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Abstract—We present an overview of the microscopic theory of the Dzyaloshinskii–Moriya (DM) coupling
and related exchange-relativistic effects such as exchange anisotropy, electron-nuclear antisymmetric
supertransferred hyperfine interactions, antisymmetric magnetogyrotropic effects, and antisymmetric
magnetoelectric coupling in strongly correlated 3d compounds focusing on orthoferrites RFeO3 (R is a
rare-earth ion or yttrium Y). Most attention in the paper centers around the derivation of the
Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types of the (super)exchange
interaction and crystal field. Microscopically derived expression for the dependence of the Dzyaloshinskii
vector on the superexchange geometry allows one to find all the overt and hidden canting angles in ortho-
ferrites RFeO3 as well as corresponding contribution to magnetic anisotropy. Being based on the theoreti-
cal predictions regarding the sign of the Dzyaloshinskii vector we have predicted and study in detail a novel
magnetic phenomenon, weak ferrimagnetism in mixed weak ferromagnets with competing signs of the
Dzyaloshinskii vectors. The ligand NMR measurements in weak ferromagnets are shown to be an effective
tool to inspect the effects of DM coupling in an external magnetic field. Along with orthoferrites RFeO3
and weak ferrimagnets RFe1 – xCrxO3, although to a lesser extent, we address such typical weak ferromag-
nets as α-Fe2O3, FeBO3, and FeF3.
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1. INTRODUCTION
It is not often in the history of science that one

paper of an author opens up a novel field of theoretical
and experimental research. This is exactly what hap-
pened with the article by Igor Dzyaloshinskii [1],
devoted to the explanation of the phenomenon of
weak ferromagnetism.

More than a hundred years have passed after
Smith [2] found in 1916 a weak, or parasitic ferro-
magnetism in an “international family line” of differ-
ent natural hematite α-Fe2O3 single crystalline sam-
ples from Italy, Hungary, Brasil, and Russia
(Schabry, Ural Mountains, near Yekaterinburg) that
was assigned to ferromagnetic impurities. Later the
phenomenon was observed in many other materials,
in f luoride NiF2 with rutile structure, in the orthor-
hombic orthoferrites RFeO3 (where R is a rare-earth
element or Y), in rhombohedral antiferromagnets
MnCO3, NiCO3, CoCO3, and FeBO3. However, only
in 1954 Matarrese and Stout for NiF2 [3] and in 1956
Borovik-Romanov and Orlova for very pure synthe-

sized carbonates MnCO3 and CoCO3 [4] have firmly
established that weak ferromagnetism is observed in
chemically pure antiferromagnetic materials and
therefore it is an intrinsic property of some antiferro-
magnets, the connexion between the weak ferromag-
netism and any impurities or inhomogeneities seems
very unlikely. Furthermore, Borovik-Romanov and
Orlova assigned the uncompensated moment in
MnCO3 and CoCO3 to an overt canting of the two
magnetic sublattices in almost antiferromagnetic
matrix. The model of a canted antiferromagnet
became generally adopted model of the weak ferro-
magnet.

A theoretical explanation and first thermodynamic
theory for weak ferromagnetism in α-Fe2O3, MnCO3,
and CoCO3 was provided by Dzyaloshinskii (Dzia-
loshinskii, Dzyaloshinsky) [1] in 1957 on the basis of
symmetry considerations and Landau’s theory of
phase transitions of the second kind.
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Fig. 1. Superexchange geometry and the Dzyaloshinskii
vector.
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Free energy of the two-sublattice uniaxial weak fer-
romagnet such as α-Fe2O3, MnCO3, CoCO3, FeBO3
was shown to be written as follows

(1)

In this expression m1 and m2 are unit vectors in the
directions of the sublattice moments, M is the sublat-

tice magnetization, m = (m1 + m2) and l = (m1 – m2)

are the ferro- and antiferromagnetic vectors, respec-
tively, H0 is the applied field, HE is the exchange field,

(2)

is now called the Dzyaloshinskii interaction, HD > 0 is
the Dzyaloshinskii field. The anisotropy energy EA is

assumed to have the form: EA = HA/2M(  + ) =

2HA/2M(  + ), where HA is the anisotropy field.
The choice of sign for the anisotropy field HA assumes
that the c axis is a hard direction of magnetization. In
a general sense the Dzyaloshinskii interaction implies
the terms that are linear both on ferro- and antiferro-
magnetic vectors. For instance, in orthorhombic
orthoferrites and orthochromites the Dzyaloshinskii
interaction consists of the antisymmetric and sym-
metric terms

(3)

while for tetragonal f luorides NiF2 and CoF2 the
Dzyaloshinskii interaction consists of the only sym-
metric term. Despite Dzyaloshinskii supposed that
weak ferromagnetism is due to relativistic spin-lattice
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and magnetic dipole interaction, the theory was phe-
nomenological one and did not clarify the micro-
scopic nature of the Dzyaloshinskii interaction that
does result in the canting. Later on, in 1960, Moriya
[5] suggested a model microscopic theory of the
exchange-relativistic antisymmetric exchange interac-
tion to be a main contributing mechanism of weak fer-
romagnetism

(4)

now called Dzyaloshinskii–Moriya (DM) spin cou-
pling. Here, dmn is the axial Dzyaloshinskii vector.
Presently Keffer [6] proposed a simple phenomeno-
logical expression for the Dzyaloshinskii vector for
two magnetic ions Mi and Mj interacting by the super-
exchange mechanism via intermediate ligand O (see
Fig. 1):

(5)
where ri, j are unit radius vectors for O–Mi, j bonds with
presumably equal bond lengths. Later on Moskvin [7]
derived a microscopic formula for Dzyaloshinskii vec-
tor

(6)
where

(7)
with θij being the Mi–O–Mj bonding angle. The sign
of the scalar parameter dij(θ) can be addressed to be
the sign (sense) of the Dzyaloshinskii vector. The for-
mula (6) was shown to work only for S-type magnetic
ions with orbitally nondegenerate ground state, e.g. for
3d-ions with half-filled shells (3d5 or , , ).

It should be noted that sometimes instead of (6)
one may use another form of the structural factor for
the Dzyaloshinskii vector:

(8)

where R12 = R1 – R2, ρ12 = (R1 + R2).
Starting with the pioneering papers by

Dzyaloshinskii [1] and Moriya [5] the DM coupling
was extensively investigated in 60–80th in connection
with the weak ferromagnetism focusing on hematite
α-Fe2O3 and orthoferrites RFeO3 [8–11] (see, also
review articles [12, 13]). Typical values of the canting
angle αD turned out to be on the order of 0.001–0.01,
in particular, αD = 1.1 × 10–3 in α-Fe2O3 [14], (2.2–
2.9) × 10–3 in La2CuO4 [15], 5.5 × 10–3 in FeF3 [16],
1.1 × 10–2 in YFeO3 [17], 1.7 × 10–2 in FeBO3 [18] (see
Table 1).

Ozhogin et al. [19] in 1968 first raised the issue of
the sign of the Dzyaloshinskii vector, however, only in
1990 the reliable local information on the sign of the
Dzyaloshinskii vector, or to be exact, that of the
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Table 1. Main exchange and DM coupling parameters in orthoferrites compared with other weak ferromagnets (WFMs),
I is the exchange integral, αD is the canting angle. See text for detail

WFM RFeO, Å θ TN, K I, K (NFA) HE, T αD HD, T d(θ), K

YFeO3 2.001 (x2) 145° 640 36.6 640 1.1 × 10–2 14 3.2

α-Fe2O3 2.111 145° 948 54.2 870–920 1.1 × 10–3 1.9–2.2 2.3

FeBO3 2.028 126° 348 19.9 300 1.7 × 10–2 10 2.3

FeF3 1.914 153° 363 20.7 440 5.5 × 10–3 4.88 1.1
Dzyaloshinskii parameter d12, was first extracted from
the 19F ligand NMR (nuclear magnetic resonance)
data in weak ferromagnet FeF3 [20]. In 1977 we have
shown that the Dzyaloshinskii vectors can be of oppo-
site sign for different pairs of S-type ions [10] that
allowed us to uncover a novel magnetic phenomenon,
weak ferrimagnetism, and a novel class of magnetic
materials, weak ferrimagnets, which are systems such as
solid solutions YFe1 – xCrxO3 with competing signs of
the Dzyaloshinskii vectors and the very unusual con-
centration and temperature dependence of the mag-
netization [21]. The relation between Dzyaloshinskii
vector and the superexchange geometry (6) allowed us
to find numerically all the overt and hidden canting
angles in the rare-earth orthoferrites [9] that was
nicely confirmed in 57Fe NMR [22] and neutron dif-
fraction [23] measurements.

The stimulus to a renewed interest to the subject
was given by the cuprate problem, in particular, by the
weak ferromagnetism observed in the parent cuprate
La2CuO4 [15] and many other interesting effects for
the DM systems, in particular, the “field-induced
gap” phenomena [24]. At variance with typical 3D
systems such as orthoferrites, the cuprates are charac-
terized by a low-dimensionality, large diversity of Cu–
O–Cu bonds including corner- and edge-sharing, dif-
ferent ladder configurations, strong quantum effects
for s = 1/2 Cu2+ centers, and a particularly strong Cu–
O covalency resulting in a comparable magnitude of
hole charge/spin densities on copper and oxygen sites.
Several groups (see, e.g., [25–27]) developed the
microscopic model approach by Moriya for different
1D and 2D cuprates, making use of different perturba-
tion schemes, different types of low-symmetry crystal-
line field, different approaches to intra-atomic elec-
tron-electron repulsion. However, despite a rather
large number of publications and hot debates (see,
e.g., [28]) the problem of exchange-relativistic effects,
that is of antisymmetric exchange and related problem
of spin anisotropy in cuprates remains to be open (see,
e.g., [13, 29–31] for recent experimental data and dis-
cussion). Common shortcomings of current
approaches to DM coupling in 3d oxides concern a
problem of allocation of the Dzyaloshinskii vector and
respective “weak” (anti)ferromagnetic moments, and
full neglect of spin–orbital effects for “nonmagnetic”
oxygen O2– ions, which are usually believed to play
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
only indirect intervening role. From the other hand,
the oxygen 17O NMR-NQR studies of weak ferromag-
net La2CuO4 [32, 33] seem to evidence unconven-
tional local oxygen “weak-ferromagnetic” polariza-
tion whose origin cannot be explained in frames of
current models.

All the systems described above were somehow or
other connected with insulating weak ferromagnets
where DM coupling manifests itself in the canting of a
basic antiferromagnetic structure. However, DM cou-
pling can induce helimagnetic distortion of the ferro-
magnetic order as in cesium cupric chloride, CsCuCl3
to be a unique screw antiferroelectric crystal (see, e.g.,
[13] and references therein). In fact, it is known for a
long time that the DM coupling can produce long-
period magnetic spiral structures in ferromagnetic and
antiferromagnetic crystals lacking inversion symme-
try. This effect was suggested for metallic MnSi and
other crystals with B20 structure, and it has been care-
fully proved that the sign of the DM coupling, hence
the sign of the spin helix, is determined by the crystal
handedness.

Phenomenologically antisymmetric DM coupling
in a continual approximation gives rise to so-called
Lifshitz invariants, energy contributions linear in first
spatial derivatives of the magnetization m(r) [34]

(9)

(xl is a spatial coordinate). These chiral interactions
derived from the DM coupling stabilize localized vor-
tices and spatially modulated structures with a fixed
rotation sense of the magnetization [35]. In fact, these
are the only mechanism to induce nanosize skyrmion
structures in condensed matter. Despite a clear weak-
ness of the typical DM coupling as compared with
typical isotropic exchange interactions the DM cou-
pling can be a central ingredient in the stabilization of
complex magnetic textures.

The DM coupling contribution to a micromagnetic
free energy density F(r) is usually represented as fol-
lows

(10)
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520 MOSKVIN
where the Dzyaloshinskii vectors Di(m(r)) are consid-
ered generally to depend on magnetization direction
m(r) [36]. Within ab initio density functional theory
(DFT) methods, DM coupling is often computed by
adding spin–orbital interaction perturbatively to spi-
rals with finite wavevectors q and extracting Dj from
the (q-linear term in the dispersion E(q). However,
nearly exclusively, theoretical studies in this context
were in the past bound to pure spin models without
itineracy, leaving the impact of charge f luctuations
aside.

In recent years interest has shifted towards other
manifestation of the DM coupling, such as the mag-
netoelectric effect [37–39], where reliable theoretical
predictions have been lacking. All this stimulated the
critical revisit of many old approaches to the spin-
orbital effects in 3d oxides, starting from the choice of
proper perturbation scheme and effective spin Hamil-
tonian model, implied usually only indirect interven-
ing role played by “nonmagnetic” oxygen O2– ions.

In this paper we present an overview of the micro-
scopic theory of the DM coupling and other related
exchange-relativistic effects focusing on orthoferrites
RFeO3. The rest part of the paper is organized as fol-
lows. In Section 2 we shortly address main results of
the microscopic theory of the isotropic superexchange
interactions for so-called S-type ions focusing on the
angular dependence of the exchange integrals. Section
3 is devoted to microscopic theory of the DM cou-
pling. Starting with Moriya’s theory we arrive at a
more comprehensive derivation of the Dzyaloshinskii
vector for the S-type 3d-ions, its value, orientation,
and sense (sign) under different types of the
(super)exchange interaction and crystal field. Here we
consider the DM coupling with participation of rare-
earth ions. Theoretical predictions of this section are
compared in Section 4 with experimental data for the
overt and hidden canting, as well as magnetic anisot-
ropy in orthoferrites. In Section 5 we address uncon-
ventional properties of weak ferrimagnetism as a novel
type of magnetic ordering in systems with competing
signs of the Dzyaloshinskii vector, in particular, fea-
tures of the 4f–3d interaction in weak ferrimagnets
RFe1 – xCrxO3, and unconventional spin-reorientation
transitions in weak ferrimagnets. In Section 6 we dis-
cuss several experimental tools to examine the sign of
the Dzyaloshinskii vector, including μSR of positive
muons and ligand NMR in weak ferromagnets. Last
part of the article is devoted to related exchange-rela-
tivistic effects, in particular, to exchange-relativistic
two-ion anisotropy (Section 7), antisymmetric super-
transferred hyperfine interaction as electron-nuclear
counterpart of DM coupling (Section 8), antisymmet-
ric exchange-relativistic spin-other-orbit coupling
determining unconventional magnetooptics of weak
ferromagnets (Section 9), and antisymmetric
exchange-relativistic spin-dependent electric polar-
JOURNAL OF EXPERIMENTAL AN
ization (Section 10). A brief conclusion is made in
Section 11.

