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Abstract—A model of single-atom laser with incoherent pumping is investigated theoretically. In the station-
ary case, a linear homogeneous differential equation for the phase-averaged Husimi Q function is derived
from the equation for the density operator of the system. In the regime in which the coupling of the cavity
mode with an atom is much stronger than the coupling of the mode with the reservoir ensuring its damping,
the asymptotic solution is obtained to this equation. This solution makes it possible to describe some statisti-
cal features of the single-atom laser (in particular, the weak sub-Poissonian photon statistics).
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1. INTRODUCTION

At present, sources of nonclassical states of light
are required in various branches of physics such as
quantum informatics, quantum communications,
quantum cryptography, and quantum frequency stan-
dards [1–5]. Various investigations are aimed at
designing such sources. In particular, in some publica-
tions, it is proposed that systems consisting of only one
or a few quantum emitters be used for obtaining cer-
tain states of light as well as for constructing various
elements of quantum devices [6–9]. The properties of
a single emitter determine the state of the electromag-
netic field, which makes it possible to obtain, for
example, sub-Poissonian light [10].

One of fundamental models in quantum optics is
the model of a single-atom laser. This model is
described in a large number of theoretical [11–27] as
well as experimental [28–30] publications. Various
effects revealed in these works are mainly associated
with a strong manifestation of the Fermi statistics of a
single emitter (self-quenching effect, squeezing, sub-
Poissonian photon statistics, lasing without inversion,
etc.).

A research group from the Stepanov Institute of
Physics (Minsk, Belarus), which is headed by
S.Ya. Kilin, has made a significant contribution to
understanding of single-atom laser physics (see [11,
15–18, 20, 27] and the literature cited therein). One of
theoretical approaches used by this group is based on
analysis of the equation for the density operator of the
system, which is written for quasi-probability distribu-

tions such as the Glauber P function and the Husimi Q
function; these functions make it possible to deter-
mine the normally and antinormally ordered correla-
tion functions of the field operators, respectively.

In [21], a linear homogeneous second-order differ-
ential equation for the phase-averaged P function was
obtained for the stationary operating regime of a sin-
gle-atom laser with incoherent pumping. An approxi-
mate solution to this equation was obtained in the lim-
iting case, when the interaction between the cavity
mode and an atom is much stronger than the coupling
between the mode and the reservoir ensuring its
damping (the so-called “classical” regime in which
the lasing threshold can exist for a single-atom laser
[19]). This solution, which is the generating solution in
the problem of a small parameter of the senior deriva-
tive (boundary-layer problem; see, for example, [31]),
provides good agreement with the results of numerical
calculations for certain values of laser parameters and,
moreover, contains some limiting solutions that have
been obtained earlier in [15, 16]. Subsequent analysis
of this equation has made it possible to obtain an
approximate expression for the P function that, in
contrast to previous solutions, demonstrates the
essentially nonclassical behavior (becomes negatively
definite [22]).

In view of specific features of the P function that
can be negative and/or unbounded, analysis of above
mentioned equation and its approximate solutions
encounters certain difficulties. In particular, the prob-
lem of artificial limitation of the domain of definition
of the P function appears in this case (see, for exam-
ple, [15, 21]). In this connection, there emerges a nat-
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136 LARIONOV
ural incentive to obtain an analogous equation, but for
a “good” quasi-probability distribution. In this article,
we choose for this distribution a quasi-probability dis-
tribution Q, which is non-negatively definite and
bounded.

This article has the following structure. In Section 2,
a homogeneous differential equation is derived for the
phase-averaged Q function for a single-atom laser with
incoherent pumping, which generates in the stationary
regime. Section 3 is devoted to analysis of the derived
equation for the “classical” regime of lasing. An
asymptotic solution obtained to this equation is com-
pared with the corresponding solution for the P func-
tion [21]. In Section 4, the photon statistics inside the
cavity is investigated using the obtained solution.
Main attention is paid to the range of values of laser
parameters, for which the weak sub-Poissonian pho-
ton statistics has been predicted earlier [19]. In
Section 5, the obtained asymptotic solution is reduced
to the simple Gaussian form for certain values of laser
pumping parameters. The Gaussian form of the solu-
tion makes it possible to easily determine the relation
with the theory that has been developed earlier based
on the linearization of the Heisenberg–Langevin
equations with respect to small f luctuations in the
vicinity of the strong “classical” solution [19]. The
results of this study are summarized in Conclusions.

