
ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2022, Vol. 135, No. 1, pp. 81–90. © Pleiades Publishing, Inc., 2022.
Russian Text © The Author(s), 2022, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2022, Vol. 162, No. 1, pp. 96–107.

NUCLEI, PARTICLES, FIELDS, 
GRAVITATION, AND ASTROPHYSICS
Geodesics in the Wormhole Gravitational Field
M. V. Sazhina, O. S. Sazhinaa,*, and A. A. Shatskiya

a Sternberg Astronomical Institute, Moscow State University, Moscow, 119234 Russia
*e-mail: cosmologia@yandex.ru

Received February 10, 2022; revised February 10, 2022; accepted February 16, 2022

Abstract—The structure of spacetime near a wormhole (WH) and possible observational consequences are
investigated theoretically. In connection with the growing accuracy of observations and the prospects of a new
gravitational-wave channel, the problem of distinguishing between astrophysical manifestations of black
holes (BHs) and hypothetical WHs is becoming relevant. WHs, along with BHs, naturally arise within general
relativity (GR). Observational searches for WHs require knowledge of the characteristic trajectories of bodies
in its vicinity, including the trajectories entering its throat. Equations of motion of a test particle in the WH
metric are derived, and the most interesting properties of these motions are considered. A general equation
of geodesics in the WH metric is derived, and some properties of these geodesics are considered. The exact
solution for circular orbits of test particles around a WH, as well as an approximate analytical solution of the
geodesic equations, is analyzed. The shift of the pericenter of the orbit of a test particle in the WH field is con-
sidered, and possible observational consequences are discussed. Examples of test particle trajectories near a
WH are presented that are obtained by numerical simulation.
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1. INTRODUCTION
In general relativity (GR) several solutions arise

that describe relativistic objects the speed of test parti-
cles near which is comparable to the speed of light.
First of all, these are black holes (BHs)—solutions of
GR equations found by Schwarzschild and Kerr. BHs
have been discovered both in the electromagnetic
observation channel [1] and in the gravitational-wave
channel [2]. The discovery of BHs inspires confidence
that other solutions of GR (to date, only theoretical
ones) can exist in space. One of such hypothetical
solutions is wormholes (WHs). Today there exist sev-
eral solutions of the WH type [3, 4]; see review [5].
Both GR solutions and observational manifestations
of WHs have been considered in the literature [6–8].

To describe the observational manifestations near a
WH, it is necessary to know the test particles motion
law, in other words, the shape of geodesics near the
WH. In the present study, we derive equations of
motion of a test particle in the WH metric and con-
sider the most interesting properties of these motions.

In Section 2 we consider the WH metric and some
general properties of this metric. In Section 3 we
derive the general equation of geodesics in the WH
metric and consider some properties of these geode-
sics. In Section 4 we analyze the exact solution for cir-
cular orbits of test particles around a WH. In Section 5
we consider an approximate analytical solution of geo-
desic equations and some of its properties. Finally, in
Section 6 we consider the orbit pericenter shift of a test

particle in the WH field and discuss possible observa-
tional consequences. The Appendix presents examples
of test particle trajectories near a WH, obtained by
numerical simulation.

2. THE WORMHOLE METRIC 
AND ITS PROPERTIES

Let us take the WH metric in the simplest form:

(1)

Here ct, r, θ, and ϕ are coordinates x0, x1, x2, and x3,
respectively. The quantity rg is the gravitational radius
of the WH, and r0 is its throat radius. Unlike the
Schwarzschild metric, metric (1) is a two-parameter
one and is determined by the parameters rg and r0.

We can transform the radial coordinate as follows:

Then the WH metric (1) can be rewritten as

(2)
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In order that a WH have no BH horizons, the func-
tion g00(l) should be subject to a condition according to
which it must be greater than zero in the whole range
(–∞ < l < ∞). Here, under the condition r0 > rg, the
function g00(l) is greater than zero. In this case, the
function r2(l) (the squared radius) should attain its
minimum at the WH throat, which is determined by
the points l = 0 and r = r0. The transformation from
the radial coordinate r, which is ambiguous (the same
value of r can belong to different folds of the whole
space), to the radial coordinate l, which uniquely
determines the position of each point in the whole
space, is given by

for the upper fold of the WH space and by

for the lower fold of the WH space.
Metric (2), as well as the first and second deriva-

tives of the radial coordinate with respect to l, are reg-
ular in the whole range (–∞ < l < +∞):

(3)

Metric (2) corresponds to the energy–momentum
tensor , which violates the null energy condition
(NEC) for radial photons.