2. MICROSCOPIC THEORY 
OF THE ISOTROPIC SUPEREXCHANGE 

COUPLING
DM coupling is derived from the off-diagonal

(super)exchange coupling and does usually accom-
pany a conventional (diagonal) Heisenberg type iso-
tropic (superexchange coupling:

(11)

The modern microscopic theory of the
(super)exchange coupling had been elaborated by
many physicists starting with well-known papers by
P. Anderson [40], especially intensively in 1960–
1970th (see review articles [41]). Numerous papers
devoted to the problem pointed to existence of many
hardly estimated exchange mechanisms, seemingly
comparable in value, in particular, for superexchange
via intermediate ligand ion to be the most interesting
for strongly correlated systems such as 3d oxides.
Unfortunately, up to now we have no reliable estima-
tions of the exchange parameters, though from the
other hand we have no reliable experimental informa-
tion about their magnitudes. To that end, many efforts
were focused on the fundamental points such as
many-electron theory and orbital dependence [7, 42–
44], crystal-field effects [45], off-diagonal exchange
[46], exchange in excited states [47], angular depen-
dence of the superexchange coupling [7]. The irre-
ducible tensor operators (the Racah algebra) were
shown to be very instructive tool both for description
and analysis of the exchange coupling in the 3d- and
4f-systems [7, 42–45].

First poor man’s microscopic derivation for the
dependence of the superexchange integral on the
bonding angle (see Fig. 1) was performed by the
author in 1970 [7] under simplified assumptions. For
the S-ions with configuration 3d5 (Fe3+, Mn2+) the
angular dependence of the superexchange integral is

(12)

where parameters a, b, c depend on the cation–ligand
separation. Parameters a and c are related with the
contribution of the intermediate ligand 2p shell, while
the ∝cosθ12 term is related with the low-energy ligand
inter-configurational 2p → 3s excitations.

Later on the derivation had been generalized for the
3d ions in a strong cubic crystal field [11]. Orbitally
isotropic contribution to the exchange integral for pair
of 3d-ions with configurations  can be written as
follows

(13)
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Fig. 2. Dependence of the Fe3+–Fe3+, Cr3+–Cr3+,
Fe3+–Cr3+ exchange integrals on the superexchange bond
angle in orthoferrites-orthocromites [49].
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shells of ion 1 and 2, respectively:

(14)

Kinetic exchange contribution to partial exchange
parameters I(γiγj) related with the electron transfer to
partially filled shells can be written as follows [11, 45]

(15)

where tσσ > tπσ > tππ > tss are positive definite d–d trans-
fer integrals, U is a mean d–d transfer energy (correla-
tion energy). All the partial exchange integrals appear
to be positive or “antiferromagnetic”, irrespective of
the bonding angle value, though the combined effect
of the ss and σσ bonds ∝cosθ in J(egeg) yields a ferro-
magnetic contribution given bonding angles π/2 < θ <
π. It should be noted that the “large” ferromagnetic
potential contribution [48] has a similar angular
dependence [47].

Some predictions regarding the relative magnitude
of the J(γiγj) exchange parameters can be made using
the relation among different d–d transfer integrals as
follows

(16)
where λσ, λπ, λs are covalency parameters. The simpli-
fied kinetic exchange contribution (15) related with
the electron transfer to partially filled shells does not
account for intra-center correlations which are of a
particular importance for the contribution related with
the electron transfer to empty shells. For instance,
appropriate contributions related with the transfer to
empty eg subshell for the Cr3+–Cr3+ and Fe3+–Cr3+

exchange integrals are

(17)

where ΔE(35) is the energy separation between 3Eg and
5Eg terms for eg configuration (Cr2+ ion). Obviously
these contributions have a ferromagnetic sign. Fur-
thermore, the exchange integral J(CrCr) can change
sign at θ = θcr:
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Microscopically derived angular dependence of the
superexchange integrals does nicely describe the
experimental data for exchange integrals J(FeFe),
J(CrCr), and J(FeCr) in orthoferrites, orthochro-
mites, and orthoferrites-orthochromites [49] (see
Fig. 2). The fitting allows us to predict the sign change
for J(CrCr) and J(FeCr) at θ12 ≈ 133° and 170°,
respectively. In other words, the Cr3+–O2––Cr3+

(Fe3+–O2––Cr3+) superexchange coupling becomes
ferromagnetic at θ12 ≤ 133° (θ12 ≥ 170°). However, it
should be noted that too narrow (141°–156°) range of
the superexchange bonding angles we used for the fit-
ting with assumption of the same Fe(Cr)–O bond sep-
arations and mean superexchange bonding angles for
all the systems gives rise to a sizeable parameter’s
uncertainty, in particular, for J(FeFe) and J(FeCr). In
addition it is necessary to note a large uncertainty
regarding what is here called the “experimental” value
of the exchange integral. The fact is that the “experi-
mental” exchange integrals we have just used above
are calculated using simple MFA (mean-field approx-
imation) relation

(19)

however, this relation yields the exchange integrals
(J = 36.8 K in YFeO3) that can be one and a half or
even twice less than the values obtained by other
methods [11, 50, 51]. Most recent precise experimen-
tal data yield for YFeO3 Jc = 58.2 K, Jab = 53.6 K [52]
or Jc = Jab = 51.5 K [53].
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Above we addressed only typically antiferromag-
netic kinetic (super)exchange contribution as a result
of the second order perturbation theory. However,
actually this contribution does compete with typically
ferromagnetic potential (super)exchange contribu-
tion, or Heisenberg exchange, which is a result of the
first order perturbation theory. The most important
contribution to the potential superexchange can be
related with the intra-atomic ferromagnetic Hund
exchange interaction of unpaired electrons on orthog-
onal ligand orbitals hybridized with the d-orbitals of
the two nearest magnetic cations.

Strong dependence of the d–d superexchange inte-
grals on the cation–ligand–cation separation is usu-
ally described by the Bloch’s rule [54]:

(20)

3. MICROSCOPIC THEORY
OF THE DM COUPLING

3.1. Moriya’s Theory
First microscopic theory of weak ferromagnetism,

or theory of anisotropic superexchange interaction was
provided by Moriya [5] who extended the Anderson
theory of superexchange to include spin–orbital cou-

pling Vso = (li ⋅ si). Moriya started with the one-
electron Hamiltonian for d-electrons as follows

(21)

where

(22)

is a spin–orbital correction to transfer integral. Then
Moriya did calculate the generalized Anderson
kinetic exchange that contains both conventional
isotropic exchange and anisotropic symmetric and
antisymmetric terms, that is quasidipole anisotropy
and DM coupling, respectively. The expression for
the Dzyaloshinskii vector

(23)

has been obtained by Moriya assuming orbitally non-
degenerate ground states m and m' on sites f and f '
respectively. It is worth noting that the spin-operator
form of the DM coupling follows from the relation:

(24)
Moriya found the symmetry constraints on the ori-

entation of the Dzyaloshinskii vector dij. Let two ions
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1 and 2 are located at the points A and B, respectively,
with C point bisecting the AB line:

(1) When C is a center of inversion: D = 0.
(2) When a mirror plane ⊥AB passes through C,

D || mirror plane or D ⊥ AB.
(3) When there is a mirror plane including A and B,

D ⊥ mirror plane.
(4) When a twofold rotation axis ⊥AB passes

through C, D ⊥ twofold axis.
(5) When there is an n-fold axis (n ≥ 2) along AB,

D || AB.
Despite its seeming simplicity the operator form of

the DM coupling (4) raises some questions and doubts.
First, at variance with the scalar product (S1 ⋅ S2) the
vector product of the spin operators [S1 × S2] changes
the spin multiplicity, that is the net spin S12 = S1 + S2,
that underscores the need for quantum description.
Spin nondiagonality of the DM coupling implies very
unusual features of the D-vector somewhat resembling
vector orbital operator whose transformational prop-
erties cannot be isolated from the lattice [55]. It seems
the D-vector does not transform as a vector at all.

Another issue that causes some concern is the
structure and location of the D vector and correspond-
ing spin canting. Obviously, the D12 vector should be
related in one or another way to spin–orbital contribu-
tions localized on sites 1 and 2, respectively. These
components may differ in their magnitude and direc-
tion, while the operator form (4) implies some averag-
ing both for D12 vector and spin canting between the
two sites.

Moriya did not take into account the effects of the
crystal field symmetry and strength and did not specify
the character of the (super)exchange coupling, that, as
we’ll see below, can crucially affect the direction and
value of the Dzyaloshinskii vector up to its vanishing.
Furthermore, he made use of a very simplified form
(22) of the spin–orbital perturbation correction to the
transfer integral (see Exp. (2.5) in [5]). The fact is that
the structure of the charge transfer matrix elements
implies the involvement of several different on-site
configurations (tkn ∝ N1 – 1N2 + 1| |N1N2). Hence,
the perturbation correction has to be more compli-
cated than (22), at least, it should involve the spin-
orbital matrix elements (and excitation energies!) for
one- and two-particle configurations. As a result, it
does invalidate the author’s conclusion about the
equivalence of the two perturbation schemes, based on
the VSO corrections to the transfer integral and to the
exchange coupling, respectively. Another limitation of
the Moriya’s theory is related to a full neglect of the
ligand spin–orbital contribution to DM coupling.
Despite these shortcomings the Moriya’s estimation
for the ratio between the magnitudes of the
Dzyaloshinskii vector d = |d| and isotropic exchange J:
d/J ≈ Δg/g, where g is the gyromagnetic ratio, Δg is its
deviation from the free-electron value, respectively, in

Ĥ
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Table 2. Wave functions and energies for the 4T1g terms for Fe3+ ion in orthoferrites

Wave function Energy, cm–1

|4T1g(41) = 0.988|  – 0.123|  + 0.088|  E(41) = 0.96 × 104

|4T1g(32) = 0.058|  + 0.844|  – 0.534|  E(32) = 2.96 × 104

|4T1g(23) = –0.140|  – 0.522|  + 0.841|  E(23) = 3.69 × 104

4 14
2 1g g gt e T 3 24

2 1g g gt e T 2 34
2 1g g gt e T

4 14
2 1g g gt e T 3 24

2 1g g gt e T 2 34
2 1g g gt e T

4 14
2 1g g gt e T 3 24

2 1g g gt e T 2 34
2 1g g gt e T
some cases may be helpful, however, only for a very
rough estimation.

3.2. Microscopic Theory of the DM Coupling: 
Superexchange Interaction of the S-Ions

The first microscopic theory of the DM coupling
for the superexchange bond M1–O–M2 proposed by
the author [7] (see also [10, 11, 56]) assumed the inter-
action of “free” ions with the ground 6S state of the 3d5

configuration (Mn2+, Fe3+), interacting through an
intermediate anion of the O2– type. Final expression
for the Dzyaloshinskii vector was obtained as follows

(25)
with

(26)
where the first and the second terms are determined by
the superexchange mechanisms related with the ligand
inter-configurational 2p → 3s excitations and intra-
configurational 2p–2p effects, respectively. It should
be noted that given θ = θcr, where

(27)
the Dzyaloshinskii vector changes its sign.

However, later it was shown [10, 11, 56] that the
correct theory of the Dzyaloshinskii interaction even
for S-type ions should take into account the crystal
field effects.

As the most illustrative example we consider a pair
of 3d5 ions such as Fe3+, or Mn2+ with the ground state
6S in an intermediate octahedral crystal field which
does split the 2S + 1L terms into crystal 2S + 1LΓ terms
and mix the crystal terms with the same octahedral
symmetry, that is with the same Γ's [57]. Spin–orbital
coupling does mix the 6S ground state with the 4PT1g

term, however the 4PT1g term has been mixed with
other 4T1g terms, 4FT1g and 4GT1g. Namely the latter
effect appears to be a decisive factor for appearance of
the DM coupling. The |4(L)T1g wave functions can be
easily calculated by a standard technique [57] as fol-
lows [11]:

= θ ×12 12 12 1 2( )[ ],dd r r

θ = + θ12 1 10 20 2 10 20 12( ) ( , ) ( , )cos ,d d R R d R R

θ = −cr 1 2cos /d d

 =  −  + 1 1 1 1|4( ) 0.679|4 0.604|4 0.418|4 ;g g g gP T PT FT GT

 =  +  + 1 1 1 1|4( ) 0.387|4 0.777|4 0.495|4 ;g g g gF T PT FT GT
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(28)

given the crystal field and intra-atomic correlation
parameters [57] typical for orthoferrites [58]: 10Dq =
12200 cm–1; B = 700 cm–1; C = 2600 cm–1. We see that
due to the crystal-field mixing effect all the three crys-
tal terms 4PT1g, 4FT1g, and 4CT1g will contribute to the
DM coupling. Furthermore, the overall nonzero con-
tribution will be determined by the 4P–4G mixing [56].
However, it is more appropriate to consider the inter-
action of 3d ions in a strong crystal field scheme.
Hereafter we address the DM coupling for the S-type
magnetic 3d ions with orbitally nondegenerate high-
spin ground state in a strong cubic crystal field, that is
for the 3d ions with half-filled shells , ,  and
ground states 4A2g, 6A1g, 3A2g, respectively [10, 11, 56].
In particular, for the 4T1g terms of the 3d5 ion in the
strong cubic crystal field approximation instead of
expressions (28) we arrive at the wave functions of the

 configurations as shown in Table 2.
Making use of expressions for spin–orbital cou-

pling VSO and main kinetic contribution to the super-
exchange parameters, that define DM coupling after
routine algebra we have found that the DM coupling
can be written in a standard form (25), where d12 can
be written as follows [10, 11, 56]

(29)

where the X and Y factors do reflect the exchange-rel-
ativistic structure of the second-order perturbation
theory and details of the electron configuration for
S-type ion. The exchange factors X are

(30)

where ,  are effective g-factors for eg, t2g sub-
shells, respectively, tσσ > tπσ > tππ > tss are positive defi-
nite d–d transfer integrals, U is a d–d transfer energy
(correlation energy). The general form of the dimen-
sionless factors Y determined by spin–orbital con-
stants and excitation energies is more complicated
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Table 3. Expressions for the X and Y parameters that define the magnitude and the sign of the Dzyaloshinskii vector in pairs
of the S-type 3d-ions with local octahedral symmetry. Signs for Xi correspond to the bonding angle θ > θcr

Ground state 
configuration X SignX Y SignY

Excited state 
configuration

3d3( ): 4A2g 
V2+, Cr3+, Mn4+

– tππtσπcosθ
+

 + 
+

3d5( ): 6A1g 
Mn2+, Fe3+

– (tππtσπcosθ – tπσ(tss + tσσcosθ))
–

–  + 
– , 

3d8( ): 3A2g 
Ni2+, Cu3+

tπσ(tss + tσσcosθ)
–

 + 
+

3
2gt 1

3U
ξ 
Δ


4
2

32 1
3 3

g

d

TE



Δ


2
2

2

gTE

2 1
2g gt e

3 2
2g gt e 1

5U
ξ 
Δ


4
1

36 1
(41)5 3

g

d

TE



Δ


4
1

1
(23)

gTE

4 1
2g gt e 2 3

2g gt e

6 2
2g gt e 1

2U
ξ 
Δ


3
2

33 1
2 3

g

d

TE



Δ


1
2

1

gTE

5 3
2g gt e
(see, e.g., [56]). The both factors X and Y are pre-
sented in Table 3 for S-type 3d-ions, where ξ3d is the
spin–orbital parameter, Δ  is the energy of the
excited 2S + 1Γ crystal term interacting with the ground
state due to VSO.