2. MODEL OF SINGLE-ATOM LASER. 
EQUATION FOR THE PHASE-AVERAGED

Q FUNCTION

The model of single-atom laser considered here is
represented by a single two-level atom interacting with
a damping cavity mode. Incoherent pumping of the
atoms from lower level |1 to upper level |2 occurs at
rate Γ/2. The spontaneous decay of the atom from
upper level |2 to lower level |1 occurs at rate γ/2. The
constant of interaction between the atom and the cav-
ity mode is denoted by g. The cavity mode damping
rate is κ/2.

The equation for density operator  of a single-
atom laser has form

(1)

where , and  are the photon creation and annihila-
tion operators, respectively, in the cavity mode;  =
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atom with the cavity mode, and  is the reduced
Planck constant. The physical meaning of each term
on the right-hand side of Eq. (1) is determined by the
corresponding rate constant.

We consider the diagonal representation of the
antinormally ordered density operator (z, z*), which
is defined as

(2)

where |z is the coherent state of the field, d2z ≡
dRe[z]dIm[z], Re[z] and Im[z] being the real and
imaginary parts of complex number z. Using familiar
transition rules [32]

(3)

and introducing functions

as well as the Q function

we can easily derive from Eq. (1) the following system
of partial differential equations:
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The physical meaning of additional functions ρ21
and D follows from their mean values:

is the atomic inversion and

is the mean value of the atomic polarization.
The first equation in system (4) can be written in

the form of continuity equation

(5)

where we have defined divergence div = (∂/∂z, ∂/∂z*)
and quasi-probability current vector J = (J, J*), J =
‒κ/2(z + ∂/∂z*)Q. Source q = –g(∂ρ21/∂z + ∂ρ12/∂z*)
can also be written in terms of the divergence of a cer-
tain vector.

We pass to new polar coordinates (I, ϕ), such that
z = eiϕ, and define the quasi-probability distribu-
tions averaged over phase ϕ as

(6)

Then, in the stationary case, we can obtain from
continuity equation (5) the following relation between
Q(I) and the sum of coherencies ρΣ(I) = ρ21(I) +
ρ12(I):

(7)

The last two equations in system (4) in the station-
ary case lead to

(8)
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tial equations in unknown functions Q(I) and D(I).

  = ρ  − ρ  ≡ σ  = 
2

22 11 ˆ zD Dd z

ρ  = ρ  ≡ σ = ρ
2

21 12 21ˆ* d z

∂ + =
∂

div ,Q q
t

J

I

π

π

π
ϕ

= ϕ ϕ
π

= ϕ ϕ
π

ρ = ρ = ρ ϕ ϕ
π







2

0
2

0
2

12 21 12
0

1( ) ( , ) ,
2

1( ) ( , ) ,
2

1*( ) ( ) ( , ) .
2

i

Q I Q I d

D I D I d

I I e I d

Σ
κ  ρ = +

  

( )( ) ( ) .dQ II I Q I
g dI

Σ

Σ

Σ Σ

Σ
Σ

Γ − γ − Γ + γ − ρ
 = ρ − κ − κ
  

κΓ + γ ρ + ρ

 − + −
  

ρ = κ ρ +
  

( ) ( ) ( ) ( ) 2 ( )
( )( ) ( ) ,

( ) ( ) ( )
2

2 2 ( ) ( ( ) ( ))

( )2 ( ) .

Q I D I g I I
dD Id g I I ID I I

dI dI

I I
I

dg I D I D I Q I
dI

d Id I I
dI dI
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
Our task is the derivation of a differential equation
for function Q(I). However, the first equation in sys-
tem (8) (we are speaking of system (8) presuming that
ρΣ(I) is excluded from it with the help of relation (7))
is a second-order differential equation in function
D(I), while the second equation is the first-order
equation in the same function D(I). Therefore, to
exclude functions D(I), dD(I)/dI, and d2D(I)/dI2 from
system (8), we must supplement this system with one
more equation containing the second derivative of
function D(I), This equation can be obtained by dif-
ferentiating the second equation in system (8).

