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Abstract—We study low-energy massless electronic excitations in a graphene monolayer near a pointlike
Coulomb impurity. We assume that such excitations are described by the Dirac model. We construct a family
of self-adjoint Hamiltonians corresponding to these excitations for any charge of the impurity and perform
their spectral analysis. It is shown that in this case, the structure of electron excitation spectra differs qualita-
tively from the corresponding spectra of massive excitations. The obtained results are used for analyzing the
local surface density of electron states in graphene and its dependence of the choice of self-adjoint Hamilto-
nians.
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1. INTRODUCTION
The presence of impurities and defects can notice-

ably change the electronic properties of graphene. For
example, the presence of charged impurities such as
Coulomb centers substantially affects the mobility of
charge carriers [1]. For this reason, analysis of the
properties of graphene in the case of interaction of car-
riers with the Coulomb centers is important for under-
standing the electron transport in the presence of
impurities (see [2–6]). This problem is technically
simplified because low-energy electron excitations in
a graphene monolayer in an external electromagnetic
field are successfully described by the Dirac model, in
which these excitations are chiral Dirac fermions in
2 + 1 dimensions [7, 8].

A correct description of such excitations (which
will be often referred to as quasiparticles in further
analysis) near a pointlike Coulomb impurity requires a
correct definition of the Dirac Hamiltonian as a self-
adjoint (henceforth, s.a.) operator in the correspond-
ing Hilbert space. For the motion of an electron in the
Coulomb field, the problem of determining the Ham-
iltonian as an s.a. operator is nontrivial only for nuclei
with large Z (Z > 119), which do not appear in labora-
tory conditions; for Coulomb impurities in graphene,
this threshold is much lower because of the properties
of Dirac quasiparticles in the Dirac model of
graphene.

It should be noted that depending on the structure
of the substrate on which graphene is synthesized; a
gap can appear (or not appear) between the valence

band and the conduction band in the electron spec-
trum. This is determined by the properties of the inter-
action between the graphene layer and the substrate,
which breaks the symmetry between sublattices, but
preserves the translational symmetry. For a nonzero
gap, low-energy electron excitations in the Dirac
model are massive fermions, while for zero gap
between the valance and conduction bands, these
excitations are massless fermions. The gap width can
be changed by varying the chemical composition and
concentration of the substrate [9].

In the previous publication [10] with the participa-
tion of the authors, with the help of the theory of s.a.
extensions of symmetric operators, a family of s.a.
Hamiltonians describing electron excitations in
gapped graphene for any value of the impurity charge.
Based on the Krein method of guiding functionals, the
spectral analysis of such Hamiltonians was performed.
In particular, their spectra and the corresponding
complete sets of (generalized) eigenfunctions were
determined. The choice of s.a. Hamiltonians from all
analytically possible operators is a separate physical
problem. It should be noted the results of this study
cannot be used directly in the massless case because
the domains of s.a. Dirac Hamiltonians for gapped
graphene vanish in the massless limit (for graphene
with zero gap). For this reason, the case of gapless
graphene requires separate investigation, which forms
the subject of this study.

In this study, we consider the problem of correct
definition of a Dirac Hamiltonian as an s.a. operator
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for quasiparticles in gapless graphene in the presence
of a Coulomb impurity with an arbitrary charge Z. We
present analysis of all aspects of this problem based on
the theory of s.a. extensions of symmetric operators
[11–13]. We construct the family of all possible s.a.
Hamiltonians, the members of which differ in the
parameters of corresponding extensions (therefore,
are parameterized by them) and perform their spectral
analysis. For this purpose, we construct generalized
eigenfunctions of all such Hamiltonians for any impu-
rity charge. This problem is technically reduced to
analysis of the spectra of corresponding s.a. 1D partial
radial Hamiltonians. It is shown that the spectra of
such Hamiltonians are continuous and occupy the
entire real  axis in contrast to the massive case, where
there are both discrete and continuous spectra.

The article is organized as follows. In Section 2, the
definitions of basic concepts and relations explaining
the formulation of the problem are considered. In Sec-
tion 3, the analytically rigorous procedure of reducing
the problem of construction of an s.a. rotationally
invariant Dirac Hamiltonian in complete Hilbert
space to the problem of constructing s.a. 1D partial
radial Hamiltonians with a certain angular momen-
tum is described. In Section 4, the general solution to
radial equations for the massless Dirac equation in the
2 + 1 dimensions is analyzed. In Section 5, the s.a.
partial radial Hamiltonians with an arbitrary admissi-
ble value of angular momentum j are constructed.
Section 6 is devoted to the description of peculiarities
of the complete Hamiltonian for the model under
consideration depending on impurity charge Z. In
Section 7, the obtained results are used for analyzing
the local density of states in graphene. Brief conclu-
sions are formulated in Section 8.

2. DIRAC EQUATION IN 2 + 1 DIMENSIONS 
FOR A MASSLESS CHARGED PARTICLE IN 

THE COULOMB FIELD
We operate in the framework of the Dirac model in

the 2 + 1 dimensions for charged quasiparticles near a
Coulomb impurity. Let us suppose that the Coulomb
impurity with charge Z is located at the origin of the
Cartesian system of coordinates with the x and y axes
lying in the graphene plane. With account for macro-
scopic permittivity , the potential produced by the
impurity has form

We denoted by Ks the Dirac points, the coordinates
of which in the Brillouin zone are chosen in form Ks =
(4πs/(3a), 0), where a = 2.46 Å is the lattice constant
and s = ±1 is the isospin quantum number.