The signs for X and Y factors in Table 3 are pre-
dicted for rather large superexchange bonding angles
|cosθ12| > tss/tσσ which are typical for many 3d com-
pounds such as oxides and a relation Δ (41) <

Δ (32) which is typical for high-spin 3d5 configu-

rations. Excited configuration  does not contrib-
ute to the DM coupling for 3d5 ions.

It is worth noting that earlier we have detected and
corrected a casual and unintentional error in sign of
the Xi parameters having made both in our earlier
papers [10, 11] and recent paper [12]. Hereafter we
present correct signs for Xi in (30) and Table 3 [56].

Rather simple expressions for the factors Xi and Yi
do not take into account the mixing/interaction effects
for the 2S + 1Γ terms with the same symmetry and the
contribution of empty subshells to the exchange cou-
pling (see [11]). Nevertheless, the data in Table 3 allow
us to evaluate both the numerical value and sign of the
d12 parameters.

It should be noted that for critical angle θcr, when
the Dzyaloshinskii vector changes its sign we have

cosθcr = –d1/d2 =  for d8–d8 pairs and cosθcr =

‒d1/d2 =  for d5–d5 pairs. Making use of dif-

ferent experimental data for covalency parameters

(see, e.g., [59]) we arrive at d1/d2 ~  –  and θcr ≈

100°–110° for Fe3+–Fe3+ pairs in oxides.

+ Γ2 1SE

4
1gT

E

4
1gTE

3 3
2g gt e

σ

λ
λ

2

2
s

σ π

λ
λ − λ

2

2 2
s

1
5

1
3
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Relation among different X’s given the superex-
change geometry and covalency parameters typical for
orthoferrites and orthochromites [11] is

(31)

however, it should be underlined its sensitivity both to
superexchange geometry and covalency parameters.
Simple comparison of the exchange parameters X (see
(30) and Table 3) with exchange parameters I(γiγj) (15)
evidences their close magnitudes. Furthermore, the
relation (16) allows us to maintain more definite cor-
respondence.

Given typical values of the cubic crystal field
parameter 10Dq ≈ 1.5 eV we arrive at a relation among
different Y’s [11]

(32)

with  ≈ 7.0 × 10–2,  ≈ –2.5 × 10–2,  ≈ 1.5 × 10–2.
The greatest value of the d12 factor is predicted for

d8–d8 pairs, while for d5–d5 pairs one expects a much
less (may be one order of magnitude) value. The d12
factor for d3–d3 pairs is predicted to be somewhat
above the value for d5–d5 pairs. For different pairs:
d12(d3 – d5) ≈ – d12(d3 – d3); d12(d8 – d5) ≈ d12(d5 –d5);
d12(d3 – d8) ≥ d12(d3 – d3). Puzzlingly, that despite
strong isotropic exchange coupling for d5 – d5 and d5 –
d8 pairs, the DM coupling for these pairs is expected to
be the least one among the S-type pairs. For d5 – d5

pairs, in particular, Fe3+–Fe3+ we have two compen-
sation effects. First, the σ-bonding contribution to the
X parameter is partially compensated by the π-bond-
ing contribution, second, the contribution of the 4T1g

term of the  configuration is partially compen-

sated by the contribution of the 4T1g term of the ,
configuration.

Theoretical predictions of the corrected sign of the
Dzyaloshinskii vector in pairs of the S-type 3d-ions
with local octahedral symmetry (the sign rules) are

≥ >8 3 5| | | | | |,d d dX X X

≥ >8 5 3| | | | | |d d dY Y Y

8dY 5dY 3dY

4 1
2g gt e

2 3
2g gt e
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Table 4. Theoretical predictions of the sign of the
Dzyaloshinskii vector in pairs of the S-type 3d-ions with
local octahedral symmetry and the bonding angle θ > θcr

3dn 3d3( ) 3d5( ) 3d8( )

3d3( ) + – +

3d5( ) – + +

3d8( ) + + –

3
2gt 3 2

2g gt e 6 2
2g gt e

3
2gt

3 2
2g gt e

6 2
2g gt e
presented in Table 4. The signs for d3 – d3, d5 – d5, and
d3 – d8 pairs turn out to be the same but opposite to
signs for d3 – d5 and d8–d8 pairs. In a similar way to
how different signs of the conventional exchange inte-
gral determine different (ferro-antiferro) magnetic
orders the different signs of the Dzyaloshinskii vectors
create a possibility of nonuniform (ferro-antiferro)
ordering of local weak (anti)ferromagnetic moments,
or local overt/hidden canting. Novel magnetic phe-
nomenon and novel class of magnetic materials, which
are systems such as solid solutions YFe1 – xCrxO3 with
competing signs of the Dzyaloshinskii vectors will be
addressed below (Section 5) in more detail.

3.3. DM Coupling in Trigonal Hematite α-Fe2O3 
and Borate FeBO3

Making use of our theory based on the bare ideal
octahedral symmetry of S-type ions to the classical
weak ferromagnet α-Fe2O3 we arrive at a little unex-
pected disappointment, as the theory does predict that
the contribution of the three equivalent Fe3+–O2––
Fe3+ superexchange paths for the two corner shared
Fe  octahedrons to the net Dzyaloshinskii vector
strictly turns into zero. Exactly the same result will be
obtained, if we consider the direct Fe3+–Fe3+

exchange in the system of two ideal Fe  octahedrons
bonded through the three common oxygen ions when
R12 || C3. Obviously, it is precisely this fact that caused
a tiny spin canting in hematite being an order of mag-
nitude smaller than, e.g., in orthoferrites RFeO3 or
borate FeBO3. So what was the real reason of weak fer-
romagnetism in α-Fe2O3 as “opening a new page of
weak ferromagnetism?” What is a microscopic origin
of nonzero Dzyaloshinskii vector which should be
directed along the C3 symmetry axis according Moriya
rules? First of all we should consider trigonal distor-
tions for the Fe  octahedrons which have a T2 sym-
metry and give rise to a mixing of the 4T1g terms with
4A2g and 4T2g terms. The best way to solve the problem
in principle is to proceed with a coordinate system
where Oz axis is directed along the C3 symmetry axis
rather than with the usually applied Oz || C4 geometry
[56]. Symmetry analysis shows that the axial distortion
along the Fe3+–Fe3+ bond can induce the DM cou-
pling with Dzyaloshinskii vector directed along the
bond, however, only for locally nonequivalent Fe3+

centers, otherwise we arrive at an exact compensation
of the contributions of the spin–orbital couplings on
sites 1 and 2 [56].

Trigonal hematite α-Fe2O3 has the same crystal

symmetry R c–  as weak ferromagnet FeBO3. Fur-
thermore, the borate can be transformed into hematite
by the Fe3+ ion substitution for B3+ with a displace-
ment of both “old” and “new” iron ions along trigonal

−9
6O

−9
6O

−9
6O

3 6
3dD
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axis. As a result we arrive at emergence of an additional
strong isotropic (super)exchange coupling of three-
corner-shared non-centrosymmetric FeO6 octahedra
with short Fe–O separations (1.942 Å) that deter-
mines very high Néel temperature TN = 948 K in
hematite as compared with TN = 348 K in borate.
However, the D3h symmetry of these exchange bonds
points to a distinct compensation of the two Fe-ion’s
contribution to Dzyaloshinskii vector. In other words,
weak ferromagnetism in hematite α-Fe2O3 is deter-
mined by the DM coupling for the same Fe–O–Fe
bonds as in borate FeBO3. However, the Fe–O sepa-
rations for these bonds in hematite (2.111 Å) are mark-
edly longer than in borate (2.028 Å) that points to a
significantly weaker DM coupling. Combination of
the weaker DM coupling and stronger isotropic
exchange in α-Fe2O3 as compared with FeBO3 does
explain the one order of magnitude difference in cant-
ing angles.

3.4. DM Coupling with Participation of Rare-Earth Ions
Spin–orbital interaction for the rare-earth ions

with valent 4f n configuration is diagonalized within
the (LS)J multiplets hence the conventional DM cou-
pling

(33)

(gm, n are the Lande factors) can arise for the f–f super-
exchange only due to a spin–orbital contribution on
intermediate ligands. Obviously, for the rare-earth-
3d-ion (super)exchange we have an additional contri-
bution of the 3d-ion spin–orbital interaction. The
rare-earth-3d-ion DM coupling R3+–O2––Fe3+ (R =
Nd, Gd)

(34)

has been theoretically and experimentally considered
in [60, 61].

Effective field at the R ion can be written as a sum
of ferro- and antiferromagnetic contributions:

>
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(35)

where α determines the contribution of the isotropic
f–d exchange, while tensor  does the contribution of
symmetric and antisymmetric anisotropic f–d inter-
actions. These interactions were studied in GdFeO3
[60], and the authors found that

(36)

(in Tesla). Quite unexpected, the antisymmetric anti-
ferromagnetic contribution Gx to effective field on
Gd3+ ion in Γ4 magnetic phase at T = 0 K, which is
determined by the f–d DM coupling appears to be the
leading one. Moreover, according to the data from
[61], in GdCrO3

(37)

that is the f–d DM coupling has value greater than in
the GdFeO3, however, with opposite sign, which is
consistent with the different sign of the factor Y for
Fe3+ and Cr3+ (see Table 3).

4. THEORETICAL PREDICTIONS AS 
COMPARED WITH EXPERIMENT

4.1. Dzyaloshinskii Interaction in Orthoferrites

Four Fe3+ ions occupy positions 4b in the orthor-
hombic elementary cell of orthoferrites RFeO3 (space
group Pbnm):

Classical basis vectors of magnetic structure for 3d
sub-lattice are defined as follows:

(38)

Here G describes the main antiferromagnetic compo-
nent, F gives the weak ferromagnetic moment (overt
canting), the weak antiferromagnetic components C
and A describe a canting without net magnetic
moment (hidden canting). Allowed spin configura-
tions for 3d-sublattice are denoted as Γ1 (Ax, Gy, Cz), Γ2
(Fx, Cy, Gz), Γ4(Gx, Ay, Fz), where the components
given in parentheses are the only ones different from
zero. It is worth noting that another labeling of the
Fe3+ positions than what was used here is found in the
literature (see, for example, [53, 62]), in which case
the basis vectors G, C, A may differ in sign.

Within simplest classical approximation the opera-
tor of symmetric and antisymmetric d–d exchange
interactions in orthoferrites
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(39)

can be written in terms of basis vectors as free energy
as follows (see, e.g., [11] and references therein)

(40)

where for the energy per ion

(41)

By minimizing the free energy under condition
F2 + G2 + C2 + A2 = 1 and F, C, A ≪ G we find

(42)

4.2. Overt and Hidden Canting in Orthoferrites

Figure 3 shows the intricate structure of the Fe3+–
O2––Fe3+ superexchange bondings in orthoferrites
that points to a complicated structural dependence of
the Dzyaloshinskii vectors. In Table 5 we present
structural factors [r1 × r2]x, y, z for the superexchange
coupling of the Fe3+ ion in position (1/2, 0, 0) with
nearest neighbors in orthoferrites with numerical val-
ues for YFeO3. It is easy to see that the weak ferromag-
netism in orthoferrites governed by the y-component
of the Dzyaloshinskii vector does actually make use of
only about one-third of its maximal value.

In 1975 we made use of simple formula for the
Dzyaloshinskii vector (6) and structural factors from
Table 5 to find a relation between crystallographic and
canted magnetic structures for four-sublattice’s ortho-
ferrites RFeO3 and orthochromites RCrO3 [9, 11] (see
Fig. 4), where main G-type antiferromagnetic order is
accompanied by both overt canting characterized by
ferromagnetic vector F (weak ferromagnetism!) and
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Fig. 3. Structure of the Fe3+–O2––Fe3+ superexchange
bonding in orthoferrites. Jab and Jc are nearest-neighbor
superexchange integrals, J' superexchange integral for
next-nearest-neighbors. 1, 2, 3, 4, are Fe3+ ions in four
nonequivalent positions. Reproduced from [53].
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two types of a hidden canting, A and C (weak antifer-
romagnetism!):

(43)

where a, b, c are unit cell parameters, x1, 2, y1, 2, z2 are
oxygen (OI,II) parameters, l is a mean cation–anion
separation. These relations imply an averaging on the
Fe3+–O2––Fe3+ bonds in ab plane and along c-axis. It
is worth noting that |Ax, y| > |Fx, z| > |Cy, z|.