Omitting the intermediate elementary calculations,
we write the final result:

(9)

where we have introduced notation Q(ν)(I) ≡
dνQ(I)/dIν, and coefficients bik = bik(Γ, γ, κ, g) are
given in Appendix.

Thus, the sought equation for the phase-averaged
Q function is a homogeneous fifth-order differential
equation with polynomial coefficient. It should be
recalled that the corresponding equation for the
phase-averaged P function is a second-order equation
[21].

3. FUNCTION Q(I) FOR A SINGLE-ATOM 
LASER OPERATING IN THE “CLASSICAL” 

REGIME

Following [19, 21], we will further use the following
three dimensionless parameters: dimensionless
pumping rate r = Γ/γ, dimensionless saturation inten-
sity Is = γ/κ, and dimensionless coupling strength
(cooperative parameter) c = 4g2/γκ.

As noted above, the equation for the phase-aver-
aged P function P(I) for our laser is a second-order
homogeneous differential equation with polynomial
coefficients [21]. In the “classical” regime, when
product cIs ≫ 1 (i.e., g/κ ≫ 1), we can single out in
this equation small parameter λ ≈ 1/cIs appearing at
the senior derivative. Using the perturbation theory,
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138 LARIONOV
the authors of [21] determined generating solution
P0(I) to this equation (formula (50) in [21]), which is
the solution to the first-order differential equation.

In the case of a “good-cavity” regime (Is ≫ 1),
function P0(I) successfully describes the statistical
properties of a single-atom laser. In particular, using
this function, it is possible to describe some results fol-
lowing from the solution of the system of the Heisen-
berg–Langevin equations by their linearization with
respect to small f luctuations in the vicinity of the
strong “classical” solution [19, 21] (henceforth, the
“linear” theory). Let us write some results of the linear
theory:

(10)

Here, I0 ≈   ≡   is the classical intracavity
intensity (so-called strong “classical” solution), and

 ≈ Qf = ( 2 –  2)/  – 1 is the Mandel Q
parameter for the field (superscript “lin” indicates that
it is the result of the linear theory).

Formulas (10) have sense for c > 8 and for r ∈ (rth,
rq), where rth is the threshold value of the pumping rate
and rq is the value of this rate, for which the self-
quenching effect occurs. The explicit expressions for
rth and rq can be obtained from equation I0 = 0:

(11)

where rm = c/2 – 1 is the value of the pumping rate for
which I0 reaches its maximal value Im = Is(c/8 – 1).

Results (10) predict an insignificant sub-Poisso-
nian photon statistics in the cavity mode [21]. For c ≈
200 and higher, and for values of the pumping rate
close to r = c/5, the Mandel Q parameter  becomes
negative and takes a value of –0.05 for c → ∞. In this
range of values of parameters, the P function demon-
strates the nonclassical behavior [22]—becomes nega-
tive definite and unbounded, and approximate solu-
tion P0(I) acquires an essentially singular point close
to I0, which does not permit the confirmation of the
results of the linear theory.

It should be noted that the minimal value of the
Mandel Q parameter determined for the model of the
single-atom laser considered here is –0.15 [13, 24].
Such a sub-Poissonian statistics is associated with the
photon antibunching effect, which is manifested most
clearly in the regime of the small number of photons in
the cavity mode rIs ≈ 1 (Γ ≈ κ) [24]. However, in the
classical regime considered here (i.e., in the regime in
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which solutions (10) exist), this effect is suppressed by
the presence of a large number of photons randomly
accumulated in the mode and characterized by a rela-
tively long stochastic lifetime.

Let us now separate small parameter λ ≈ 1/cIs in
Eq. (9) and try to obtain the corresponding generating
solution for the Q function. We will proceed in the
same way as in [21]. For this, we write polynomials
pν(I), separating in them the roots:

(12)

where the roots in the last two polynomials are
denoted analogously to [21].