Total Hilbert space  of quantum states of qua-
siparticles is the direct orthogonal sum of two Hilbert
spaces , s = ±1, each of which is connected with
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corresponding Dirac point Ks. Spaces  are the Hil-
bert spaces of 2D doublets, so that

In view of the long-range nature of the Coulomb
field, the intervalley processes are disregarded, and
transitions between Hilbert spaces  are not consid-
ered. Therefore, the total effective Hamiltonian 
of quasiparticles is the direct orthogonal sum of two
Hamiltonians , s = ±1, each of which is acting in
corresponding Hilbert space  and can be considered
separately.

In the Dirac model, quasiparticles near each Dirac
point Ks are described by the effective massless Dirac
equation [14]:

(1)

where wavefunctions Ψs are doublets depending on r,
Ψs = Ψs(r) = {ψsα(r), α = 1, 2}, components ψsα(r)
being the envelopes of the Bloch functions in two

graphene sublattices A and B, respectively, and  are
the differential operations corresponding to the Dirac
equation in the 2 + 1 dimensions,

(2)

Here,  ≈ 106 cm/s is the Fermi velocity, αF =
e2/( ) is the fine structure constant for graphene,
and {σx, σy, σz} are the Pauli matrices. Introducing

notation  = ( )–1  and E = ( )–1 , we write
Eq. (1) in the following form:

where differential operations  in polar coordinates
ρ, φ (x = ρcosφ, y = ρsinφ) have form

(3)
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ˆ
s*

sH

Ψ = Ψ = ±ˇ , 1,s s s s* %

ˇ
s*

 = − σ ∂ + σ ∂ − ρ 

= = α = α

=

�

�

F

2

F F eff
F

eff

ˇ [ ] ,

1 ,

.

s x x y y
qi s

Ze Zg Z

ZZ

v

v

*

e e

e

Fv

� Fv

ˇ
sH � Fv

ˇ
s* � Fv %

Ψ = Ψ = ±ˇ ( ) ( ), 1,s s sH E sr r

ˇ
sH

∂= − φσ + φσ
∂ρ

∂+ φσ − φσ −
ρ ∂φ ρ

ˇ ( cos sin )

( sin cos ) .

s x y

x y

H i s

gi s

ˇ
sH

ˆ
sH

H

D THEORETICAL PHYSICS  Vol. 132  No. 6  2021



MASSLESS ELECTRONIC EXCITATIONS 943
L2( )  L2( ). In solving this problem, we follow
the ideas formulated in [10], where a similar problem
is considered for corresponding massive quasiparti-
cles.

By definition, variable j takes half-integer positive
and negative values, j = ±(n + 1/2), n ∈ , while vari-
able Z takes nonnegative integer values, Z ∈ . In fur-
ther analysis, it will be more convenient to treat vari-
able Z as a quantity assuming continuous values and
lying on the nonnegative vertical half-plane, Z ∈ ,
and to return to its natural integer values when neces-
sary.

3. REDUCTION TO THE RADIAL PROBLEM
Let us begin with the definition of initial symmetric

operators  Hilbert space  = L2( )  L2( ),
which are associated with the corresponding differen-

tial expressions (3) for . Since the coefficient func-
tion of the differential expressions for  are smooth
outside of the origin, we choose the space of smooth
compactly supported doublets for domains D( ) of
operators .

To avoid the problems with a singularity of the
Coulomb potential at the origin of coordinates, we
impose the additional requirement of vanishing dou-
blets D( ) in a certain neighborhood of the origin,
which is generally different for each doublet. It should
be noted that the domains D( ) (which are the same
for both values of s) are dense in . Therefore, opera-
tors  are defined as

Operator  defined in this way is obviously sym-
metric.

We construct s.a. Hamiltonians  as s.a. extensions
of corresponding initial symmetric operators . We
require that operators , as well as initial symmetric
operators , be rotationally invariant. The meaning
of this requirement will be explained below.

There exist two different unitary representations Us

of rotational group Spin(2) in , which are connected
with corresponding operators Us. Generator  of the
representation of group Us, which is known as the
angular momentum operator (there are two such oper-
ators), is an s.a. operator in , which is defined on
absolutely continuous doublets periodic in φ ∈ [0, 2π]
and associated with differential expression

R
2 ⊕ R

2

+Z

+Z

+R

inˆ
sH H R

2 ⊕ R
2

ˇ
sH

ˇ
sH

inˆ
sH

inˆ
sH

inˆ
sH

inˆ
sH
H

inˆ
sH

∞
α = Ψ ψ ∈= 

 Ψ Ψ

R
in 2

0in

in

ˆ( ) { ( ) : ( ) ( \{0})},
ˆ

ˇˆ ( ).

s

s

ss

D H C
H

H H

r r

r r()=

inˆ
sH

ˆ
sH

inˆ
sH

ˆ
sH

inˆ
sH

H

ŝJ
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For each s, Hilbert space  can be represented as a
direct orthogonal sum of subspaces , which are
eigenspaces of angular momentum operator  and
correspond to its all eigenvalues j,

(4)

Subspace  with given s and j consists of doublets
Ψsj of form

(5)

which are eigenfunctions of operator ,

It should be noted that the spectra of operators 
and  coincide. Functions f(ρ) and g(ρ) are referred to
as radial functions. In the language of physics, expan-
sions (4) and (5) correspond to the expansion of dou-
blets Ψ(r) ∈  in the eigenfunctions of two different
angular momentum operators  and .