The nonzero components of this tensor have the
form

Below we discuss the shape of the trajectories of
test particles both in the r-coordinate system and in
the l-coordinate system.

3. EQUATIONS OF MOTION OF A TEST 
PARTICLE AROUND A WORMHOLE

3.1. Analysis of Geodesics in the WH Spacetime
Let us analyze the equation of geodesics in the WH

spacetime. We take the metric in the form (1) (r is the
radial coordinate). The geodesics are also the equa-
tions of motion of test particles. We will assume that
the equations of motion obtained refer to the motion
of a test particle along the upper fold of the space.
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The ordinary derivative of the particle trajectory
with respect to proper time s is expressed in terms of its
components

In GR, this quantity is also called a contravariant
4-velocity. The geodesic equation is defined for the
tangent vector along the particle trajectory ui,

For the covariant components of the tangent vector
ui, the corresponding equation has the form

Since the metric (1) is static and spherically sym-
metric, we can immediately write two integrals of
motion [9]:

(4)

(5)

The first integral is the conservation of the total
energy of the system, and the second is the conserva-
tion of angular momentum. Moreover, it can be shown
that the test particle moves in a plane, which means
that θ(s) = const. We can choose θ(s) = π/2. Then the
integrals can be rewritten as

(6)

Thus, we have equations for three coordinates. Let
us derive an equation for the evolution of the radial
coordinate r. We will derive this equation in the same
way as it is done in the analysis of motion in the BH
metric. To find the equations of motion along the
radius, we use the metric equation:

We will consider the case of a massive test particle
(moving at a speed less than the speed of light).

Substitute θ = π/2 into the metric equation and
obtain the equation
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This equation can be transformed as

Substitute the integrals of motion and obtain the
equations

(7)

(8)

Next, we make the substitution

which finally leads to the equation

(9)

When analyzing the equations of motion in the BH
metric, one has a similar equation that looks like

We can also compare (9) with the nonrelativistic
equation of motion. It is obtained if we neglect r0u and
rgu compared to unity:

Let us write some more useful equations.
For a WH (in contrast to a BH), the radial coordi-

nate r can be considered as a component of the metric
(1). We can say that r is the transverse radial coordi-
nate, and the longitudinal radial coordinate is given by
l from the metric (2).

Therefore, the vanishing of the derivative  does
not mean the cessation of motion along the longitudi-
nal radial coordinate l. For this reason, the condition

 = 0 is always satisfied at the WH throat; however, in
the general case,  ≠ 0 at the WH throat.

3.2. Reachability Condition of a Wormhole Throat
by a Free-Falling Particle

Let us write down the value of  at the throat of a
WH. Taking into account expressions (3) and (8), we
obtain the following relation at an arbitrary point:
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At a throat point, r = r0,

(10)

for a purely radial fall we have h = 0; therefore

(11)

This expression shows that, in the case of radial
fall, the overwhelming majority of trajectories reach
the WH throat with nonzero longitudinal velocity, and
vice versa, for the particle not to reach the WH throat,
it is necessary that the right-hand side of expression
(10) or (11) be negative.

In this case, there are no restrictions on the value of
the integral of motion for the specific total energy 
except that  > 0. The value  = 1 corresponds to the
fact that the particle has zero velocity at infinity. The
range of values  > 1 corresponds to the fact that the
particle trajectory is infinite, and vice versa, the range
of values  < 1 corresponds to the fact that the particle
is gravitationally captured and its trajectory is finite.