First of all we arrive at a simple relation between
crystallographic parameters and magnetic moment of
the Fe-sublattice: in units of G g/cm3

(44)

where ρ and V are the unit cell density and volume,
respectively. The overt canting Fx, z can be calculated
through the ratio of the Dzyaloshinskii (HD) and
exchange (HE) fields as follows

(45)
If we know the Dzyaloshinskii field we can calcu-

late the d(θ) parameter in orthoferrites as follows

(46)

that yields |d(θ)| ≅ 3.2 K = 0.28 meV in YFeO3 given
HD = 140 kOe [17]. This value is in good agreement
with the data of recent experiments [52, 53] which
make it possible to obtain information on the
Dzyaloshinskii vectors based on measurements of the
spin-wave spectrum. It is worth noting that despite
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Table 5. The structural factors [r1 × r2]x, y, z for the superexcha
ical values for YFeO3, a, b, c are lattice parameters, l is a mea
the O(4c) and O(8d) positions, respectively

[r1 × r2]x [r1

2 –

4 ± –

( )−
=

1

2

1
2 0.20

2

y bc

l

1
22

x a
l

= ±2
2 0.31

2
z bc

l
2

22
z a

l

Fz ≈ 0.01 the d(θ) parameter is only one order of mag-
nitude smaller than the exchange integral in YFeO3.

Our results have stimulated experimental studies of
the hidden canting, or “weak antiferromagnetism” in
orthoferrites. As shown in Table 6 the theoretically
predicted relations between overt and hidden canting
nicely agree with the experimental data obtained for
different orthoferrites by NMR [22], neutron diffrac-
tion, measurement of the low-energy spin excitations
by inelastic neutron scattering and by absorption of
THz radiation [23, 52, 53, 63].

4.3. The DM Coupling and Effective Magnetic 
Anisotropy

Hereafter we demonstrate a contribution of the
DM coupling into effective magnetic anisotropy in
orthoferrites. The classical energies of the three spin
configurations in orthoferrites Γ1(Ax, Gy, Cz), Γ2(Fx, Cy,
YSICS  Vol. 132  No. 4  2021

nge coupled Fe1–O–Fe2,4 pairs in orthoferrites with numer-
n Fe–O separation, x1, y1, x2, y2, z2 are oxygen parameters for
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 = –0.55 0

 = –0.29
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=

2 2

2

1
2 0.41

2

y x ab

l



528 MOSKVIN

Fig. 4. Basic vectors of magnetic structure for 3d sublattice in orthoferrites RFeO3 and orthochromites RCrO3.
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Gz), and Γ4(Gx, Ay, Fz) given |Fx| = |Fz| = F, |Cy| = |Cz| =
C, |Ax| = |Az| = A can be written as follows [11]

(47)

(48)

(49)

with obvious relation  <  ≤ . The energies
allow us to find the constants of the in-plane magnetic
anisotropy Ean = k1cos2θ(ac, bc planes), Ean = k1cos2ϕ

(ab plane): k1(ac) = (  – ); k1(bc) = (  –

); k1(ab) = (  – ). Detailed analysis of dif-

ferent mechanisms of the magnetic anisotropy of the
orthoferrites [11, 64] points to a leading contribution
of the DM coupling. Indeed, for all the orthoferrites
RFeO3 this mechanism does predict a minimal energy
for Γ4 configuration which is actually realized as a
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Table 6. Hidden canting in orthoferrites

Orthoferrite Ay/Fz, theory [9] Ay/Fz

YFeO3 1.10 1.10 ± 0
1.23 ± 
1.1 ± 0

1.14
1.03

HoFeO3 1.16 0.85 ± 0
TmFeO3 1.10 1.25 ± 0
YbFeO3 1.11 1.22 ± 0
ground state for all the orthoferrites, if one neglects
the R–Fe interaction. Furthermore, predicted value
of the constant of the magnetic anisotropy in ac-plane
for YFeO3 k1(ac) = 2.0 × 105 erg/cm3 is close enough
to experimental value of 2.5 × 105 erg/cm3 [17]. Inter-
estingly, the model predicts a close energy for Γ1 and
Γ2 configurations so that |k1(bc)| is about one order of
magnitude less than |k1(ac)| and |k1(ab)| for most
orthoferrites [11, 64]. It means the anisotropy in bc-
plane will be determined by a competition of the DM
coupling with relatively weak contributors such as
magneto-dipole interaction and single-ion anisotropy.
It should be noted that the sign and value of the k1(bc)
is of a great importance for the determination of the
type of the domain walls for orthoferrites in their basic
Γ4 configuration (see, e.g., [65]).

5. WEAK FERRIMAGNETISM AS A NOVEL 
TYPE OF MAGNETIC ORDERING 

IN SYSTEMS WITH COMPETING SIGNS 
OF THE DZYALOSHINSKII VECTOR

First experimental studies of mixed orthoferrites-
orthochromites YFe1 – xCrxO3 [21] performed in Mos-
D THEORETICAL PHYSICS  Vol. 132  No. 4  2021

, exp Ay/Cy, theory [9] Ay/Cy, exp

.03 [22] 2.04 ?
0.2 [23]
.1 [63]

 [52]
 [53]
.10 [63] 2.00 ?
.05 [22] 1.83 ?
.05 [23] 1.79 2.0 ± 0.2 [22]
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Fig. 5. (a) Concentration dependence of the magnetization and Fe-, Cr-partial contributions in YFe0.5Cr0.5O3; (b) The MFA
phase diagram of weak ferrimagnet YFe1 – xCrxO3 given δ = –4; left and right arrows demonstrate the orientation and magnitude
of the magnetization for Fe- and Cr-sublattices, respectively. The outer and inner thin curves mark the compensation points for
the net and partial (Fe, Cr) magnetization, respectively. Experimental values of TN for single crystalline and polycrystalline sam-
ples are marked by light and dark circles, respectively. (c) Concentration dependence of the low-temperature magnetization in
YFe1 – xCrxO3: experimental data (circles) [21], the MFA calculations given δ = –2 and –4; (d) Temperature dependence of mag-
netization in YFe1 – xCrxO3: solid curves—experimental data for x = 0.38 (Kadomtseva et al., 1977 [66]—curve 1) and for x = 0.4
(Dasari et al., 2012 [71]—curve 2), dotted curve—the MFA calculation for x = 0.4 [71] given dFeCr = ‒0.39 K.
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cow State University did confirm theoretical predic-
tions regarding the signs of the Dzyaloshinskii vectors
and revealed the weak ferrimagnetic behavior due to a
competition of Fe–Fe, Cr–Cr, and Fe–Cr DM cou-
pling with antiparallel orientation of the mean weak
ferromagnetic moments of Fe and Cr subsystems in a
wide concentration range. In other words, we have
predicted a novel class of mixed 3d systems with com-
peting signs of the Dzyaloshinskii vector, so called
weak ferrimagnets. Transversal weak ferromagnetic
moment of the Cr3+ impurity ion in orthoferrite
YFeO3 can be evaluated as follows

(50)
where dimensionless parameter

(51)

does characterize a relative magnitude of the impu-
rity-matrix DM coupling. By comparing mCr with that
of the matrix value mFe = gμBSFeF we see that the weak
ferromagnetic moment for the Cr impurity is antipar-
allel to that of the Fe matrix even for positive but small
δ < 1/2. However, the effect is more pronounced for
negative δ, that is for different signs of dCrFe and dFeFe.

Results of a simple mean-field calculation pre-
sented in Figs. 5–7 show that the weak ferrimagnets
such as RFe1 – xCrxO3, Mn1 – xNixCO3, Fe1 – xCrxBO3
[21, 66–70] do reveal very nontrivial concentration
and temperature dependencies of magnetization, in
particular, the compensation point(s).

In Figs. 5a, 5b, 5c we do present the MFA “weak
ferromagnetic” phase diagram, concentration depen-

= μ δ −Cr B Cr(2 1) ,g Sm F

δ = CrFr FeFe

FeFe CrFe

d I
d I
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dence of the low-temperature net magnetization, and
the Fe, Cr partial contributions in YFe1 – xCrxO3 calcu-
lated at constant value of δ = –4. Comparison with
experimental data for the low-temperature net magne-
tization [21] and the MFA calculations with δ = –2
(Fig. 5c) points to a reasonably well agreement every-
where except x ~ 0.5, where δ parameter seems to be
closer to δ = –3. In Fig. 5d we compare first pioneering
experimental data for the temperature dependence of
magnetization m(T) in weak ferrimagnet YFe1 – xCrxO3
(x = 0.38) (Kadomtseva et al., 1978 [66]—curve 1)
with recent data for a close composition with x = 0.4
(Dasari et al., 2012 [71]—curve 2). It is worth noting
that recent MFA calculations by Dasari et al. [71]
given dFeCr = –0.39 K provide very nice description of
m(T) at x = 0.4. Note that the authors [71] found a
rather strong dependence of the dFeCr parameter on the
concentration x. The concentration and temperature
dependencies of magnetization in LuFe1 – xCrxO3 are
nicely described by a simple MFA model under the
assumption of constant sign magnetization given con-
stant value of δ = –1.5 (Figs. 6a, 6b [67]), which,
strictly speaking, did not exclude the possibility of an
alternative description of the dependence m(x) with
two points of concentration compensation of magne-
tization (see dotted line in Fig. 6a). Furthermore,
strictly speaking, the absence of compensation con-
centration points for low-temperature magnetization
m(x, T = 77 K) does not mean the absence of compen-
sation points at higher temperatures. Indeed, much
later, in 2016, Pomiro et al. [72] observed the sponta-
neous magnetization reversal in polycrystalline
LuFe0.5Cr0.5O3 below TN = 290 K at a compensation
YSICS  Vol. 132  No. 4  2021
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Fig. 6. (a) Concentration dependence of the low-temperature (T = 77 K) magnetization in LuFe1 – xCrxO3: experimental
data (circles) [67], the MFA calculations (solid curve) given δ = –1.5. (b) Temperature dependence of magnetization in
LuFe1 – xCrxO3: circles—experimental data [67] given x = 0.6 (1), 0.5 (2), 0.2 (3), 0.1 (4), 0.0 (5), solid curves—the MFA cal-
culations given δ = –1.5.
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temperature Tcomp = 224 K and Billoni et al. [73] have
performed more advanced classical Monte Carlo sim-
ulations for RFe1 – xCrxO3 with R = Y and Lu, compar-
ing the numerical simulations with experiments and
MFA calculations. In addition to the dependence
TN(x), this model is able to reproduce the magnetiza-
tion reversal (MR) observed experimentally in a field
cooling process for intermediate x values. At variance
with YFeO3 and YCrO3 which are weak ferromagnets
with main GxFz-type magnetic structure below TN, the
orthoferrites-orthochromites YFe1 – xCrxO3, which
referred as weak ferrimagnets, reveal full or partial
GxFz–GzFx type spin-reorientation in a wide range of
substitution. This unexpected behavior which is usu-
ally typical for orthoferrites with magnetic rare-earth
ions (Er, Tm, Dy, …) was attributed mainly to a strong
decrease of the DM contribution to magnetic anisot-
ropy in the ac-plane for x = 0.5–0.6 [74, 75]. In con-
trast to the yttrium system, the lutetium orthoferrite-
orthocromites LuFe1 – xCrxO3 (x = 0.0, 0.1, 0.2, 0.5,
0.6, and 1.0) reveal the main GxFz type magnetic
structure without signatures of the spontaneous spin-
reorientation transition. This difference can be
explained by the significantly larger contribution of
single-ion anisotropy to kac in LuFeO3 as compared to
YFeO3 [11, 76].

Let us turn to the features of other weak ferrimag-
nets. Figure 7b shows a calculated phase diagram of
the trigonal weak ferrimagnet Fe1 – xCrxBO3 [68].
Temperature-dependent magnetization studies from
4.2 to 600 K have been made for the solid solution sys-
tem Fe1 – xCrxBO3 where 0 ≤ x ≤ 95 [77]. A rapid
decrease is observed in the saturation magnetization
with increasing x at 4.2 K up to 0.40, after which a
broad compositional minimum is found up to x =
JOURNAL OF EXPERIMENTAL AN
0.60. Compositions in the range of 0.40 ≤ x ≤ 0.60 dis-
play unusual magnetization behavior as a function of
temperature in that maxima and minima are present in
the curves below the Curie temperatures. Figure 7b
shows a nice agreement between experimental data
[77] and our MFA calculations.

At variance with the d5–d3 (Fe–Cr) mixed systems
such as YFe1 – xCrxO3 or Fe1 – xCrxBO3 the manifesta-
tion of different DM couplings Fe–Fe, Cr–Cr, and
Fe–Cr in (Fe1 – xCrx)2O3 is all the more surprising
because of different magnetic structures of the end
compositions, α-Fe2O3 and Cr2O3 and emergence of a
nonzero DM coupling for the three-corner-shared
FeO6 and CrO6 octahedra, “forbidden” for Fe–Fe
and Cr–Cr bonding. All this makes magnetic proper-
ties of mixed compositions (Fe1 – xCrx)2O3 to be very
unusual [78].