In further analysis, the following fact is significant.
Let ( ) be the Hilbert space of radial doublets,

with scalar product

so that ( ) = L2( )  L2( ). Then expression
(5) and relation

indicate that space  ⊂  is unitarily equivalent to

Hilbert space ( ),

(6)

The initial symmetric operators  are rotation-
ally invariant. Namely, each operator  is invariant
to representation Us of the rotational group. Therefore,
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each subspace  (eigenspace of generator  with

eigenvalue j) reduces operator . In other words,
operator  commutes with projectors Psj onto sub-
spaces  (see [15]). This in turn indicates the follow-
ing. Let us suppose that

Then

where operators  = Psj Psj = Psj are the so-

called parts of operator , which are acting in .
The rule of action of these operators is given by the
first-order differential operation in variable ρ, which
will be given below. Thus, each initial symmetric oper-
ator  is the direct orthogonal sum of its parts,

so that analysis of rotationally invariant operator  is
reduced to analysis of operators .

Each operator  is a symmetric operator acting
in subspace . It obviously induces symmetric oper-

ator (Z, j, s) in Hilbert space ( ), which is uni-
tarily equivalent to operator ,

Operator (Z, j, s) is defined as

(7)

where ( ) = ( )  ( ). Differential
operation (Z, j, s),

(8)

will be referred to as the partial radial differential oper-
ations.

The construction of s.a. rotationally invariant
Hamiltonians  as s.a. extensions of initially sym-
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ators (Z, j, s). Namely, let operators (Z, j, s) be
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such extensions. They obviously induce s.a. extensions
= Vsj (Z, j, s)  of initial symmetric operators

 in subspaces . Then the direct orthogonal sum
of partial operator ,

(9)

is a rotationally invariant extension of initial symmet-
ric operator . Any s.a. rotationally invariant exten-
sion of initial symmetric operator  has structure
(9). The spectrum of Hamiltonian  is given by the
combination of the spectra of partial radial Hamiltoni-
ans,

and the corresponding eigenfunctions associated with
 are obtained from the eigenfunctions of operators

(Z, j, s) in ( ) using transformation Vsj; see rela-
tion (6).

4. GENERAL SOLUTION TO RADIAL 
EQUATIONS

Let us now consider the general solution to the sys-
tem of two linear ordinary differential equations for
functions f(ρ) and g(ρ),

(10)

which is required for analyzing the spectrum and
eigenfunctions of partial radial Hamiltonians. Real
values of W will be henceforth denoted by letter E. For
our analysis, it is sufficient to consider the values of W
belonging to the upper complex half-plane, W = E +
iy, y ≥ 0. We will also be interested in limit W → E + i0.

System (10) written in components has form

(11)

Further, we will refer to Eqs. (11) as radial equa-
tions. Let us write the general solution to radial equa-
tions, following the standard procedure [12, 16]. We
perform the following substitution of functions and
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In the new variables and for the new function, we
obtain

(12)

It can be seen that Eq. (12) for function Q(z) is the
known confluent hypergeometrical equation. Let us
suppose that  ≠ –n/2, n ∈ . In this case, the general
solution to the confluent hypergeometrical equation is
a linear combination of standard hypergeometric
functions Φ(α, β; z) and Ψ(α, β; z),

where A and B are arbitrary constants and

Using relations

we obtain the general solution to system (11) in form

As follows from equalities

we can write the general solution to the radial equa-
tions in the following form:

(13)

+ +

+ β − − α =

 = − + α κ  
β = + ϒ α = α α = ϒ −

2

2
( ) ( )( ) ( ) 0,

1( ) ( ),

1 2 , , .

d Q z dQ zz z Q z
dzdz
dP z z Q z
dz

ig

ϒ N

= Φ α β + Ψ α β( ) ( , ; ) ( , ; )Q z A z B z

−β

Γ − βΨ α β = Φ α β
Γ α − β +

Γ β −+ Φ α − β + − β
Γ α

1

(1 )( , ; ) ( , ; )
( 1)

( 1) ( 1,2 ; ).
( )

z z

z z

 + α Φ α β = αΦ α + β 
 

 + α Ψ α β = α α − β − Ψ α + β 
 

( , ; ) ( 1, ; ),

( , ; ) ( 1) ( 1, ; ),

dz z z
dz

dz z z
dz

− + −α − β + = −α α α = κ21 , ,

−
αα = ϒ + =
κ

, ,ig a

= Φ α β + Ψ α β�( ) ( , ; ) ( , ; ),Q z A z B z

= − Φ α + β + κΨ α + β�( ) ( 1, ; ) ( 1, ; ).P z Aa z B z

Φ α + β = Φ β − α − β −( 1, ; ) ( 1, ; ),zz e z

+ κ + ϒ=
−

1 ,
1

ai
a g

ϒ −
+ −

−ϒ

±

ρ ϒ = ρ ϒ
+ Ψ α β − κΨ α + β

−= ± =
−

�

/2

( , , ) ( , , )

[ ( , ; ) ( 1, ; ) ],

( 2 )( 1, ) , ,
1

z

T

F W AX W

Bz e z z

iWi A A
a

� �

�

JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
where we have introduced doublet X(ρ, , W),

Henceforth, we will use some particular solutions
to the radial equations, which correspond to a certain
set of constants A and B and parameter .

We introduce new quantity  as follows:

This quantity as a function of parameter g has zero
values at points g = gc(j) = |κ| = |j|. When  ≠ 0 (g ≠
gc(j)), we have two linearly independent solutions F1
and F2, which form the following fundamental set of
solutions to system (11):

It should be noted that both doublets F1 and F2 are
real-valued integer functions of W. Their Wronskian
can be found easily, Wr(F1, F2) = –2 g–1. If Im W >
0, both doublets F1(ρ; W) and F2(ρ; W) increase expo-
nentially for ρ → ∞. For real values of W = E, doublets
F1 and F2 can be written in terms of the Coulomb func-
tions [17],
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For  = γ, we have

(14)

For  = iσ, σ > 0, we have another representation:

One more useful solution F3 is given by expression
(13) for A = 0,  = , and a special choice of param-
eter B = B(W),

where

If ImW > 0, doublet F3(ρ; W) decreases exponen-
tially for ρ → ∞ (to within a certain polynomial).
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adjoint operator (Z, j, s) acting on the so-called nat-
ural domain of ( ) for (Z, j, s) consisting of

doublets F(ρ) ∈ ( ), which are absolutely continu-
ous in space  and such that

Since the coefficient functions of differential oper-

ation (Z, j, s) are real-valued, the deficiency indices
of initial symmetric operator (Z, j, s) are identical so
that s.a. extensions (Z, j, s) exist for any values of
parameters Z and j.