The coefficients of the two last polynomials b42,
b52 ~ cIs, while the coefficients of all remaining poly-
nomials are on the order of unity. Therefore, in the
regime cIs ≫ 1, we replace Eq. (9) by the approximate
first-order equation

(13)

The solution to this equation has form

(14)

where N0 is the normalization constant, and subscript
“0” on the function indicates that this solution is gen-
erating in the problem with a small parameter.

The structure of resulting solution (14) almost
coincides with that of corresponding generating solu-
tion P0(I) for the P function (see formula (50) in [21]).
However, solution (14) has certain advantages associ-
ated with the fact that the Q function is non-negatively
definite and bounded. For example, the exponential
function in (14) decreases upon an increase in argu-
ment I in view of positiveness of ratio b52/b42 > 0. Con-
versely, function P0(I) determined in [21] increases
exponentially as I → ∞, which is one of the reasons for
artificial boundedness of its domain of definition.
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Table 1

Fig. 1a Is = 100, c = 50

Lin I0 = 329,  = 0.19

P0   = 329.1, Qf = 0.19

Q0   = 329.1, Qf = 0.19

Fig. 1b Is = 100, c = 100

Lin I0 = 729.5,  = 0.056

P0   = 729.6, Qf = 0.056

Q0   = 729.6, Qf = 0.057

Fig. 1c Is = 100, c = 175

Lin I0 = 1329.7,  = 0.0075

P0   = 1329.8, Qf = 0.008

Q0   = 1329.8, Qf = 0.0084

lin
fQ

n̂

n̂

lin
fQ

n̂

n̂

lin
fQ

n̂

n̂

First parenthesis (1 – I/I–4) on the right-hand side
of relation (14) is always positive since root I–4 < 0.
Second parentheses (1 – I/I+4) becomes negative for
I > I+4 (root I+4 > 0); consequently, Q0(I) takes a com-
plex value, which is inadmissible for the Q function.
However, for a “good-cavity” regime (Is ≫ 1), the
value of root I+4 is close to values of variable I, for
which the Q function is negligibly small. For a “bad-
cavity” regime (Is ~ 1, Is ≪ 1), the value of root I+4 lies
in the range of values of variable I, where the Q unc-
tion is not small. If, however, we confine the domain
of definition of function Q0(I) to segment [0, I+4] as it
has been done in [21] for function P0(I), this can lead
to nonphysical results. Therefore, in (14), we take
modulo of parentheses (1 – I/I+4).

Some features of solution (14), which are also
observed for function P0(I), are worth noting. Root I‒5
repeats solution (10) for the classical intracavity inten-
sity almost completely (i.e., I–5 ≈ I0). In the case of a
“good-cavity” regime, approximate equality I+4 ≈ I+5
holds near the maximum of “classical” solution I0.

Analysis of Eq. (9) shows that solution (14) cannot
be used for describing the laser operation in the case
when the pumping rate is much smaller than threshold
value rth. In this case, on account of the fact that main
changes in the Q function occur in the range of small
values of variable I, we can consider the following
equation obtained from Eq. (9) by disregarding all
powers of variable I in the polynomials:

(15)

The solution to this equation has form

(16)
where constant a < 0 is the real-valued root of polyno-
mial equation

For r → 0, ∞, this constant tends to –1; i.e., in
these limiting cases, the Q function describes the vac-
uum state of the cavity mode:

Therefore, solution (16) describes thermal radia-
tion with average number of photons   = –(a + 1).

4. RESULTS OF CALCULATIONS
In Fig. 1, the behaviors of functions P0(I) [21] and

Q0(I) (14) are compared upon a transition to the
regime close to strong coupling regime c ≫ Is (i.e.,
g ≫ γ, which means that the coupling of an atom with
the cavity mode is much stronger than the coupling of
the atom with the reservoir, ensuring its spontaneous
decay outside the cavity mode). For all curves, r = c/5;

+
+ + =
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20 30 40 50 0.b x b x b x b

−= π( ) / .IQ I e

n̂
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i.e., we choose the value of the pumping parameter for
which the Mandel Q parameter  (10) takes the
minimal value. It can be seen that an increase in cou-
pling constant c for fixed Is leads to a decrease in the
width and an increase in the height of the peak of
function P0(I). For c = 175, the asymmetry of this
function associated with the boundedness of its
domain of definition is noticeable. For c ≈ 200, func-
tion P0(I) acquires a singularity (analogous to that
observed in [24, 25]), which does not allows us to cal-
culate average values of interest. Upon a further
increase in coupling constant c, this singularity
exceeds the domain of definition of function P0(I), but
the calculation of mean values leads to unrealistic
results. Function Q0(I) has no such singularities as
should be expected and permits us to easily calculate
the mean values of interest.