Unlike the d5–d3 (Fe–Cr) mixed systems
YFe1 ‒ xCrxO3 or Fe1 – xCrxBO3, where the two concen-
tration compensation points do occur given rather large
dFeCr parameter, in the d5–d8 systems, the nickel and
fluorine substituted orthoferrites RFe1 – xNixFyO3 – y

[69] or Mn1 – xNixCO3 with Mn2+–Ni2+ pairs [70] we
have the only concentration compensation point irre-
spective of the dMnNi parameter. However, the charac-
ter of the concentration dependence of the weak fer-
rimagnetic moment m(x) depends strongly on its mag-
nitude. Given the increasing concentration the m(x) is
first rising or falling with x depending on whether
dMnNi greater than, or less than  = (1 +

dMnMn. Figure 7c does clearly demon-

strate this feature.
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Fig. 7. (a) The MFA simulation of the T–x-phase diagram of the weak ferro(ferri)magnet Fe1 – xCrxBO3 [68] given IFeFe =
IFeCr = –20.3 K, ICrCr = 2.0 K, arrows point to orientation of the net weak ferromagnetic moment. Curves 1, 2, 3 mark the com-
pensation points given dz(FeFe) = dz(CrCr) = 0.67 K, dz(FeCr) = –0.67 K (1), –0.75 K (2), –0.90 K (3), respectively. (b) The
MFA simulation of the temperature dependence of the net magnetization in Fe1 – xCrxBO3 [68] given dz(FeFe) = dz(CrCr) =
‒dz(FeCr) = 0.67 K at different compositions, the insert shows experimental data from [77] taken at external magnetic field 1 T.
(c) The MFA simulation of the concentration dependence of the low-temperature magnetization in Mn1 – xNixCO3 [70] given

dz(MnNi) > (MnNi) and dz(MnNi) < (MnNi), respectively.
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It should be noted that just recently Dmitrienko
et al. [79] have first discovered experimentally that in
accordance with our theory (see Table 4) the sign of
the Dzyaloshinskii vector in MnCO3 (d5–d5) coin-
cides with that one in FeBO3 (d5–d5), whereas NiCO3
(d8–d8) demonstrates the opposite sign.

5.1. Features of the 4f–3d Interaction
in Weak Ferrimagnets RFe1 – xCrxO3

It is undoubtedly of interest to investigate the influ-
ence of the weak ferrimagnetic ordering of the 3d-sub-
lattice on the behavior of the rare-earth subsystem in
mixed ferrites-chromites RFe1 – xCrxO3. The character
of polarization of the R-ions and its concentration and
temperature dependencies yield valuable information
not only on the state of the d-subsystem, but also on
the 4f–3d interaction mechanisms, primarily on the
relative roles of the ferro- and antiferromagnetic con-
tributions to the effective field at the R-ions [61, 75,
80, 81]. Of particular interest, in our opinion, is the
GdFe1 – xCrxO3 system with S-type 4f- and 3d-ions,
where it might seem that it is precisely the ferromag-
netic contribution due to the isotropic 4f–3d exchange
should play the decisive role in the polarization of the
Gd sublattice. At the same time, a detailed analysis of
the magnetic properties of GdFeO3 and GdCrO3 [60,
61] has quite unexpectedly revealed the substantial
role of the anisotropic exchange of the S-ions Gd3+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
with S-type ions Fe3+ and Cr3+ and accordingly of the
antiferromagnetic contribution to the polarization of
the Gd sublattices with the predominance of antisym-
metric term which is determined by the 4f–3d DM
coupling (see (36) and (37)).

Knowledge of the numerical values of the parame-
ters of isotropic and anisotropic 4f–3d interaction has
enabled us to calculate, within the framework of the
molecular-field theory, the concentration and tem-
perature dependencies of the average effective field Hz,
the magnetization of the Gd sublattice, and the total
magnetization of GdFe1 – xCrxO3 in the entire range of
concentrations x (see Fig. 8) [61]. The exchange inte-
grals and the DM coupling parameters in the d sublat-
tices were chosen equal to the corresponding values for
weak ferrimagnet YFe1 – xCrxO3. The concentration
dependence Hz(x) at T = 0 K has very unusual form
with two compensation points, at small and relatively
large concentrations of the Cr3+ ions. Whereas at x ≈
0.05 the compensation of the total magnetic moment
is still observed, at x = 0.10 the reversal of the sign of
Hz leads to a hyperbolic increase of m(T) in the low-
temperature region. At the same time the calculation
shows that at x ≈ 0.27 and τ ≈ 0.17 we arrive at the com-
pensation point, which then “bifurcates” with one
(high-temperature) compensation point moving
towards TN, with increasing x, while the other (low
temperature) towards T = 0 K. At x > 0.5 the compen-
sation points vanish. Only for compositions directly
YSICS  Vol. 132  No. 4  2021
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Fig. 8. Left panel: Calculated concentration dependence of the average effective field on the Gd3+ ions in the weak ferrimagnet
at T = 0 K. Right panel: Calculated temperature dependencies of the spontaneous magnetization for a number of weak ferrimag-
nets GdFe1 – xCrxO3 and end compositions, τ = T/TN. Solid circles are experimental data for single crystals GdFe0.83Cr0.17O3
with TN = 550 K [61].
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adjacent to pure gadolinium orthochromite is the
compensation again observed, and with increasing
concentration of the Fe3+ ions the compensation point
shifts from Tcomp = 110 K in pure GdCrO3, to Tcomp =
TN, at x ≈ 0.95. As a whole the calculated concentra-
tion and temperature dependencies of the magnetiza-
tion in GdFe1 – xCrxO3 agree satisfactorily with the
experimental data [61]. Finally, we note the need for
further experimental investigation of the rare-earth
weak ferrimagnets such as GdFe1 – xCrxO3 both from
the viewpoint of studying various f–d interactions, and
of the possibility of obtaining novel advanced mag-
netic properties.

5.2. Unconventional Spin-Reorientation 
in Weak Ferrimagnets

The contribution of the competing antisymmetric
exchange to the magnetic anisotropy of weak fer-
rimagnets has an unusual concentration dependence.
So, if in pure orthoferrite YFeO3 and orthochromite
YCrO3 antisymmetric exchange makes a decisive con-
tribution to the stabilization of the magnetic configu-
ration Γ4, then in a weak ferrimagnet YFe1 – xCrxO3 it
can induce a spin-reorientation Γ4–Γ2 transition
which are typical for several orthoferrites RFeO3 with
magnetic rare-earth ions (R = Nd, Sm, Tb, Ho, Er,
Tm, Yb). In Fig. 9 we demonstrate concentration
dependence of the DM coupling contribution to first
anisotropy constant for YFe1 – xCrxO3 in ac-plane
given different values of the parameter δ, which was
calculated within simple mean-field approximation
[74, 75] in the limit of low temperatures. A character-
istic feature of this dependence is the appearance of
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several extrema with a sharp decrease in the contribu-
tion in the region of intermediate concentrations near
x ~ 0.6–0.7. Furthermore, similarly magnetization,
this contribution to anisotropy has a specific tem-
perature dependence [74, 75]. On the whole, both
effects can lead to the appearance of spontaneous
spin-reorientation transitions in weak ferrimagnets
of the YFe1 – xCrxO3 type with a nonmagnetic “R”-
ion. Indeed, in full accordance with the theory, such
transitions have been observed experimentally, for
example, the Γ4–Γ2 spin-reorientation transition in
YFe0.85Cr0.15O3 [74, 75] (see Fig. 9).

A more surprising situation was found in the weak
ferrimagnet DyFe1 – xCrxO3 at a relatively low concen-
tration of Cr ions. The Dy3+ ions in DyFeO3 stabilize
the Γ1(Gy) configuration, so that at T = 40 K, a jump-
like Morin transition Γ4–Γ1 is observed. In all single
crystals of weak ferrimagnets DyFe1 – xCrxO3 (x = 0.07,
0.10, 0.13, 0.15, 0.36, 0.40) synthesized and studied in
the laboratory of A.M. Kadomtseva (Moscow State
University) [74, 75], the Morin Γ4–Γ1 spin-reorienta-
tion transition to the low-temperature phase Γ1 was
detected, with the exception of the composition with
x = 0.36, where the phase Γ2 was unexpectedly found
to be the high-temperature phase. Puzzlingly, in com-
positions x = 0.1 and x = 0.13, the Morin transition
proceeded according to the Γ4–Γ421–Γ21–Γ1 (x = 0.1)
or Γ4–Γ421–Γ1 (x = 0.1) scheme and was accompanied
by the deviation of the antiferromagnetic vector G into
space with the appearance in a narrow temperature
range of the projection of the magnetic moment on the
b-axis. Never before has the state of the mixed config-
uration Γ421(GxGyGz) with the spatial orientation of the
antiferromagnetism vector and the appearance of the
D THEORETICAL PHYSICS  Vol. 132  No. 4  2021
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Fig. 9. Concentration dependence of the DM coupling
contribution to the first anisotropy constant in ac-plane
given different values of the parameter δ. Inset: Tempera-
ture dependence of the magnetization in the weak fer-
rimagnet YFe0.85Cr0.15O3 [75] demonstrating the Г4–Г2
spin-reorientation transition in the temperature range
240–400 K.

480320
T, K

1600

0.2

0.4

0.6
M || c

M || a
M, emu/g

k(ac), r.u.

x
0 0.5 1.0

432
b-component of the magnetic moment (Mb ∝ GxGyGz)
been observed.

5.3. Recent Renewal of Interest to Weak Ferrimagnets

The systems with competing antisymmetric
exchange were extensively investigated up to the end of
80ths mainly in the laboratory of A.M. Kadomtseva at
Moscow State University. Recent renewal of interest
to the systems with the compensation point was stim-
ulated by the perspectives of the applications in mag-
netic memory (see, e.g., [71, 82] and references
therein). For instance, weak ferrimagnet YFe0.5Cr0.5O3
exhibits magnetization reversal at low applied fields.
Below a compensation temperature (Tcomp), a tunable
bipolar switching of magnetization is demonstrated by
changing the magnitude of the field while keeping it in
the same direction. The compound also displays both
normal and inverse magnetocaloric effects above and
below 260 K, respectively. These phenomena coexist-
ing in a single magnetic system can be tuned in a pre-
dictable manner and have potential applications in
electromagnetic devices [82]. Weak ferrimagnets can
exhibit the tunable exchange bias (EB) effect [83].
Recently the EB effect with reversal sign was found in
LuFe0.5Cr0.5O3 ferrite-chromite [84] which is a weak
ferrimagnet below TN = 265 K, exhibiting antiparallel
orientation of the mean weak ferromagnetic moments
of the Fe and Cr sublattices due to opposite sign of the
Fe–Cr Dzyaloshinskii vector as compared to that of
the Fe–Fe and Cr–Cr. The weak FM moments of the
studied compound compensate each other at tempera-
ture Tcomp = 230 K, leading to the net magnetic
moment reversal and to observed negative magnetiza-
tion, at moderate applied field, below Tcomp. Variety of
such extraordinary properties as high compensation
temperature, temperature-controlled positive/nega-
tive EB below/above Tcomp, and switching the magne-
tization direction to the opposite one by magnetic field
without of changing its polarity makes weak ferrimag-
net LuFe0.5Cr0.5O3 of promising candidate for applica-
tion in magnetic memories.

Combining magnetization reversal effect with
magnetoelectronics can exploit tremendous techno-
logical potential for device applications, for example,
thermally assisted magnetic random access memories,
thermomagnetic switches and other multifunctional
devices, in a preselected and convenient manner.
Nowadays a large body of magnetic materials might be
addressed as systems with competing antisymmetric
exchange [85], including novel class of mixed
helimagnetic B20 alloys such as Mn1 – xFexGe where
the helical nature of the main ferromagnetic spin
structure is determined by a competition of the DM
couplings Mn–Mn, Fe–Fe, and Mn–Fe. Interest-
ingly, that the magnetic chirality in the mixed com-
pound changes its sign at xcr ≈ 0.75, probably due to
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different sign of the Dzyaloshinskii vectors for Mn–
Mn and Fe–Fe pairs [86].

6. DETERMINATION OF THE SIGN
OF THE DZYALOSHINSKII VECTOR

Determining the sign of the Dzyaloshinskii vector
and the relative orientation of the F and G vectors in
weak ferromagnets is of both fundamental importance
from the standpoint of the microscopic theory of the
DM coupling and practical importance for the reliable
identification of the parameters of various anisotropic
interactions in these materials. In particular, for the
rare-earth orthoferrites RFeO3, this concerns the
parameters of the 4f–3d interaction [60], the parame-
ters of transferred and supertransferred hyperfine
interactions [87], and the magnitude of the effective
magnetic field for μ-mesons [62]. The sign of the
Dzyaloshinskii vector determines the handedness of
spin helix in crystals with the noncentrosymmetric
B20 structure.

How to measure the sign of the DM interaction in
weak ferromagnets? According to [19], an answer to
this question can be given by determining experimen-
tally the direction of rotation of the antiferromag-
netism vector l around the magnetic field H in the
geometry H ||d|| easy axis. However, as was pointed out
later (see [88]), a Mössbauer experiment on easy-axis
hematite did not give an unambiguous result.

According to Dmitrienko et al. [89], first of all, a
strong enough magnetic field should be applied to
YSICS  Vol. 132  No. 4  2021
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obtain the single domain state where the DM coupling
pins antiferromagnetic ordering to the crystal lattice.
Next, single crystal diffraction methods sensitive both
to oxygen coordinates and to the phase of antiferro-
magnetic ordering should be used. In other words, one
should observe those Bragg reflections hkl where
interference between magnetic scattering on Mn
atoms and nonmagnetic scattering on oxygen atoms is
significant. There are three suitable techniques: neu-
tron diffraction, Mössbauer γ-ray diffraction, and res-
onant X-ray scattering. The sign of the DM vector in
weak ferromagnetic FeBO3 was deduced from
observed interference between resonant X-ray scatter-
ing and magnetic X-ray scattering [89].

The authors in [88] claimed that the character of
the field-induced transition from an antiferromag-
netic phase to a canted phase in cobalt f luoride CoF2
is due to the “sign” of the Dzyaloshinskii interaction,
and this affords an opportunity to determine experi-
mentally the sign of the Dzyaloshinskii vector. How-
ever, in fact they addressed a symmetric
Dzyaloshinskii interaction that is magnetic anisotropy

rather than antisymmetric DM coupling.
In our opinion, the most reliable experimental

method for determining the mutual orientation of the
vectors of ferromagnetism F and antiferromagnetism
G, and hence the sign of the Dzyaloshinskii vector, is
to study the magnitude and sign of the effective mag-
netic field on ligands, as well as μ-mesons in weak fer-
romagnets.