Trajectories can be analyzed either in r-coordinates
(where the equations of motion look simpler) or in
l-coordinates. In the second case, the equations con-
tain not only the square of the derivatives but also non-
linear functions of l, which are also implicit functions
of this variable. Nevertheless, we will also analyze the
equations of motion in l-coordinates. The reason is
that, in r-coordinates, the equations of motion are
subject to constraints of the form r ≥ r0, which reduces
the problem under consideration to the problem of
motion with equations with nonholonomic unilateral
constraints [10, 11]. Such equations require special
treatment, which can be avoided in our case by con-
sidering the problem of motion in l-coordinates. It is
especially convenient to consider the problem of
motion of test particles in l-coordinates near the WH
throat. In this case, r ≈ r0, and the equations of motion
can be analyzed in the limit of small l, i.e., for l ≪ r0.

3.3. Eigenfrequency of Small Oscillations
through the Wormhole Throat

Let us find the oscillation frequency of a test parti-
cle through the WH throat under the assumption that
the oscillation amplitude is small.

We write the equation of motion of the particle in
the form

Then for k = r we have
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Denoting the derivative with respect to proper time
ds by a dot, we obtain

(12)

Here  ≡ ur is defined by expression (20) (see
below).

Let us transfer all terms in (12) to the right-hand
side and multiply them by (1 – r0/r)2:

or, denoting δr ≡ r – r0, we obtain

(13)

Near the throat, r can be expanded in a series in
small values of l. To this end, we use expression (3):

(14)

Dividing (13) by δr/r and substituting the values of
the derivatives from (14) into this expression, we
obtain the following equation in the quadratic approx-
imation with respect to l:

(15)

In the quadratic approximation in l, the second and
third terms in (15) cancel each other out:

Hence we obtain the equation of harmonic oscilla-
tions in l:

The quantity ω determines the eigenfrequency of
small oscillations near the WH throat for the longitu-
dinal physical coordinate l as a function of proper
time s.
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4. ANALYSIS OF THE EXACT SOLUTION
IN THE WORMHOLE METRIC IN THE CASE 

OF A CIRCULAR ORBIT

4.1. Circular Orbits and Their Stability

Consider the important case of circular orbits
around a WH. We will analyze the exact equation of
motion (9). Circular orbits are defined by the relation

(16)

In addition, there is another relation that defines
stable and unstable orbits. In order to obtain the stabil-
ity criterion, we should derive from (16) an equation
for the derivative of the radius with respect to time:

(17)

The extrema of the function

determine the stability of the orbit. The minima of the
function correspond to stable orbits, and the maxima,
to unstable ones. The form of the function shows that
it coincides with the energy function defining circular
orbits in the Schwarzschild metric with gravitational
radius rg. Therefore, just as for the Schwarzschild BH,
the last stable circular orbit in the WH metric (1) lies
at r = 3rg and has the following parameters: h = rg

and  =  (see [9, §102]).

It follows from the aforesaid that a stable circular
orbit corresponds to the simultaneous solution of the
two equations
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Here and below, the prime denotes the derivative
with respect to r. Solving simultaneously system (18),
we obtain
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specific total energy  on the one hand and the radius
r of a stable circular orbit of the particle on the other.

Let us draw special attention to the fact that expres-
sions (4) and (19) do not depend on r0. This is due to
the fact that the quantities  and h do not depend on
the grr component of the metric (1). In the nonrelativ-
istic limit rg/r → 0, the second expression in (19)
becomes the well-known Newton formula for the
energy constant of a particle in a circular orbit around
a massive center with mass M:

The minimal radius of the unstable orbit is r =
(3/2)rg; in this case, h → ∞ and  → ∞.

Since orbits with r < r0 are impossible in the WH
metric, the presence of the last stable orbit, and even
more so of the last unstable orbit, is determined by the
relation between the gravitational radius of the WH
and its throat radius. For r0 > 3rg, all circular orbits are
stable.

In the case of r0 = rg, the last stable orbit appears.
In the case of the Schwarzschild metric, a test particle
bypassing r = (3/2)rg makes less than one revolution
around the BH. Let us calculate the total change in the
angle when the particle leaves the last stable orbit in
the case of a WH. Let us write the equation for ur:

(20)

On the other hand, we have

Substituting here (20), we obtain
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The total change in the angle ϕ is found from this
formula by integrating over the radius.