Following [10, 12], we construct s.a. extensions
(Z, j, s) of operator (Z, j, s) as s.a. contractions of

adjoint operator (Z, j, s), which are determined by
certain asymptotic s.a. boundary conditions.

Let us estimate the asymmetry of operator (Z, j, s)
in terms of (asymptotic) boundary values of doublets
from its domain ( ). To this end, we intro-

duce quadratic asymmetry form  for operator
(Z, j, s) by relation

(15)

This form shows the extent of deviation of operator
(Z, j, s) from the symmetric operator. If  ≡ 0,

operator (Z, j, s) is symmetric and, hence, is an s.a.
operator. Then (Z, j, s) is an essentially s.a. operator,
and its only s.a. extension is adjoint operator (Z, j, s).
If  ≠ 0, s.a. operator (Z, j, s) is determined as a con-
traction of operator (Z, j, s) onto domain Dh(Z, j,s) ⊆

( ), such that contraction of form  on Dh(Z,j,s)

is zero, and domain Dh(Z, j,s) cannot be extended with
the conservation of condition  ≡ 0.

Integrating by parts on the right-hand side of
Eq. (15) and taking into account relations (8), we can
easily see that asymmetry form  is given by
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The quadratic integrability of doublet (Z, j, s)F for
F ∈ ( ) implies the quadratic integrability of
derivative F '(ρ) at infinity. It follows hence that any
doublet F ∈ ( ) decreases at infinity,

[F](∞) = 0, and asymmetry form  is determined by
the behavior of these doublets at zero:

(16)

To calculate this asymmetry form, we must know
the explicit form of doublets F from domain of defini-
tion ( ). It should be noted in this connection
that these doublets can be treated as quadratically
integrable solutions to nonhomogeneous differential

equation (Z, j, s)F(ρ) = G(ρ) with the right-hand side
of G belonging to ( ). Any solution to this nonho-

mogeneous differential equation can be represented in
form

(17)

where I1(ρ) and I2(ρ) are particular solutions to the
nonhomogeneous equation,

(18)

Expressions (17) and (18) allow us to find the
asymptotic behavior of the doublets at zero and to cal-
culate asymmetry form (16). It follows from expres-
sions (17) and (18) that the behavior of doublets F at
zero substantially depends on the values of parameters
j and Z.

It is convenient to divide upper half-plane (j, Z)
into the so-called nonsingular and singular domains,
in which the problem of determining s.a. extensions

(Z, j, s) has basically different solutions. These
regions are divided by symmetric singular curve Z =

Zs(j), where Zs(j) = , on which g = gs(j) =

 and  = γ = 1/2. The nonsingular domain
is defined by inequality Z ≤ Zs(j), which is equivalent
to inequality  = γ ≥ 1/2. The singular domain is
defined by inequality Z > Zs(j), which is equivalent

0 ≤  = γ < 1/2 or  = iσ, σ > 0. Since the singular
curve is the upper boundary of the nonsingular
domain, the value of Zs(j) will be referred to as the
maximal nonsingular value of Z for the given j.

We divide the singular domain into three subsets:
subcritical, critical, and overcritical. The subcritical
domain is defined by inequalities Zs(j) < Z < Zc(j),
which is equivalent to 0 <  = γ < 1/2, where Zc(j) =

|j|. We will call the value of Zc(j) the critical value
of Z for the given j. The critical domain is critical curve
Z = Zc(j), which is equivalent to g = gc(j) = |j| or  =
γ = 0. The overcritical domain is defined by inequality
Z > Zc(j) = α–1 |j|, which is equivalent to  = iσ,

where σ =  > 0.
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ȟ
L

2
+R

+ϒ
+

ρ = ρ + ρ + ρ + ρ
=

ρ = ρ

1 1 2 2 1 2

1 2

1

( ) ( ) ( ) ( ) ( ),
, const,

( ) ,

F c u c u I I
c c

u d
+−ϒ

− ρ ≠ρ =  ρ =

ρ =

2
0

, ( ),( )
( ), ( ),

ˇ( , , ) ( ) 0,

c

c

k

d g g j
u

d g g j

h Z j s u

±
+

−

 =  κ ± ϒ 

 ρ − ζρ =  ζ ρ 
ζ = κ = −

1

0

1
,

( )/

ln ( , ) ( )( ) ,
( , ) ln

( , ) sgn( ) sgn( ),

c

d
g

j s g j
d

j s
j s s j

ρ

+
+ ρ

ρ

+
+
ρ

+ ρ


ρ ⊗ ρ ρ ρ ϒ = ϒ ≥ ρ >

ϒ

ρ = − ρ ⊗ ρ ρ ρ ϒ = ϒ < ϒ = σ σ > ϒ

 ρ ⊗ ρ ρ ρ ϒ =



ρ ⊗ ρ ρ ρ ϒ ≠
ϒ

ρ =

− ρ ⊗









0

1 2 0

1 1 2
0

1 2
0

0

2 1

2

2

[ ( ) ( ')] ( ') ', 1/2, 0,
2

( ) [ ( ) ( ')] ( ') ', 1/2, , 0,
2

( ) [ ( ) ( ')] ( ') ', 0,

[ ( ) ( ')] ( ') ', 0,
2

( )

( ) [ ( )

c

c

g u u G d

gI u u G d i

g j u u G d

g u u G d

I

g j u u
ρ





 ρ ρ ρ ϒ =


 1
0

( ')] ( ') ', 0.G d

inĥ
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Further, we construct s.a. radial Hamiltonians
(Z, j, s) as s.a. extensions of operator (Z, j, s) in

each of the four domains of variation of impurity
charge Z.