Table 1 represents the results of “linear” theory
(10) for values of laser parameters corresponding to
Figs. 1a–1c (these results are denoted by superscript
“lin”), as well as the results obtained with the help of
functions P0(I) and Q0(I). It can be seen that different
approaches lead to close results.

Figure 1d illustrates the behavior of function Q0(I)
upon a transition in the strong coupling regime for r =
c/5 as before. Parameters c and Is are chosen so that
the classical intracavity intensity is I0 = 700. The cor-
responding values of   and Qf are given in Table 2.

In Table 2, only the first two upper blocks corre-
spond to the curves in Fig. 1d. The lower block corre-
sponds to the strong coupling regime and a “bad-cav-

lin
fQ

n̂
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140 LARIONOV

Fig. 1. Comparison of behaviors of functions P0(I) [21] and Q0(I) (14): (a) Is = 100, c = 50; (b) Is = 100, c = 100; (c) Is = 100, c =
175. (d) Behavior of function Q0(I) (14) upon a transition to the strong coupling regime.
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(c) (d)
ity” case, Is = 0.87 (the curve is not shown because it
almost coincides with the curve for c = 103). It can be
seen from the values represented in the table that
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Table 2
Fig. 1d Is = 95.95, c = 102

Lin I0 = 700,  = 0.056
P0   = 700.1, Qf = 0.056
Q0   = 700.1, Qf = 0.057

Fig. 1d Is = 8.83, c = 103

Lin I0 = 700,  = –0.04
P0   = UnPh, Qf = UnPh
Q0   = 700.1, Qf = –0.039

Is = 0.87, c = 104

Lin I0 = 700,  = –0.049
P0   = UnPh, Qf = UnPh
Q0   = 700.1, Qf = –0.047

lin
fQ

n̂

n̂

lin
fQ

n̂

n̂

lin
fQ

n̂

n̂

determined Q function Q0(I) (14) correctly describes
the weak sub-Poissonian photon statistics predicted by
the “linear” theory. The case of “bad-cavity” regime
as well as the cases with c ≈ 200 and c > 200 cannot be
described by function P0(I) (abbreviation UnPh in
Table 2 indicates unphysical result).

In Fig. 2, the results of the “linear” theory are
compared with the results obtained using solutions
(14) and (16). For a good-cavity regime, we have
Is ≫ 1, and both approaches give very close results for
values of the pumping rate lying between rth and rq
(Figs. 2a–2c). The characteristic threshold peak for
the Mandel Q parameter [19] and the peak associated
with the effect of “trapping” of an atom in the excited
state are successfully described by function (14). For
values of the pumping rate much lower than classical
threshold rth, solution (14) gives an unphysical result
for the Mandel Q parameter. In this case, solution
(16) (blue dotted curve) was used for obtaining
results.

In Fig. 2b, a transition to the strong coupling
regime is illustrated, when the weak sub-Poissonian
D THEORETICAL PHYSICS  Vol. 134  No. 2  2022
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Fig. 2. Comparison of the results of “linear” theory (10) with the results obtained using functions Q0(I) (14). (a, c) Dependences

of average number of photons n(r) and the Mandel Q parameter Qf(r) on pumping rate r; Is = 40, c = 20. (b, d) Dependences of

the Mandel Q parameter Qf(r) on pumping rate r. Transition to the strong coupling regime; (b) “good-cavity” regime, Is = 40;

(d) “bad-cavity” regime, Is = 1. Green bullets are the results of numerical calculation.
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photon statistics predicted by the linear theory

appears. As can be seen from the figure, resulting

function Q0(I) (14) describes this quantum effect

comprehensively.