In the case of r0 = rg, we integrate expression (21)
and obtain the total change in the angle from the time
of exit from the minimal stable orbit to the gravita-
tional radius:

This integral diverges at the point r = 3rg, which
corresponds to an infinite number of revolutions when
leaving the minimal stable orbit for a BH.
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4.2. Proper Time of Revolution along a Circular Orbit

Let us calculate the proper time of revolution of a
test particle around a WH (or BH). Let us take into
account that the proper time element is just an invari-
ant element of the interval ds:

Hence, for the complete revolution δϕ ≡ 2π we
obtain

Substituting here the first expression in (19) for h,
we obtain

Here we can see that the expression for the proper
time δs of revolution around a WH at infinity coin-
cides with its Newton limit δτ:

In addition, the proper time δs does not depend on
the parameter r0 for the WH; i.e., it is the same for a
WH and a BH.

5. APPROXIMATE ANALYSIS OF THE 
EQUATIONS OF MOTION

5.1. Equation of the Trajectory of a Test Particle

We could not find an analytical form of the solution
of Eq. (9); therefore, we will analyze the approximate
equation. Note that this is not just a post-Newtonian
approximation adopted in GR. Since the condition
rg < r0 holds, we can also consider the approximation
in the small parameter rg/r0. Depending on the value
of this ratio, the expansion can be quite accurate. In
this section, we assume that rg ≪ r0.

To do this, we make the change x = r0u; then
Eq. (9) takes the form
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The new variable x lies in the interval 0 ≤ x ≤ 1. In
our approximation, (rg/r0)x can be neglected com-
pared to unity, but it cannot be neglected compared to

 – 1, which is itself small. Therefore, Eq. (22) sim-
plifies to

This equation can be transformed into

(23)

Let us introduce the following definition

The shape of geodesics is determined by the roots
of the function f(u). It is a polynomial of the third
degree and hence has three roots. Obviously, the first
root is x1 = 1; the other two roots are

(24)

The first root (x1) of the polynomial of the third
degree is an orbit located at the WH throat, the second
root (x2) is the distance from the apocenter of the orbit
in the Newtonian approximation, and the third root
(x3) is the distance from the pericenter. We represent
the relation between the roots depending on the orbit
parameter p. When p > 2r0, the relation between the
roots is x1 > x2 > x3. When r0 ≤ p ≤ 2r0, the relation
between the roots is x2 > x1 > x3.

Decomposing the polynomial of the third degree
into a product of linear terms, we obtain the equation
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The solution of this equation is an elliptic integral
of the first kind.

Consider the solution for the orbit of a test particle
around a WH. To this end, we make the following sub-
stitution in Eq. (23) [12]:
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Here χ is a new variable, which can be called the
relativistic anomaly. The derivative of the function x
with respect to χ is

Let us introduce a new parameter, ρ = r0/p. Then
we can write the equations for the linear terms and the
derivative as

Now we obtain the following equation for the rela-
tivistic anomaly:

This implies that the orbit parameter p in the case
of eccentric orbits cannot be less than (1 + ecosξ)r0.
This inequality corresponds to the fact that in the case
of eccentric orbits the distance from the center cannot
be less than r0:

Let us denote α = π/2 – χ/2 and write the final
equation for α:

where

The solution of this equation is given by the elliptic
integral of the first kind

where Δϕ(α) is the variation of the angular coordinate
ϕ under the variation of the relativistic anomaly from
π – 2α to π.
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These solutions can be expressed in terms of Jacobi
functions:

Accordingly, the expression for the relativistic
anomaly is given by

Here cn and sn are the elliptic cosine and sine,
respectively.

Thus, the equation for the trajectory of a test parti-
cle in orbit around a WH has the form

5.2. Energy of a Test Particle

Now let us derive a formula for the energy constant
in the case of a test particle in orbit around a WH.

We use the first integrals of the problem of motion:

Let us transform this equation as

In this equation we can neglect the factor (1 – rg/r)
on the right-hand side to obtain the equation

now we make the substitution

We also use the substitution for the trajectory,
which we call, just as in [12], the relativistic ellipse in
the case of e < 1,

and

as well as

( ) ( )α = Δϕ α α = Δϕ αsin sn ( ) , cos cn ( ) .
2 2
q q
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finally we obtain

Equating the terms at the function cosχ, we obtain
the following expressions for h(p):

(26)

and for (e, p):

(27)

Here a is the semi-major axis of the relativistic
ellipse. We have accepted that

In classical celestial mechanics [13], the quantity

is called the energy constant. In this case, W < 0 and
e < 1 give an elliptic orbit, W = 0 and e = 1 give a par-
abolic orbit, and W > 0 and e > 1 give a hyperbolic
orbit.