5.1. Nonsingular Domain
Let us calculate asymmetry form (16) for nonsin-

gular domain Z ≤ Zs(j),  = γ ≥ 1/2. For integrals (18),
the following estimate holds:

(19)

Relations (17) imply that function u2(ρ) ~ ργ is qua-
dratically integrable at the origin of coordinates, and
function u2(ρ) ~ ρ–γ is not quadratically integrable.

Doublets F ∈ ( ) are defined by expression
(17) with c2 = 0 and behave as O(ρ1/2) for ρ → 0. Then
the asymmetry form is zero in the entire domain

( ).

It follows hence that each partial radial Hamilto-
nian in the nonsingular domain is defined uniquely,

(Z, j, s) =  (Z, j, s). Here, subscript “1” is used as
the symbol of the nonsingular domain (subscripts “2,”
“3,” and “4” together with other corresponding indi-
ces will refer to certain subdomains of the singular
domain).

In other words, initial symmetric operator (Z, j,
s) is an essentially s.a. operator because its defect indi-
ces are (0, 0), and the domain of operator (Z, j, s) is

the natural domain for (Z, j, s),  =

( ).

Let us perform spectral analysis of s.a. operator
(Z, j, s). We construct the Green function of this

operator:

For the doublet determining the guiding func-
tional, we choose real entire doublet U1(ρ; W) =
F1(ρ; W). As in the massive case, we can show that this
guiding functional is simple (see [12]). Derivative
σ'(E) of the spectral function is connected with the
Green function and simple guiding functional
U1(ρ; W) by relation

where c is an arbitrary point in interval (0; ∞).
The case of half-integer values of parameter γ =

/2,  ∈ , requires additional investigation because
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doublet F2(ρ; W) has a singularity of form Γ(–2γ) at
point γ = /2,

where function (W) is a polynomial in W with real
coefficients:

In the neighborhood  – 1 < 2γ <  + 1,  ∈ , of
point γ = /2, doublet F2(ρ; W) can be represented as

(20)

where doublet (ρ; W) is real entire, has a finite limit
for γ → /2, and satisfies radial equations (11). Rela-
tion (20) implies that

for ρ → 0.
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independent, Wr(F1, ) = –2γ/g ≠ 0, in neighbor-
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F3(ρ, W) permits expansion

Then, for  – 1 < 2γ <  + 1, we have
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At the point where ω(E + i0) differs from zero, the
derivative of the spectral function gas form

Since function ω(E) is nonzero for all E, continu-
ous on (–∞, 0) ∪ (0; ∞), and assumed complex val-
ues, the values of E ∈ (–∞, ∞) are points of the con-
tinuous spectrum of operator (Z, j, s). At these points

of the spectrum, function (E) is positive, (E) =

(E) > 0, where Q1(E) =  is the normalization
factor for the corresponding (generalized) eigenfunc-
tion U1(ρ; E) of the continuum.

Therefore, the spectrum of each partial radial
Hamiltonian (Z, j, s) in the nonsingular domain is
simple (nondegenerate) and consists of only the con-
tinuous spectrum,

Orthonormal (generalized) eigenfunctions U1E(ρ),
|E| ≥ 0, of the continuum, which correspond to partial
radial Hamiltonians (Z, j, s), form a complete ortho-
normal system in space ( ) in the sense of inver-
sion formulas (see [12]) and have form

(21)

5.2. Subcritical Domain

In the subcritical domain of charge variation,
Zs(j) < Z < Zc(j), relation 0 <  = γ < 1/2 holds. Here,
estimate (19) for integrals (18) remains valid. Since
functions u1(ρ) ~ ργ and u2(ρ) ~ ρ–γ are quadratically
integrable at the origin for γ < 1/2, we can write for
doublets F ∈ ( )

(22)

It follows hence that the asymmetry form is a non-
trivial anti-Hermitian quadratic form in the coeffi-
cients of asymptotics (22):
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This means that the deficiency indices of operator
(Z, j, s) are (1, 1), and there exists a family of s.a.

extensions (Z, j, s) of this operator, which are
parameterized by parameter ν ∈ [–π/2, π/2], –π/2 ~
π/2, and are characterized by the following s.a.
boundary conditions at the origin,

(23)

where c is an arbitrary complex number. Therefore,
domain  of Hamiltonian (Z, j, s) has form

Let us now perform the spectral analysis of s.a.
operator (Z, j, s). As the doublet determining the
simple guiding functional, we choose real entire dou-
blet

Let us construct the corresponding Green func-
tion:

and write doublet F3(ρ; W) in form
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Function ω2(E) is continuous, differs from zero,
and ω2, ν(E + i0) = ω2, ν(E). This gives the following
expression for the derivative of the spectral function:

Function (E) is continuous and, hence, the
spectrum of operator (Z, j, s) is continuous and
simple,

Ultimately, normalized (generalized) eigenfunc-
tions U2, ν(ρ) corresponding to the continuum and
defined by expressions

(24)

form a complete orthonormal system in space ( )
in the sense of inversion formulas.