6.1. Positive Muons in Orthoferrites as a Tool
to Examine the Sign of Dzyaloshinskii Vector

In muon spin rotation (μSR) experiments, spin-
polarized positive (anti)muons are used to probe the
microscopic field distribution at the interstitial site(s)
where the μ+ stop inside the sample under investiga-
tion. The extreme sensitivity of the muon to small
magnetic fields as well as the absence of quadrupolar
coupling makes this technique very promising in prob-
ing magnetic orders, offering a valuable alternative to
neutron scattering. This approach, which shares many
similarities with nuclear magnetic resonance, has the
advantage of being applicable to virtually any material,
but it has the drawback that the interstitial sites where
the muon stops and the nature of muon interaction
with the host are generally unknown [90]. Site assign-
ment is the key initial ingredient in the not infrequent
cases where the internal magnetic field is dominated
by the distant dipole contribution, which requires only
the knowledge of the site in order to be computed by a
classical sum over the dipole moments of the host lat-
tice. Thus, the comparison between predicted and
measured local field can validate the muon site assign-
ment, and in turn, this assessment yields, e.g., a mea-

= − +sym ( )x y y xV D m l m l
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sure of the magnetic moment values. However, addi-
tional local field contributions exist and these are not
negligible in many cases [91].

The dipolar field can be approximated with good
accuracy, assuming a classical moment M centered at
the atomic positions of the magnetic atoms, and eval-
uating the total contribution as

(52)

where rμ is the muon position, Mj is the magnetic
moment of jth ion, rμj is the distance between jth ion
and the muon site. The hyperfine Fermi contact field
contribution, transferred or supertransferred, can be
written as follows

(53)

where ρs is the spin density at the muon site [91].
First detailed investigation of positive muons in

orthoferrites RFeO3 (R = Sm, Eu, Dy, Ho, Y, Er) has
been performed by Holzschuh et al. [62]. In their pre-
sentation the hyperfine field at the muon site in the
orthoferrites can be explained in terms of dipolar fields
only. By comparing measured internal magnetic fields
with calculated dipolar fields of Fe3+ ions the authors
found the position of stable muon site, furthermore,
they established that in configuration Γ4 the sign of Gx
should be positive for Fz > 0, in accordance with our
earlier theoretical predictions [10], since only this
assumption leads to a reasonable muon site.

However, these results were severely criticized in
work [92], the authors of which argued that the inter-
pretation [62] contains some serious f laws: important
details have not been worked out correctly and their
analysis is not complete enough to support some of
their conclusions. First of all it concerns the super-
transferred hyperfine field contribution, which must
not be disregarded. Furthermore, they drew attention
to the need for strict accounting of the sign conven-
tion,

labeling of the Fe3+ ions and the representation of
the spin configurations which is not uniform in the lit-
erature. This all casts doubt in using theoretical rela-
tions, in particular, concerning the mutual orientation
of the ferro- and antiferromagnetic vectors, that is, in
fact, the sign of the Dzyaloshinskii vector.

6.2. The Ligand NMR in Weak Ferromagnets 
and First Reliable Determination of the Sign 

of the Dzyaloshinskii Vector

As was firstly shown in [20] reliable local informa-
tion on the sign of the Dzyaloshinskii vector, or to be
exact, that of the Dzyaloshinskii parameter d12, can be
extracted from the ligand NMR data in weak ferro-

μ μ
μ

μ μ

 ⋅
= −  

 
 5 3

3 ( )
( ) ,j j j j
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r M r M
H r
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π= μ ρB
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Fig. 10. Two mutual orientations of F and G vectors in
basal plane of FeF3.

G

FG F

y

x x

y

	 	
d > 0 d < 0
magnets. The procedure was described in details for
19F NMR data in weak ferromagnet FeF3 [20].

The F– ions in the unit cell of FeF3 occupy the six
positions [93]. In a trigonal basis these are ±(x, 1/2 –
x, 1/4), ±(1/2 – x, 1/4, x), ±(1/4, x, 1/2 – x), that cor-
respond to (i) ±(3p(x – 1/4), p(1/4 – x), c/4), (ii)
±(3p(1/4 – x), p(1/4 – x), c/4), and (iii) ±(0,
2 p(x – 1/4), c/4) in an orthogonal basis with Oz || C3
and Ox || C2. Each F– ion is surrounded by two Fe3+

from different magnetic sublattices. Hereafter we
introduce basic ferromagnetic F and antiferromag-
netic G vectors:

(54)

where  and  occupy positions (1/2, 1/2, 1/2)
and (0, 0, 0), respectively. FeF3 is an easy plane weak
ferromagnet with F and G lying in (111) plane with F ⊥
G. The two possible variants of the mutual orientation
of the F and G vectors in the basis plane, tentatively
called as “left” and “right”, respectively, are shown in
Fig. 10. The DM energy per Fe3+–F––Fe3+ bond can
be written as follows

(55)

In other words, the “left” and “right” orientations
of basic vectors are realized at d(θ) < 0 and d(θ) > 0,
respectively.

Absolute magnitude of the ferromagnetic vector is
numerically equals to an overt canting angle which can
be found making use of familiar values of the
Dzyaloshinskii field: HD = 48.8 kOe and exchange
field: HE = 4.4 × 103 kOe [16] as follows

(56)
If we know the Dzyaloshinskii field we can calcu-

late the d(θ) parameter as follows

(57)

that yields |d(θ)| ≅ 1.1 K that is three times smaller than
in YFeO3.

The local field on the nucleus of the nonmagnetic
F– anion in weak ferromagnet FeF3, induced by
neighboring magnetic S-type ion (Fe3+, Mn3+, …) can
be written as follows [94]

(58)

(γn is a gyromagnetic ratio, γn = 4.011 MHz/kOe, S is
the spin moment of the magnetic ion), where the ten-
sor of the transferred hyperfine interactions (HFI) 
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consists of two terms: (i) an isotropic contact term
with Aij = Asδij

(59)

(ii) anisotropic term with

(60)

where n is a unit vector along the nucleus-magnetic
ion bond and the Ap parameter includes the dipole and
covalent contributions

(61)

(62)

Here fs, π, σ are parameters for the spin density trans-
fer: magnetic ion–ligand along the proper s-, σ-, π-
bond [95]; |ϕ2s(0)|2 is a probability density of the 2s-

electron on nucleus;  is a radial average.

The transferred HFI for 19F in f luorides are exten-
sively studied by different techniques, NMR, ESR,
and ENDOR [94]. For 19F one observes large values
both of  and ;  = 4.54 × 104,  = 1.28 ×
103 MHz [94], together with the 100% abundance,
nuclear spin I = 1/2, and large gyromagnetic ratio this
makes the study of the transferred HFI to be simple
and available one.

Contribution of the isotropic and anisotropic
transferred HFI to the local field on the 19F can be
written as follows

(63)

The As and Ap parameters we need to calculate
parameter aF and the HFI anisotropy tensor  that is
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Fig. 11. Comparison of simulated (upper panels) and
experimental (bottom panel) zero-field 19F NMR spectra
in FeF3.
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to calculate the “ferro-” and “antiferro-” contribu-
tions to H one can find in the literature data for the
pair 19F–Fe3+. For instance, in KMgF3:Fe3+ (RMgF =
1.987 Å) [96] As = +72, Ap = +18 MHz, in K2NaFeF6

(RFeF = 1.91 Å), in K2NaAlF6:Fe3+ As = +70.17, Ap =
+20.34 MHz [97]. Thus, we expect in FeF3 |aF| ~ 350–
360 MHz (aF < 0) and H(iso)  2 MHz ( 0.5 kOe).

In the absence of an external magnetic field the
NMR frequencies for 19F in positions 1, 2, 3 can be
written as follows

(64)

where the axy, ayz components are taken for 19F in posi-
tion 1; ϕ is an azimuthal angle for ferromagnetic vector
F in basis plane. Formula (64) does provide a direct
linkage between the 19F NMR frequencies and param-
eters of the crystalline (p, c, x, l) and magnetic (F, ϕ, ±)
structures. As of particular importance one should
note a specific dependence of the 19F NMR frequen-
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cies on mutual orientation of the ferro- and antiferro-
magnetic vectors or the sign of the Dzyaloshinskii vec-
tor: upper signs in (64) correspond to “right orienta-
tion” (d(θ) > 0) while lower signs do to “left
orientation” (d(θ) < 0) as shown in Fig. 10.

For minimal and maximal values of the 19F NMR
frequencies we have

(65)

Taking into account the smallness of isotropic HFI
contribution, signs of aF and Axy we arrive at estima-
tions

(66)

Thus,

(67)

By using the As and Ap values, typical for 19F–Fe3+

bonds [96, 97] we get (in MHz)

(68)

given “right hand side orientation” of F and G
(Fig. 10) and

(69)

given “left hand side orientation” of F and G (Fig. 10).

The zero-field 19F NMR spectrum for single-crys-
talline samples of FeF3 we simulated on assumption of
negligibly small in-plane anisotropy [98] is shown in
Fig. 11 for two different mutual orientations of F and
G vectors. For a comparison in Fig. 11 we adduce the
experimental NMR spectra for polycrystalline sam-
ples of FeF3 [99, 100], which are characterized by the
same boundary frequencies despite rather varied
shape. Obviously, the theoretically simulated NMR
spectrum does nicely agree with the experimental ones
only for “right” mutual orientations of F and G vec-
tors, or d(FeFe) > 0, in a full accordance with our the-
oretical sign predictions (see Table 4).

The same result, d(FeFe) > 0 follows from the
magnetic X-ray scattering amplitude measurements in
the weak ferromagnet FeBO3 [89].

±

±

ν = γ + ±
ν = γ + + ∓

2 2 1/2
min

2 2 2 2 1/2
max

[ 2 ] ,

[ 2 ] .
n xy F F xy

n xy yz F F xy

a a a a F

a a a F a a F

±

±

ν γ =
 

ν γ + ±  + 
= ±

� ∓ ∓

�

min

2 2 1/2
max 2 2 1/2

(| | | |) 2.92 | |,

| |
[ ] | |

[ ]
3.65 0.8| |.

n xy F p F

xy
n xy yz F

xy yz

p F

a a F A a F

a
a a a F

a a
A a F

±ν − ν = ±max min( ) 0.68 1.8| |.p FA a F

+ +

+

ν = ν =
ν − ν =

min max

max min

57.6, 75.7,

( ) 18.1

+ +

−

ν = ν =
ν − ν =

min max

max min

61.4, 72.7,

( ) 11.3
D THEORETICAL PHYSICS  Vol. 132  No. 4  2021



DZYALOSHINSKII INTERACTION 537
6.3. The sign of the Dzyaloshinskii Vector 
in FeBO3 and α-Fe2O3

Making use of structural data for FeBO3 [101] we
can calculate the z-component of the Dzyaloshinskii
vector for Fe1–O–Fe2 pair, with Fe1,2 in positions
(1/2, 1/2, 1/2), (0, 0, 0), respectively, as follows:

(70)

where a = 4.626 Å, b = 8.012 Å are parameters of the
orthohexagonal unit cell, xh = 0.2981 oxygen parame-
ter, l = 2.028 Å is a mean Fe–O separation [101].

Similarly to FeF3 the DM energy per Fe3+–O2––
Fe3+ bond can be written as follows

(71)

In other words, the “left” and “right” orientations
of basic vectors are realized at d(θ) < 0 and d(θ) > 0,
respectively.

Absolute magnitude of the ferromagnetic vector
equals numerically to an overt canting angle which can
be found making use of familiar values of the
Dzyaloshinskii field: HD ≈ 100 kOe and exchange
field: HE ≈ 3.0 × 103 kOe [18, 101] as follows

(72)
If we know the Dzyaloshinskii field we can calcu-

late the d12(θ) parameter as follows

(73)

that yields |d(θ)| ≅ 1.5 K that is two times smaller than
in YFeO3. The difference can be easily explained, if
one compares the superexchange bonding angles in
FeBO3 (θ ≈ 125°) and YFeO3 (θ ≈ 145°), that is
cosθ(FeBO3)/cosθ(YFeO3) ≈ 0.7, that makes the
compensation effect of the p–d and s–d contributions
to the X-factor (see Table 3) more significant in borate
than in orthoferrite. Interestingly that in their turn the
structural factor [r1 × r2]z in FeBO3 is 1.6 times larger
than the mean value of the factor [r1 × r2]y in YFeO3.