5.3. Analysis of the Shape of Finite Trajectories
Consider the shape of trajectories for various values

of the orbit parameters (either  and h or e and p) for
an approximate solution. We will restrict ourselves to
finite trajectories. Regardless of the properties of the
WH throat (it can be either traversable or nontravers-
able), geodesics can always be constructed in this case.

The trajectories have simplest shape when

In this case, a trajectory lies completely in one fold
of the space, touching the throat of the WH at a single
point when p = r0(1 + e). Finite trajectories have the
shape of a relativistic ellipse; in other words, they have
the shape of an almost elliptical trajectory with a shift
in the pericenter of the orbit.

Let us write the inequalities that must be satisfied
by the parameters of the geodesic. First of all, we give
the expressions for the apocenter and pericenter of the
trajectory:
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It follows from the inequality r ≥ r0 that

(28)
We also obtain

(29)
Note that inequalities (28) and (29) are equivalent.
Hence we obtain an inequality that determines the

range of variation of χ:

When

the angle χ lies in the interval π ≥ χ ≥ 0. For smaller
values of p, the range of χ is less than π. A deficit angle
arises, similar to that in the geometry of a space with a
cosmic string [14]. For example, when

the range of χ is π ≥ χ ≥ 60°.
We also assume that there are two universes: the

first universe (or the upper fold of the space, or the
upper universe) and the second universe (or the lower
fold of the space, or the lower universe). We will also
assume that the apocenter of the considered system
(a trajectory or a geodesic) lies in the first universe.
The position of the trajectory may be either only in the
first universe, or partly in the first and partly in the
second universe.

Let us consider these cases depending on the rela-
tionship between the parameters that determine the
trajectories. The position of a trajectory depends on
three parameters: p, r0, and e. If p ≥ r0(1 + e), then the
trajectory lies entirely in the first universe, where it
touches the WH throat at one point only when p =
r0(1 + e). Further, if p < r0(1 + e), then a trajectory
passes into the second universe. When the trajectory
belongs to both universes (the first and the second),
the angle χ varies in the interval

or

When p < r0, the interval is

When r0(1 + e) ≥ p ≥ r0, the interval is

≥ + χ0(1 cos ).p r e
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Numerically obtained examples of characteristic
trajectories of a test particle near a WH are given in the
Appendix.

6. ESTIMATES OF THE PERICENTER SHIFT
It is well known that the shift of the perihelion of

Mercury was the first test of GR. There is a significant
discrepancy between the predictions of the Newtonian
theory of gravity and the observed shift of the perihe-
lion. It amounts to approximately 43″ for 100 years.

Since then the shift of the pericenter of various rel-
ativistic objects in binary systems has become one of
the most powerful tests in the study of binary star sys-
tems. In particular, after the discovery of the first
binary pulsar PSR 1913 + 16, this test made it possible
to accurately measure the masses of the components of
a binary system.

To calculate the pericenter shift, we integrate
Eq. (17):

In the case of ρ ≪ 1, the integral has a simple form:

The shift of the angular coordinate ϕ during a com-
plete rotation along the relativistic anomaly –π ≤ χ ≤ π
(here we count the relativistic anomaly from the
apocenter) is

Note that the relationship between the period of a
test particle in orbit around a WH and its semi-major
axis is determined by the gravitational radius of the
WH, while the shift of the orbit pericenter is deter-
mined by the radius of the WH throat. In the case
under consideration, when r0 ≫ rg, the shift of the
pericenter can significantly exceed the value predicted
by GR for a BH. This can serve as a criterion for dis-
tinguishing between WH and BH in astronomical
observations.

If the throat radius is greater than three gravita-
tional radii (r0 > 3rg,) and all circular orbits around a
WH are stable, the shift of the pericenter of the test
particle in orbit around the WH exceeds the shift of the
pericenter of this particle in orbit around a BH with
the same gravitational radius.