The “bad-cavity” regime Is ~ 1 is illustrated in

Fig. 2d.The curves for the Mandel Q parameter 

(10) fully coincide with the curves in Fig. 2b because

of its natural dependence only on parameters r and c.

Comparison with the results of numerical calculations

shows that the results based on “linear” theory (10)

better describe a transition to the sub-Poissonian

regime. For a “bad-cavity” regime, function Q0(I)

(14) gives only a qualitative result. However, in the

limit c → ∞, the results obtained with the help of

function Q0(I) (14) coincide with the results of the

“linear” theory.

lin

fQ
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5. APPROXIMATION OF FUNCTION Q0(I)
BY THE GAUSSIAN DISTRIBUTION

Let us consider the “good-cavity” regime (Is ≫ 1)

and values of the pumping parameter close to rm (10),

(11). We take into account the fact that I+4 ≈ I+5 and

I‒5 ≈ I0 in this case. Hence, f1 ≈ (b52/b42)(I0 – I–4),

f2 ≈ 0, and expression (14) can be written as

(17)

where ΔI = I – I0 and I0 – I–4 ≫ 1. Function (17) has
a maximum corresponding to values of I close to
“classical” solution I0 (i.e., for ΔI ≈ 0). Then in the
range of values of variable I, for which the value given
by (17) is not negligibly small (i.e., for values of I dif-

−−

−

 Δ= + − 

 × − Δ 
 

52 42 0 4( / )( )

0 0

0 4

52

42

( ) 1

exp ,

b b I I
IQ I N

I I
b I
b
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fering from I0 not very strongly), we can perform the
following expansion of the preexponential factor:

(18)

Substituting this expression into (17), we see that
the Q function takes the form of a Gaussian function:

(19)

where variance σ2 = (I0 – I–4)b42/b52 is defined by
solutions (10),

(20)

Thus, this relation implies that solution (19)
describes the weak sub-Poissonian photon statistics in
the cavity mode. Indeed, by the definition of the Man-
del Q parameter, we obtain

(21)

It should be noted that in [21], a Gaussian expres-
sion of type (19) was obtained for function P0(I) also.

However, variance σ2 in this case was equal to product

I0 , which became negative for the sub-Poissonian

photon statistics; this rendered function P0(I)

unbounded.

6. CONCLUSIONS

In this study, the stationary regime of operation of
a single-atom laser with incoherent pumping was
investigated based on Eq. (9) for phase-averaged Q
function. In the “classical” regime (g/κ ≫ 1), approx-
imate solution (14), (16) to this equation was obtained.
This solution describes the main features of the single-
atom laser, in particular, makes it possible to describe
the weak sub-Poissonian statistics of photons in the
cavity mode, which has been detected earlier using the
approach based on linearization of the Heisenberg–

−− −
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Langevin equation in the vicinity of strong classical

solution (10) [19, 21].

Summing up, we can state that analysis of the sta-

tionary regime of operation of a single-atom laser with

incoherent pumping can be reduced to analysis of a

single linear homogeneous differential equation. For

example, this is Eq. (41) in [21] in the case of the P
function and Eq. (9) of this work for the Q function. In

the limiting case considered here and in [21], when

g/κ ≫ 1, the aforementioned differential equations

acquire a small parameter that makes it possible to

obtain approximate solutions to these equations rela-

tively easily.

Concluding this section, we note that Eq. (9) has

also been analyzed in [25], where the particular case of

Γ ≈ κ (i.e., the case of a small number of photons in the

cavity mode) has been considered. For arbitrary values

of ratio g/κ, analysis of Eq. (9) was complicated. Exact

analytic solutions to Eq. (9), one of which coincided

with solution (16), were obtained only in the limiting

case g/Γ ≈ g/κ → ∞. For a small number of photons,

the approach based on analysis of an infinite system of

algebraic equations for different moments of field

operators has proved to be more fruitful [24, 25, 33]. It

is probably precisely this approach that will make it

possible to obtain exact solutions for mean values

characterizing a single-atom laser in some particular

cases [34].

APPENDIX

Coefficients bik from Eq. (9) are given by

(22)

= − + + =
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