The sign of the Dzyaloshinskii vector in FeBO3 has
been experimentally found recently due to making use
of a new technique based on interference of the mag-
netic X-ray scattering with forbidden quadrupole res-
onant scattering [89]. The authors found that the mag-
netic twist follows the twist in the intermediate oxygen
atoms in the planes between the iron planes, that is the
DM coupling induces a small left-hand twist of
opposing spins of atoms at (0, 0, 0) and (1/2, 1/2, 1/2).
This means that in our notations the Dzyaloshinskii
vector for Fe1–O–Fe2 pair is directed along c-axis,
dz(12) > 0, that is d12(θ) > 0 in a full agreement with
theoretical predictions (see Table 4).
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7. EXCHANGE-RELATIVISTIC ANISOTROPY: 
UNCONVENTIONAL FEATURES 

OF CONVENTIONAL TWO-ION EXCHANGE 
ANISOTROPY

So called quasi-dipole two-ion exchange anisot-
ropy (anisotropic exchange)

(74)

with a traceless symmetric tensor Kαβ(mn) of anisot-
ropy parameters was introduced by Van Vleck as early
as in 1937 [102]. For S1 = S2 = 1/2 the anisotropy was
considered in details by Moriya [5] and Yoshida [103].
Since then the simple Hamiltonian (74) had been used
increasingly without good reason for any 3d ions and
any spins S ≥ 1/2. Simple square-law temperature
dependence of the effective anisotropy constant
KTIA(T) ~ (T) ~ m2(T) was addressed to be a “smok-
ing gun” of the magneto-dipole or anisotropic
exchange origin of the anisotropy (see, e.g., [104,
105]). However, a detailed many-electron analysis of
the exchange-relativistic anisotropy to be a result of
the third order perturbation contribution [106, 107]

(75)

(plus terms with 1 ↔ 2) has revealed some novel fea-
tures of the two-ion anisotropy missed in traditional
approaches. First of all, it concerns the tensor form of
the anisotropic spin Hamiltonian. Simple quasi-
dipole form (74) is justified only for ions with Sm =
Sn = 1/2 and orbitally nondegenerate ground state,
while for different spins the tensor form becomes more
complicated. So, for the S-type ions, that is ions with
orbitally non-degenerate ground state A1g, A2g in cubic
crystal field (Cr3+, Mn2+, Fe3+, Ni2+, …) we arrive at
an effective spin Hamiltonian as follows [107]

(76)

where does appear the tensor product of spherical ten-
sorial harmonics, ρk(T) are temperature factors [108]:

(77)

(ρk(T = 0) = 1).
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Fig. 12. The temperature dependence of effective anisotropy constants in α-Fe2O3 (left) and Cr2O3 (right). Circles are experi-
mental data from [109] and [104] for α-Fe2O3 and Cr2O3, respectively. Curves 1 represent the result of the fitting with the four-
parameter formula (78), curve 2 for hematite shows the result of the fitting that implies only conventional contributions of single-
ion and quasi-dipole anisotropy. Curves a, b, c, and d represent the temperature dependence of the quasi-dipole contribution (a)

and of the “non-dipole” factors (ρ2 – ), (  – ), and (ρ1ρ3 – )), respectively.
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Along with a quasidipole term (k1 = k2 = 1) in Van
there is a number of novel nondipole terms with k1k2 =
20(02), 22 and k1k2 = 13(31). Beyond that, k1,2 should
obey the triangle rule: k1,2 < 2Sm, n. It is worth noting
that in addition to conventional spin-dependent
exchange, the purely orbital spinless exchange interac-
tion does contribute to the quasidipole exchange
anisotropy [107].

Within mean-field approximation the temperature
dependence of effective 2nd order exchange-relativis-
tic anisotropy constant(s) for magnets with equivalent
on-site spins can be represented as follows [107]:

(78)

where the temperature factors (ρ2 – ), (  – ), and

(ρ1ρ3 – )) turn into zero both at T = 0 K and T =
TN(Tc). The constant K11 for conventional quasi-
dipole anisotropy is determined as K11 = K(0) – K20 –
K22 – K13. It is worth noting that the addition of the
magneto-dipole and single-ion anisotropies gives rise
only to a renormalization of the K(0) and K20 con-
stants, respectively, so that the expression (78) is
believed to be an universal four-parametric formula
for the temperature dependence of the 2nd order
anisotropy constants. As we see in Fig. 12 the formula
allows us to nicely describe non-trivial temperature
dependence of effective anisotropy constants in α-
Fe2O3 and Cr2O3. Later, this approach was used to
describe the temperature dependence of the anisot-
ropy constants in YFeO3 [110].
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8. ANTISYMMETRIC SUPERTRANSFERRED 
HYPERFINE INTERACTION AS ELECTRON-

NUCLEAR COUNTERPART OF DM 
COUPLING

Detailed analysis of the 57Fe NMR data in ortho-
ferrites [22] allowed us to reveal antisymmetric super-
transferred hyperfine (ASTHF) coupling

(79)

as an electron-nuclear analogue of the DM antisym-
metric exchange and to determine its contribution to
the local field: HASTHF ≈ 0.26 T as compared with cor-
responding isotropic contribution of 5.8 T [87]. Here
I is a nuclear spin, amn electron-nuclear analogue of
the Dzyaloshinskii vector.

For the first time such a electron-nuclear coupling
was considered by Ozhogin [111], the microscopic
theory was considered by Moskvin [87]. Furthermore,
in [87] we have shown that the experimentally known
external field dependencies of the 57Fe NMR in the
orthoferrites [22] do allow us to find out and estimate
the ASTHF coupling.

Indeed, taking into account the four-sublattice
magnetic structure of the orthoferrite RFeO3 with
nonmagnetic R-ions (La, Y, Lu) the local field on the
57Fei nuclei in one of the 4b-sites can be written as fol-
lows

(80)

where G, F, C, A are the basis magnetic vectors nor-
malized as follows: G2 + F2 + C2 + A2 = 1. Here, the
first four terms represent the contribution of the dom-
inant isotropic on-site and supertransferred inter-site
hyperfine interactions, while the last term does the
contribution of the anisotropic hyperfine interactions.
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Hereafter we take into account that F, C, A ≈ 10–2G,
and assume that the anisotropic contribution does not
exceed values on the order of ∝ 1% of main isotropic
contribution H0 = aGG.

The external field dependence of the 57Fe NMR
frequency for the Γ4(Gx, Ay, Fz) magnetic configuration
is as follows:

(81)

where we make use all the quantities azx, aF, axx, h in
units of H0 (in YFeO3 given T = 4.2 K H0 = 551 kOe
[22]), while ν is in units of ν0 = γH0/2π (γ/2π = 0.138
MHz/kOe). The field derivative (∂ν/∂h)h = 0

(82)

is a sum of a ferromagnetic (aFFz) and antiferromag-
netic (azxGx) contributions, respectively. Application
of the magnetic field parallel to a-axis (h || a) does
induce a spin-reorientational transition Γ4(Gx, Ay, Fz)
– Γ2(Fx, Cy, Gz) so that for angular Γ42 configuration

(83)

where  is a symmetrical part of azx:  = (azx +
axz)/2). The signs ± in (83) correspond to nuclei in
positions 1, 3 and 2, 4, respectively (see [112]). The
Γ4–Γ2 spin reorientation is accompanied by the 57Fe
NMR frequencies splitting whose magnitude

(84)

allows us to find out the  parameter, or, strictly
speaking, its absolute value: | | = 3.2 × 10–3 in
YFeO3 [22], | | = 3.4 × 10–3 in ErFeO3, and | ] =
2.9 × 10–3 in HoFeO3 [112].

Experimental value of the field derivative [∂ (h ||
c)/∂h]h = 0 = –10.2 × 10–3 in YFeO3 [22] with taking
account of aF = 2HSTHF/H0 – 1 = –0.79 (HSTHF is the
contribution of the STHF interaction 57Fe–O2––Fe3+

to the local field) [22] and Fz = 1.1 × 10–2 [17] allows
us to find out the value azxGx = –1.6 × 10–3. Finally we

obtain that for  = ±3.2 × 10–3,  = 1.6 × 10–3

given Fz > 0, Gx < 0 (Gx ≈ –1) and  = 4.8 × 10–3

given Fz > 0, Gx > 0 (Gx ≈ +1), that is for d(θ) > 0 and
d(θ) < 0, respectively. In any case antisymmetric and
symmetric parts of the anisotropic hyperfine interac-
tion in YFeO3 are of a comparable magnitude. The

origin of the antisymmetric part  can be related only
with antisymmetric STHF interaction  (79)
that is with electron-nuclear analogue of the DM cou-
pling. Then
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(85)

The ASTHF interaction is a result of a combined
action of the generalized STHF interaction 57Fe–O2––
Fe3+ [113] and spin–orbital coupling for Fe3+ ion. As
for conventional spin–spin DM coupling the elec-
tron-nuclear analogue of the Dzyaloshinskii vector
depends on the superexchange 57Fe–O2––Fe3+ bond
geometry

(86)

where ri, rj are unit cation–anion radius vectors, and

(87)
where θ is the cation–anion–cation bond angle.

For a rough estimate of the a parameter one may
use relation a/ASTHF ≤ ξ/ΔE where ξ is a single electron
spin–orbital coupling parameter for 3d electron; ΔE is
the energy of the excited terms of the 4T1 type for Fe3+

ion; ASTHF is a isotropic STHF constant:

(88)

In our case ξ ≤ 5 × 102 cm–1, ΔE ≥ 104 cm–1, and we
arrive at

that nicely agrees with estimate based on the experi-
mental data [22]

The ratio is comparable with the ratio of the
Dzyaloshinskii field HD to the exchange field HE: in
YFeO3 HD/HE ≈ 2.2 × 10–2. All that is quite natural as
the Dzyaloshinskii field is of the exchange-relativistic
nature: HD/HE ∝ ξ/ΔE, hence, | /HSTHF| ∝ HD/HE.
In other words, if HSTHF is an electron-nuclear ana-

logue of the exchange field, the HASTHF = | | is an
electron-nuclear analogue of the Dzyaloshinskii field.
In YFeO3 HSTHF = 58 kOe, HASTHF = 2.6 kOe given
Gx > 0 or HASTHF = 0.9 kOe given Gx < 0. For rough
estimate of the electron-nuclear Dzyaloshinskii field
one may use HASTHF ≈ (HD/HE)HSTHF.

Antisymmetric STHF interaction should be
observed in other weak ferromagnets. It is worth not-
ing that for an easy-plane phase of rhombohedral weak
ferromagnets such as FeBO3, FeF3, α-Fe2O3, the anti-
ferromagnetic contribution to the field derivative
[∂ν(h ⊥ C3)/νh]h = 0 is determined only by the ASTHF
interaction:

(89)

that makes its detection and estimation more easier
than in orthoferrites.
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β 

( )( ) ( ).a
zx y

jn n

Sa i a ij
g

= θ ×( ) ( )[ ],i jij aa r r

θ = + θ1 2( ) cos ,a a a

≠
= ⋅ˆ ( )( ).STHF STHF i j

i j

V A ij I S

−≤ × 2/ 5 10STHFa A

−≈ ×( ) 2| / | 4.6 10 .a
zx STHFa H

( )a
zxa

( )a
zxa

=∂ν ⊥ ∂ = +( )
3 0[ ( )/ ] ,a

h xy y F xh a G a Fh C
YSICS  Vol. 132  No. 4  2021



540 MOSKVIN
It should be noted that the electron-nuclear double
resonance (ENDOR) measurements in Pb5Ge3O11:Gd3+

revealed antisymmetric 207Pb–O2––Gd3+ supertrans-
ferred hyperfine interaction [114] whose origin can be
related with the ligand spin-orbital contribution.

9. ANTISYMMETRIC EXCHANGE-
RELATIVISTIC SPIN-OTHER-ORBIT 

COUPLING AND UNCONVENTIONAL 
MAGNETOOPTICS OF WEAK 

FERROMAGNETS
Interestingly that circular magnetooptic effects in

weak ferromagnets are anomalously large and are
comparable with the effects in ferrite garnets despite
two-three orders of magnitude smaller magnetization
[58, 115, 116]. In 1989 the anomaly has been assigned
to a novel type of magnetooptical mechanisms related
with so called spin-other-orbit coupling [117].

Combined effect of a conventional on-site spin-
orbital coupling and orbitally off-diagonal exchange
coupling for an excited orbitally degenerated state can
give rise to a novel type of exchange-relativistic inter-
action, so called spin-other-orbit coupling, whose
bilinear form can be written as a sum of isotropic,
anisotropic antisymmetric, and anisotropic symmet-
ric terms, respectively

(90)

It is worth noting that λmn has the symmetry of the
Dzyaloshinskii vector, while the last term has the sym-
metry of the two-ion quasidipole spin anisotropy.
Generally speaking, all the three terms can be of a
comparable magnitude.

Interestingly, the contribution to the bilinear inter-
action  is made by both the spin-dependent
exchange and spin-independent purely orbital
exchange. However, the spin-dependent exchange
leads to the occurrence of additional nonlinear spin-
quadratic terms, the contribution of which can be
taken into account by the formal replacement of the
linear spin operator Sn in (18) for the nonlinear opera-
tor Smn

(91)

where (S) is the rank 2 spin irreducible tensor oper-
ator. In particular,

(92)
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The coefficient γ in (91) can be calculated for spe-
cific terms. The isotropic part of  can be presented,
in the general case, as follows

(93)

Similarly to the Dzyaloshinskii vector, to estimate
the parameters of the spin-other orbit coupling, we
can use the simple relation

(94)

where λ' and I ' are the spin–orbital constant for the T1-,
T2-states and the nondiagonal exchange parameter,
respectively, ΔESΓ is a certain excitation energy. The
simple estimation shows that, due to , the effective
magnetic fields acting on the T1 and T2 orbital states,
e.g., for Fe3+ions in ferrites, can amount about 100 T
and more.

We have shown that an antisymmetric exchange-
relativistic spin-other-orbit coupling gives rise to an
unconventional “antiferromagnetic” contribution to
the circular magnetooptics for weak ferromagnets
which can surpass conventional “ferromagnetic” term
[117, 118] (see, also [119]).

The circular magnetooptics is governed by an axial
gyration vector g, which is dual to the permittivity ten-
sor εij. For instance the Faraday rotation ΘF in noncu-
bic crystals can be written as follows

(95)
where n is a unit vector in the direction of light propa-
gation k, and A is a coefficient which depends on the
direction of k, on the polarization of light, and on the
principal values of the refractive index. The gyration
vector has the same symmetry properties as the ferro-
magnetic moment that does justify a well known rela-
tion

(96)
where the gyration vector is a sum of so-called ferro-
magnetic and diamagnetic terms, respectively. How-
ever, in weak ferromagnets where orthogonal compo-
nents of the ferromagnetic and antiferromagnetic vec-
tors may transform identically we arrive at an
additional “antiferromagnetic” contribution. For
example, in the case of orthoferrites this term, if to
neglect weak antiferromagnetic modes, can be written
as follows:

(97)
with the only nonzero, and generally speaking
unequal, components βzx and βxz of the  tensor.
Despite for main isotropic contribution the compo-
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nents of the  tensor are expectedly significantly larger
than the  tensor components, the relation F ≪ G
which is typical for weak ferromagnets points to a puz-
zling effect of a probably leading antiferromagnetic
contribution to the gyration vector.

