and absorption
spectra can exhibit considerable asymmetry. In our
case, this is manifested in the position of modes with a
high absorption: for the incidence from the right, these
modes are located at the PBG short-wavelength
boundary, while for incidence from the left, they are
located at the long-wavelength boundary.

Let us now consider an active PC with the refrac-
tive index modulation period varying over the length
(chirped lattice):

(21)

where g is the gain and

(22)

Figure 4 shows transmission spectrum |T|2 and
reflection spectrum |R|2 in the cases without amplifi-
cation (g = 0) and with gain g = 0.0045. As can be seen
from these spectra, the active PC increases the ampli-
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Fig. 4. (a) Transmission and (b) reflection spectra of a
chirped PC for the normal incidence with gain g = 0.0045
(blue curve) and without gain (black curve). Structure
parameters: n1 = 1.5, n2 = 0.6, L = 5980 nm, Λ0 = 200 nm,
δΛ = 30 nm, and nl = nr = 1.
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Fig. 5. (a) Field distribution within a chirped PC with gain
g = 0.0045 at wavelength λ = 859 nm (shown by green
dashed lines in Fig. 4). (b) Reflection spectra of a chirped
PC as in Fig. 4, but for radiation incidence in the opposite
direction (from the medium on the right of the PC).
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tudes of the reflected and transmitted waves. An espe-
cially large gain is observed for the reflected wave at
several wavelength at the PBG long-wavelengths edge.
At these wavelengths, the given structure behaves as a
reflective optical amplifier.

Figure 5a shows the field distribution within an
active PC for one of the modes with wavelength λ =
859 nm. Figure 5b shows the reflection spectrum in
the case of incidence of an electromagnetic wave from
the medium on the right of the same PC. Analogously
to the previous case, we again observe asymmetry for
the reflection spectra for the “left” and “right” prob-
lems. It should also be noted that the modes with a
high gain at the short-wavelength boundary in the
right problem merge into a relatively broad band.

4. CONCLUSIONS
In this study, we have modified and generalized the

method for solving the problem of scattering of a plane
wave from a heterogeneous absorbing (amplifying)
layer with an arbitrary refractive index, which has been
proposed earlier; namely, we have derived the expres-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
sions for the transmission and reflection coefficients
for the heterogeneous layer pressed between two dif-
ferent dielectrics, as well as the expression for the elec-
tric field distribution within such a layer. These coeffi-
cients can be expressed in terms of a pair of complex
functions, which are solutions to the Cauchy problem
for a system of two ordinary differential equations, as
well as parameters of the layer and of the external
medium. This method has an advantage as compared
to the direct solution of the wave equation from the
standpoint of the numerical solution of the problem
since it is easier to solve a system of two first-order
equations than one second-order equation. Finally,
we have demonstrated the application of this method
to the problem of scattering of a plane wave from two
photonic crystals with gradient parameters as an
example.
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