5.3. Critical Domain
The critical domain is defined by critical curve Z =

Zc(j), on which g = gc(j) and  = γ = 0. It should be
noted that physical values of pairs j (half-integer) and
Z (integer) in this domain lie on the critical curve for
very special values of the fine structure constant αF/
in graphene, αF/  = |j|/Z. In particular, if αF/  is an
irrational number, none of physical pairs (j, Z) lies on
the critical curve.

In this domain, the asymptotic behavior of dou-
blets F ∈ ( ) is specified by formulas (17) with
account for the fact that

for γ = 0, ρ → 0:

This leads to the following expression for the sym-
metry form:

Consequently, in this domain, there also exists a
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The spectral analysis of operators (Z, j, s) is per-
formed analogously to the case of the subcritical
domain, and we write here only final results. As a dou-
blet determining a simple guiding functional, we
choose quantity

which is real entire in W and satisfies s.a. asymptotic
boundary conditions (25). The Green function of
operator (Z, j, s) is given by

This gives

Derivative (E) of this spectral function has form

Basis function ω3, ν(E) differs from zero for all E, is
continuous, and takes complex values. Consequently,

( − − πω = − = 
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The simple spectrum of Hamiltonian (Z, j, s) is
given by

Normalized (generalized) eigenfunctions U3, ν(ρ)
corresponding to the continuous spectrum have form

(26)

and form a complete orthonormal system in space
( ) in the sense of the inversion formulas.

5.4. Overcritical Domain
The overcritical domain is determined by condi-

tions Z > Zc(j) and  = iσ, where σ =  > 0.
In this domain, the asymptotic behavior of doublets
F ∈ ( ) is defined by expression (17), where
I1(ρ) = O(ρ1/2) and I2(ρ) = O(ρ1/2) for ρ → 0:

For the asymmetry form, we get

In this domain, we are dealing again with a one-
parametric family of s.a. extensions (Z, j, s), ν ∈
[‒π/2, π/2], –π/2 ~ π/2, which are specified by
asymptotic s.a. boundary conditions:

(27)

It follows hence that domain  of Hamilto-

nian (Z, j, s) has form

Spectral analysis of operators (Z, j, s) is per-
formed analogously to the previous cases; we will write
here only final results. For the doublet determining
the simple guiding functional, we choose

which is real entire in W and satisfies s.a. asymptotic
boundary conditions (27). The Green function of
operator (Z, j, s) is defined as
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which gives

Derivative (E) of the spectral function has form

Basis function ω4, ν(E) differs from zero, is contin-
uous, and takes complex values. Then

The spectrum of Hamiltonian (Z, j, s) is simple
and is given by

Normalized (generalized) eigenfunctions U4, ν(ρ)
corresponding to the continuous spectrum have form

(28)

These functions form a complete orthonormal sys-
tem in space ( ) in the sense of inversion formulas.

6. SELF-ADJOINT TOTAL HAMILTONIANS
In Sections 5.1–5.4, we have constructed all s.a.

partial radial Hamiltonians (Z, j, s) for all values of
charge Z as s.a. extensions of initial symmetric opera-
tors (Z, j, s) for any values of j and s and have ana-
lyzed spectral problems for these Hamiltonians.
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We have shown that in the singular domain of vari-
ation of the impurity charge, s.a. partial radial Hamil-
tonians (Z, j, s) as s.a. extensions of initial symmetric
operators (Z, j, s) are not defined unambiguously
for each triple of parameters Z, j, s. Since deficiency
indices m+ and m– of each symmetric operator

(Z, j, s) equal (1, 1) and, hence, there exists a one-
parametric family of extensions, such a family is
parameterized by parameter ν ∈ [–π/2, π/2], –π/2 ~
π/2. Partial radial Hamiltonians with identical values
of Z, j, s, but with different values of ν are associated

with the same differential expression (Z, j, s), but dif-
fer in their domains, which are the subsets of natural

domain ( ) for (Z, j, s) and are specified by
certain asymptotic boundary conditions at the origin,
which contain explicitly parameter ν.

Like in the “massive” case [10] and in the 3D Cou-
lomb problem [12], the singular domain is divided into
three subsets differing in the form of asymptotic s.a.
boundary conditions at the origin. In all three subdo-
mains, for each operator , there exists a simple
guiding functional. It follows hence that the spectrum
of operator  is simple (nondegenerate in the termi-
nology adopted in physics). In this case, the main
instrument of spectral analysis is spectral function
σk,ν(E) and its (generalized) derivative (E), where
E, E ∈ , is a real-valued variable.

Expression (9) makes it possible to reconstruct all
s.a. operators  associated with differential expres-
sion (3) for any value of parameter g and to describe
the solution of corresponding spectral problems for all
Hamiltonians .

Let us introduce, following [10], the sets of charge
values for which the spectral problem is described sim-
ilarly. These sets are defined by functions gc(k) and
gs(k), which take the following values at characteristic
points k = l + 1/2, l ∈ :

and satisfy the following inequalities:

(29)

We introduce intervals Δ(k):
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As follows from inequalities (29), each interval
Δ(k) can be represented in form Δ(k) = ∪i = 1, 2, 3Δi(k),
where

In accordance with this decomposition, we define
three sets Gi = (k), i = 1, 2, 3, and variations of
coupling parameters g such that any value of g >
gc(±1/2) = 1/2 can be put in correspondence with a
pair of two integers, k and i = 1, 2, 3: g ⇒ (k, i), such
that g ∈ Gi. As follows from the results of Sections 5.1
and 5.2, we obtain the following classification:

(30)

We can now describe the spectral problem for all
s.a. Dirac Hamiltonians for all values of g. It should be
noted that inequality g > gs(±1/2) = 0 and (9) lead to
the following important fact: total s.a. Dirac Hamilto-
nian  is not defined unambiguously for each charge
Z = ( )/αF.