7. CONCLUSIONS
Due to the increasing accuracy of observations and

the new observational channel—gravitational-wave
astronomy—differences in the motion of matter near
BHs and WHs can become discernible.

π
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Fig. 3. This trajectory is of most interest. It starts, as
before, at the green point, reaches the throat, enters the
second universe, makes half a revolution, returns to the
throat, passes through it, and ends at the black point. A
small gap in the trajectory corresponds to the shift of the
apocenter. The angular momentum is h = rg, the total
energy is  ≈ 0.953, and the minimum distance from the
WH center is rmin = r0.

e

Fig. 4. The trajectory shown in Fig. 3 is represented in an
artificial virtual projection that graphically separates the
upper and lower folds of the space.

Fig. 2. The geodesic starts at the green dot and moves in
the first universe. This section of the geodesic is indicated
by the red line. It reaches the throat and passes through it.
Then the geodesic moves in the second universe, which is
indicated by the blue line, returns to the throat, passes
through it again, and returns to the first universe (red line).
The geodesic stops at the black point. The angular
momentum is h = 0.1rg, and the total energy is  ≈ 0.949.
The minimum distance from the WH center is rmin = r0.

e

Fig. 1. The geodesic starts at the green dot, reaches the WH
throat, passes to the second fold of the space (the second
universe), and ends at the black dot. For such a trajectory,
the angular momentum is h = 0; i.e., the test particle
moves only along the radius. The total energy is  ≈ 0.949,
and the minimum distance from the center of the WH is
rmin = r0. The trajectory in the first universe is superim-
posed on the trajectory in the second universe; therefore,
in the r–φ projection, the two parts of the trajectory merge.

e

In future searches for observational effects that dis-
tinguish WHs, it is necessary to know the shapes of the
characteristic trajectories of bodies (test particles)
near WHs. In the present work, we have derived the
equations of motion of a test particle in the WH metric
and considered the most interesting properties of these
motions. We have derived a general equation for geo-
desics in the WH metric and considered some proper-
ties of these geodesics. We have analyzed the exact
solution for circular orbits of test particles around a
WH and an approximate analytical solution of the
geodesic equations. We have considered the shift of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
the pericenter of the orbit of a test particle in the WH
field and discussed possible observational conse-
quences. We have also presented examples of trajecto-
ries, obtained by numerical simulation, for test parti-
cles near a WH.

APPENDIX

Simulation of Finite Trajectories

Consider the shape of trajectories for various val-
ues of the orbit parameters  and h or e and p (see
(26) and (27)).

e
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Fig. 5. A trajectory similar to those shown in Figs. 1 and 2. The
angular momentum is h = 1.9rg, the total energy is  ≈ 0.966,
and the minimum distance from the WH center is rmin = r0.

e

Fig. 6. A trajectory similar to those shown in Figs. 1 and 2. The
angular momentum is h = 2rg, the total energy is  ≈ 0.973,
and the minimum distance from the WH center is rmin = r0.

e

Fig. 7. A trajectory similar to those shown in Figs. 1 and 2. The
angular momentum is h = 2.3rg, the total energy is  ≈ 0.973,
and the minimum distance from the WH center is rmin = r0.

e

The trajectories have the simplest shape when

In this case, a trajectory lies completely in one fold
of the space, touching the throat of the WH at a single
point; the case when the parameter p = r0 is illustrated
in Fig. 1. In the finite case, the trajectories have the
shape of a relativistic ellipse; in other words, they have
the shape of an almost elliptical trajectory with a shift
of the pericenter of the orbit.

Let us give several examples of finite trajectories
near a WH (Figs. 2–7). All the pictures are drawn in
the coordinates r and φ, except for Fig. 4, which pres-
ents a qualitative view of the trajectory when the line
of sight lies in the plane of the WH throat. The trajec-
tory parameters are given in units of the gravitational
radius (rg) of the WH. The maximum distance
(apocenter) of the trajectory from the WH center is
rmax = 10rg for all trajectories. The black lines denote
the BH horizon, and the purple lines show the posi-
tion of the WH throat. The green dot is the starting
point of the geodesic, and the black dot is the endpoint
of the geodesic. The green dot corresponds to φ = 0.
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