Let us consider eigenvectors Ψsj(r) for s.a. Dirac
Hamiltonian , which satisfy the following set of
equations (see Section 3):

and have form Ψsj(r) = VsjUE(ρ) (see relation (6)).
For any coupling constant g, the energy spectrum

of any s.a. Dirac Hamiltonian  consists of a contin-

uum occupying axis (–∞, ∞). All doublets UE(ρ)
depend on extension parameters, quantum numbers j,
parameter s, and coupling constant g in accordance
with relations (30). It should be noted that the exten-
sion parameters depend on quantum numbers j as well
as on parameter s.

7. LOCAL DENSITY OF STATES
The local density of states per unit surface area in

graphene is defined as

(31)

(see [8]). Quantity N(ρ; E)dE has the meaning of the
probability of finding a quasiparticle on an elementary
surface area of graphene at a given point (φ, ρ) in the
energy range from E to E + dE. It should be noted that
there exists another definition of the local density of
states in graphene, which is based on the calculation of
the imaginary part of the Green function [18]. Substi-
tuting expression (5) into (31), we get

where doublets UE(ρ) for different values of charge
g and angular momentum j are defined by expres-
sion (30). Equality (Z, j, s) = (Z, –j, –s) implies
that nj(ρ; E)|s = +1 = n–j(ρ; E)|s = –1. It can be seen from
this relation that sum nj(ρ; E) + n–j(ρ; E) is indepen-
dent of the choice of parameter s = ±1. Therefore, the
symmetry between the choice of two sublattices in
graphene in the behavior of the local density of
states (31) is preserved.

Let us first consider the case of small values of cou-
pling parameter g ∈ Δ(0). In this case, the local density
of states is determined only the noncritical and sub-
critical domains of charge variation:

(32)

where partial local density of states (ρ; E) corre-
sponds to the noncritical domain,

(33)

while (ρ; E) corresponds to partial Hamiltonian (Z, j, s) in the subcritical domain, which is parameter-
ized by parameter ν1 of the s.a. extension,
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(34)
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In the limit g → 0, quantity (ρ; E) can be
expressed in terms of the Bessel functions:

and the summation over j (disregarding the contribu-
tion (ρ; E) from the subcritical domain) leads to
the following expression for the free density of states of
quasiparticles in graphene:

(35)

Figure 1 shows the dependences of density of states
N0(ρ, ν1; E) on the quasiparticle energy for ρ = 1, g =
0.3. For low energies (E → 0), we have
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Fig. 1. Energy dependences of local density of states N0(ρ,
ν1; E) for ρ = 1, g = 0.3, and ν1 = 0, π/6. The blue line
describes the local density of states in zero field.
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1
extension is zero, the contribution from the subcritical
domain coincides with the contribution from the non-
critical domain,

and the density of states is determined by the noncrit-
ical domain alone,

If parameter ν1 differs from zero, the contribution
of terms

to local density of states N0(ρ, ν1; E) leads to the emer-
gence of local peaks even for small impurity charges
(see Figs. 1 and 2). Figure 2 shows the energy depen-
dences of quantity Nsubcr(ρ, ν1; E) for different values
of parameter ν1 for ρ = 1, g = 0.3. It can be seen that
function Nsubcr(ρ, ν1; E) has a clearly manifested local

ν
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Fig. 2. Energy dependences of contribution Nsubcr(ρ, ν1;
E) for ρ = 1, g = 0.3, and different values of s.a. extension
parameter ν1.
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Fig. 3. Energy dependences of local density of states N1(ρ,
ν2; E) for ρ = 1, g = 0.5, and ν2 = 0, π/6. The blue line
describes the local density of states in zero field.
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peak for various values of parameter ν1 differing from
zero.

In the vicinity of point E = 0, quantity Nsubcr(ρ, ν1;
E) has asymptotic form
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It follows hence that even for g → 0 and E → 0 for
ν1 ≠ 0, the contribution of the subcritical domain dif-
fers from expression (35) for the local density of states
of a free particle in the presence of divergence in g:

Nevertheless, for any value of parameter ν1, quan-
tity Nsubcr(ρ, ν1; E) for E → 0 behaves as |E|2γ to within
a factor, which agrees with the results obtained in [8].
Using representation (14), we can write the expression
for (ρ; E) in terms of the Coulomb functions (which
also agrees with the results obtained in [8]):

For coupling parameters g = gc(±1/2), we have the
contribution to the local density of states from the crit-
ical domain:

(36)

where (ρ; E) corresponds to partial Hamiltonian
(Z, j, s) in the critical domain, which is parameter-

ized by s.a. extension parameter ν2,
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The contribution from the critical domain for E → Figure 3 shows the dependences of density of states

0 diverges as the square of the logarithm:
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N1(ρ, ν2; E) on the quasiparticle energy for ρ = 1, g = 0.5.

For half-integer values of parameter g ∈ Δ3(k), g =
gc(k), k = 3/2, 5/2, …, the contribution to the local den-
sity of states comes from the subcritical and overcritical
YSICS  Vol. 132  No. 6  2021
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Fig. 4. Energy dependences of local density of states N2(ρ,
ν2, ν3; E) for ρ = 1, g = 3.5, and ν2 = ν3 = 0 and ν2 = π/4,
ν3 = π/3. The blue line describes the local density of states
in zero field.
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domains; therefore, this density of states is parameter-
ized by two s.a. extension parameters ν2 and ν3:

(37)
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where (ρ; E) corresponds to partial Hamiltonian
(Z, j, s) in the overcritical domain, which is param-

eterized by s.a. extension parameter ν3,
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It follows from expression (38) that a change in the

s.a. extension parameter leads to phase shift δj(ρ). Fig-
ure 4 shows the dependences of density of states N2(ρ,
ν2, ν3; E) on the quasiparticle energy for ρ = 1, g = 3.5.

Let us suppose that there exists a half-integer k >
1/2, such that g ∈ Δ1(k) = [gc(k), gs(k + 1)]. Then the
contribution to the density of states comes only from
the overcritical domain:
(39)

Figure 5 shows the dependences of density of states
N3(ρ, ν3; E) on the quasiparticle energy for ρ = 3,
g = 3.7.
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Fig. 5. Energy dependences of local density of states N3(ρ,
ν3; E) for ρ = 3, g = 3.7, and ν3 = 0, π/3. The blue line
describes the local density of states in zero field.
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Fig. 6. Energy dependences of local density of states N4(ρ,
ν1, ν3; E) for ρ = 3, g = 3.48 for ν1 = ν3 = 0 and ν1 = π/4,
ν3 = π/2. The blue line describes the local density of states
in zero field.
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If, however, there exists a half-integer k > 1/2 such
that g ∈ Δ2(k) = [gs(k + 1), gc(k + 1)], the local density
of states is parameterized by two s.a. extension param-
eters ν1 and ν3:

(40)

Figure 6 shows the dependences of density of states
N4(ρ, ν1, ν3; E) on the quasiparticle energy for ρ = 3
and g = 3.48.

It should be noted that for all values of impurity
charge Z, we observe the electron–hole symmetry
breaking: the local density of states behaves differently
for positive and negative energy values. The attractive
Coulomb potential of the impurity leads to a decrease
in the local density of states for negative (hole) values
of energy E < 0 relative to the states with positive
energy E > 0. This effect is manifested most strongly
near the impurity.

It should also be noted that because of exponential
factor exp(δπg) in expression (33), the contribution of
the nonsingular domain is suppressed exponentially
for negative energy values, and the main contribution
to local densities of states N3(ρ, ν3; E) and N4(ρ, ν1, ν3;
E) comes from a finite number of terms in

(ρ; E), which correspond to the overcritical
domain. Figure 7 shows the dependences of the con-
tributions from each domain separately for density of

ν
− +

> +

ν ν
+

<

ρ = ρ ν ν

= ρ + ρ

+ ρ + ρ





1

1 3

4 1 3

1 2,
( 1)

| | 1

2, 4,
1

| |

( ; ) ( , , ; )

( ; ) ( ; )

( ; ) ( ; ).

j k
j k

k j
j k

N E N E

n E n E

n E n E

ν
< 34,

| | jj k
n

JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
states N4(ρ, ν1, ν3; E) on the quasiparticle energy for
ρ = 3 and g = 3.48. It can be seen that the contribu-
tions from the nonsingular and subcritical domains are
strongly suppresses in the range of negative energies.

The contribution of the overcritical domain in
expressions (37), (39), and (40) leads to a much stron-
ger rearrangement of the density of states near impu-
rity than contribution (34) of the subcritical region for
small charges g ∈ Δ(0). In Figs. 3–5, the contribution
of the overcritical domain leads to the emergence of
resonances in the range of negative energies, which
decay with increasing distance from the impurity. With
increasing impurity charge Z, the number of resonances
increases, and they are shifted downwards on the energy
scale. The Dirac point can be treated as the point of
accumulation of an infinitely large number of reso-
nances [8, 19]. This is due to the fact that functions

(ρ; E) in the overcritical domain oscillate with log-
arithmically diverging frequency 2[σln|2E| – ν3] for
E → 0 for all values of s.a. extension parameter ν3.

8. CONCLUSIONS

It should be noted that the previous publication
[10] with the participation of the authors was devoted
to analysis of the spectra of massive quasiparticles in
graphene near a Coulomb impurity. This study is its
natural continuation. Here, we have considered the
case when the effective mass of quasiparticles in
graphene is zero and have shown that the structure of
the electron excitation spectra in this case is qualita-
tively different. In particular, we have constructed a
family of all possible s.a. Hamiltonians corresponding
to massless charge carriers in graphene with Coulomb
impurities, which are parameterized by extension
parameters, and have performed their spectral analy-

ν34,
jn
YSICS  Vol. 132  No. 6  2021
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Fig. 7. Contributions of the nonsingular, subcritical, and
overcritical domains to N4(ρ, ν1, ν3; E).
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sis. It is shown that the spectrum of s.a. partial Hamil-
tonian is continuous, spec (Z, j, s) = (–∞, ∞) in
contrast to the massive case, when both discrete and
continuous spectra exist.

We have calculated the generalized eigenfunctions
corresponding to s.a. partial Hamiltonians for any
impurity charge (see relations (30)). Namely, the nor-
malized (generalized) eigenfunctions are given by for-
mulas (21) for the nonsingular domain (g ≤ gs(j)), by

ĥ

JOURNAL OF EXPERIMENTAL AN
formula (24) for subcritical domain (gs(j) < g < gc(j)),
and by formula (26) for the critical domain (g = gc(j)),
and by formula (28) for the overcritical domain (g >
gc(j)). The resulting eigenfunctions proved to be signif-
icant for analysis of the local density of states (see for-
mulas (32), (36), (37), and (40)), which depends on
the s.a. extension parameters.

It should be noted that in [20], the s.a. Dirac Ham-
iltonians corresponding to massless charge carriers in
graphene with Coulomb centers were also considered
in combination with the Aharonov–Bohm field
(in the 2 + 1 dimensions) except for the critical region,
when Z = Zc(j). However, substantial peculiarities of
the given problem in undoped graphene were not
taken into account. For this reason, the radial Hamil-
tonians considered in [20] were parameterized in a
special manner, which does not allow one to identify
them with the corresponding Hamiltonians of the real
problem for graphene.
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