It is generally accepted that the major (if not dom-
inant) role in the magnetooptic rotation of visible and
ultraviolet light in rare-earth orthoferrites is played by
allowed electric-dipole O2p–Fe3d charge transfer
6A1g–6T1u transitions in octahedral complexes FeO6
[58, 118, 120], in particular, due to an orbital Zeeman
splitting of the excited 6T1u term with effective orbital
moment L = 1. In addition to conventional orbital

Zeeman  = –βe Lm ⋅ Hext) and on-site spin-

orbital VSO = λ Lm ⋅ Sm) couplings such a splitting
is caused by unconventional spin-other-orbit coupling
(90). In all the cases we deal with a real or effective
orbital magnetic field. The contribution of the isolated
6T1u term to the gyration vector can be represented as
follows [117, 118]:

(98)

where N is the number of FeO6 clusters in the unit vol-
ume, fAT and ω0 are the oscillator strength and the
energy of the 6A1g–6T1u transition, respectively,
F(ω, ω0) is the dispersion factor. Here, the first and
second terms determine conventional “local” diamag-
netic and isotropic ferromagnetic contributions,
respectively, while the three other terms derived from
the spin-other-orbit interaction determine unconven-
tional “nonlocal” contribution, though the first one
gives a simple correction to the ferromagnetic term.
However, the second and third nonlocal terms provide
novel antisymmetric and symmetric anisotropic anti-
ferromagnetic contributions to gyration vector,
respectively. Their effect was experimentally studied in
orthoferrite YFeO3 [117]. An analysis of the depen-
dence ΘF(Hext) made it possible to determine all the
contributions to the gyration vector (λ = 0.6328 μm):

(99)
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Interestingly, rather large measurement errors
allow for certain to determine only the fact of a large if
not a dominant antisymmetric antiferromagnetic con-
tribution related with antisymmetric spin-other-orbit
coupling.

Existence of spontaneous spin-reorientational
phase transitions Γ4(FzGx) → Γ2(FxGz) in several rare-
earth orthoferrites does provide large opportunities to
study anisotropy of circular magnetooptics [58, 115,
116, 118]. Gan’shina et al. measured the equatorial
Kerr effect in TmFeO3 and HoFeO3 and have found
the gyration vector anisotropy in a wide spectral range
1.5–4.5 eV [118]. The magnetooptical spectra were
nicely fitted within a microscopic model theory based
on the dominating contribution of the O2p–Fe3d
charge transfer transitions and spin-other-orbit cou-
pling in Fe  octahedra. Studies have demonstrated
a leading contribution of the antisymmetric spin-
other-orbit coupling and allowed to estimate effective
orbital magnetic fields in excited 6T1u states of the

Fe  octahedra, HL ~ 100T. These anomalously large
fields can be naturally explained to be a result of strong
exchange interactions of the charge transfer 6T1u states
with nearby octahedra that are determined by a direct
p–d exchange. Whereas the existence of the antiferro-
magnetic contribution to the gyration vector is typical
of a large number of multisublattice magnetic materi-
als, the antisymmetry of the tensor  is a specific fea-
ture of weak ferromagnets alone. In the case of rhom-
bohedral weak ferromagnets such as FeBO3, FeF3, or
α-Fe2O3, the tensor , governing the antiferromag-
netic contribution to the Faraday effect is entirely due
to the antisymmetric contribution, in view of the
requirements imposed by the crystal symmetry. In
crystals of this kind the appearance of the antiferro-
magnetic contribution to the gyration vector is entirely
due to allowance for the antisymmetric spin-other-
orbit coupling.

10. ANTISYMMETRIC EXCHANGE-
RELATIVISTIC SPIN-DEPENDENT ELECTRIC 

POLARIZATION

I.E. Dzyaloshinskii in 1959 theoretically predicted
the existence of the magnetoelectric effect (ME) in
antiferromagnetic Cr2O3 [121], and a year later,
D.N. Astrov recorded the magnetization induced by
an electric field [122]. Since the prediction and dis-
covery of the ME effect in Cr2O3, several different
mechanisms of magnetoelectric coupling have been
proposed [123], but a real breakthrough in this direc-
tion is associated with the discovery and studying of
multiferroics.

Currently two essentially different spin structures
of net electric polarization in crystals are considered:

−9
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(i) a bilinear nonrelativistic symmetric spin coupling
[124]

(100)

or (ii) a bilinear relativistic antisymmetric spin coupling
[37, 38]

(101)

respectively. Strictly speaking,  is a rank-2 tensor,
whose antisymmetric component yields the contribu-
tion to the electric polarization Pa as follows

(102)

The effective dipole moments  depend on the
m, n orbital states and the mn bonding geometry.

If the first term stems somehow or other from a
spin isotropic Heisenberg exchange interaction (see,
e.g. [124, 125]), the second term does from antisym-
metric Dzyaloshinskii–Moriya (DM) coupling. Fol-
lowing Katsura et al. [37] the electric dipole Pa is said
to be induced by a spin current mechanism, since the
vector product [Sm × Sn] is proportional to the bond
spin current, where the Dzyaloshinskii vector dmn acts
as its vector potential. Namely the second, or “spin-
current” term is frequently considered to be one of
main contributors to multiferroicity [126], however, at
present there is no reliable theoretical justifications
and experimental evidences for its dominating over
conventional symmetric isotropic term [39, 127].

Microscopic quantum theory of ME effect has not
yet been fully developed, although several scenarios
for particular materials have been proposed. Katsura et
al. [37] presented a mechanism of the giant ME effect
theoretically derived “in terms of a microscopic elec-
tronic model for noncollinear magnets”. The authors
derived the expression for the electric dipole moment
for the spin pair as follows:

(103)

where Rij denotes the vector connecting the two sites i
and j, Si, j are spin moments, a is an exchange-relativ-
istic parameter. However, the original “spin-current”
model by Katsura et al. [37] seems to be questionable
as the authors proceed with an unrealistic scenario
[127].

The spin-current model can explain direction of
ferroelectric polarization for Pbmn spin-cycloidal per-
ovskite manganites, however, cannot explain the
polarization anisotropy in spin-spiral LiCu2O2 and
LiVCuO4, the direction of ferroelectric polarization
for spin-cycloilal delafossites, such as AgFeO2 and α-
NaFeO2, the absence of polarization in spin-spiral
NaCu2O2. It cannot explain an emergence of ferro-
electricity associated with proper crew magnetic
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ordering in several multiferroics, including CuFeO2,
CuCrO2, AgCrO2, Cu3Nb2O8, CaMn7O12, and
RbFe(MoO4)2, because the propagation vector Rij ||
[Si × Sj]. In other words, for a most part of multiferro-
ics the spin-current model does not work.

Alternative mechanism of giant magnetoelectricity
in the perovskite manganites based on the antisym-
metric DM type magnetoelastic coupling was pro-
posed by Sergienko and Dagotto [38]. The authors
took into account strong dependence of the
Dzyaloshinskii vector on the superexchange bond
angle and the displacement of the intermediate ligand.
However, here we meet with a “weak” contributor.
Indeed, the minimal value of γ parameter (γ = dD/dR)
needed to explain experimental phase transition in
multiferroic manganites is two orders of magnitude
larger than the reasonable microscopic estimations
[38].

Size of the macroscopic polarization P in nonmag-
netic ferroelectrics computed by modern ab-initio
band structure methods agrees exceptionally well with
the ones observed experimentally. However, state of
the art ab-initio computations for different multiferro-
ics: manganites HoMnO3, TbMn2O5, HoMn2O5, spin
spiral chain cuprates LiCuVO4 and LiCu2O2 yield data
spread within one-two orders of magnitude with abso-
lutely ambiguous and unreasonable values of polariza-
tion. Indeed, the basic starting points of the current
versions of such spin-polarized approaches as the
LSDA exclude any possibility to obtain a reliable
quantitative estimation of the spin-dependent electric
polarization in multiferroics. Basic drawback of the
spin-polarized approaches is that these start with a
local density functional which implies presence of a
large fictitious local one-electron spin-magnetic field.
Magnitude of the field is considered to be governed by
the intra-atomic Hund exchange, while its orientation
does by the effective molecular, or inter-atomic
exchange fields. Despite the supposedly spin nature of
the field it produces an unphysically giant spin-depen-
dent rearrangement of the charge density that cannot
be reproduced within any conventional technique
operating with spin Hamiltonians. In such a case the
straightforward application of the LSDA scheme can
lead to an unphysical overestimation of the effects or
even to qualitatively incorrect results due to an
unphysical effect of a breaking of spatial symmetry
induced by a spin configuration.

Overall, the LSDA approach seems to be more or
less justified for a semiquantitative description of
exchange coupling effects for materials with a classical
Néel-like collinear magnetic order. However, it can
lead to erroneous results for systems and effects where
the symmetry breaking and quantum fluctuations are
of a principal importance such as: (i) noncollinear
spin configurations, in particular, in quantum s = 1/2
magnets, (ii) relativistic effects, such as the symmetric
spin anisotropy, antisymmetric DM coupling, and,
D THEORETICAL PHYSICS  Vol. 132  No. 4  2021
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(iii) spin-dependent electric polarization. Indeed, a
correct treatment of these high-order perturbation
effects needs in a correct account both of local sym-
metry and of quantum fluctuations (see, e.g., [31]).

A systematic standard microscopic theory of spin-
dependent electric polarization which implies the der-
ivation of effective spin operators for nonrelativistic
and relativistic contributions to electric polarization of
the generic three-site two-hole cluster such as Cu1–
O–Cu2 has been proposed in [39, 127]. The authors
made use of conventional well-known approaches to
account for the p–d covalent effects, intra-atomic cor-
relations, crystal field, and spin–orbital coupling.
Despite the description was focused on a three-site
Cu1–O–Cu2 two-hole system typical for cuprates with
a tetragonal Cu on-site symmetry and Cu3dx2–y2
ground states, the generalization of the results on the
M1–O–M2 clusters in other 3d oxides seems to be a
trivial procedure.

The effective electric polarization differs for the
singlet and triplet pairing due to a respective singlet-
triplet difference in the hybridization amplitudes.
Hence we may introduce an effective nonrelativistic
exchange-dipole spin operator

(104)
with an exchange-dipole moment

(105)

and a spinless contribution  = (3PS = 1 +PS = 0).

It is worth noting that the net local electric polariza-
tion lies in the Cu1–O–Cu2 plane. As it was shown in
[39] (see, also [127]), in general, the exchange-dipole
moment can be written as a superposition of the “lon-
gitudinal” and “transversal” contributions as follows:

(106)
(R12 = R1 – R2, ρ12 = (R1 + R2)), where p|| does not
vanish only for a specific crystallographic nonequiva-
lence of the centers 1 and 2 when there is no inversion
center even for collinear Cu–O–Cu chain.

The spin–orbital coupling VSO for copper and oxy-
gen ions drives the singlet–triplet mixing which gives
rise to a relativistic contribution to electric polariza-
tion deduced from an effective spin operator, or an
exchange-relativistic-dipole moment which can be
written as follows

(107)

In other words, the exchange-relativistic contribu-
tion to the dipole moment is a superposition of the two
(“longitudinal” and “transversal”) mutually orthogo-
nal contributions determined only by the superex-
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change Cu–O–Cu geometry, while the “spin-cur-
rent” factor does only modulate its value.

The DM type exchange-relativistic dipole moment
(107) is believed to be a dominant relativistic contribu-
tion to electric polarization in the Cu1–O–Cu2 or
similar clusters. It is worth noting that the exchange-
dipole moment operator (104) and exchange-relativis-
tic-dipole moment operator (107) are obvious coun-
terparts of the Heisenberg symmetric exchange and
Dzyaloshinskii–Moriya antisymmetric exchange,
respectively. Hence, the Moriya like relation |Πij| ~
Δg/g|Π| seems to be a reasonable estimation for the
resultant relativistic contribution to electric polariza-
tion in M1–O–M2 clusters. At present, it is a difficult
and, probably, hopeless task to propose a more reliable
and so physically clear estimation. Taking into
account the typical value of Δg/g ~ 0.1 we can estimate
the maximal value of |Πij| as 10–3|e| (~102 μC/m2) that
points to the exchange-relativistic mechanism to be a
weak contributor to a giant multiferroicity with ferro-
electric polarization of the order of 103 μC/m2 as in
TbMnO3, [128] though it may be a noticeable contrib-
utor in, e.g., Ni3V2O8 [129].

Concluding the section, let us pay attention to the
magnetoelectric effect in orthoferrites RFeO3. Their
Pbnm structure is particularly interesting in terms of
non-collinear magnetism, however, the perovskite
Pbnm phase is not polar and thus none of the com-
pounds crystallizing within this space group will
exhibit a spontaneous electric polarization. It can be
shown, from pure symmetry arguments, that neither
the spontaneous polarization nor the linear or qua-
dratic magnetoelectric effect is possible if the mag-
netic order involves the Fe-site spins only. At the same
time, spin-canted structures of rare-earth orthofer-
rites can produce ferroelectricity, if there exists some
R-site orderings enabling, by themselves, the linear
magnetoelectric effect. For instance, GdFeO3 and
DyFeO3 represent two important examples of such
low-temperature multiferroics [130]. Interestingly, the
substitution of some of the dysprosium ions in
DyFeO3 for bismuth ions leads to the appearance of a
strong quadratic magnetoelectric effect, the nature of
which is associated with the anomalously high polar-
izability of Bi3+ ions leading to the formation of
extended clouds of local electric polarization near Bi3+

ions [131].

11. CONCLUSIONS

The DM coupling being simple in form, can result
in very different magnetic phenomena: weak ferroan-
tiferro- and weak transversal ferrimagnetism in a wide
number of magnetic 3d oxides, multiferroism,
helimagnetism in CsCuCl3, helical and skyrmion
structures in MnSi-type crystals etc. In the paper we
performed an overview of the microscopic theory of
YSICS  Vol. 132  No. 4  2021
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the DM coupling and other related exchange-relativ-
istic effects such as exchange anisotropy, electron-
nuclear antisymmetric supertransferred hyperfine
interactions, antisymmetric magnetogyrotropic
effects, and antisymmetric magnetoelectric coupling
in orthoferrites RFeO3 and several typical weak ferro-
magnets. Most attention in the paper focused on the
comprehensive generalization of the Moriya’s theory
and derivation of the Dzyaloshinskii vector, its value,
orientation, and sense under different types of the
(super)exchange interaction and crystal field. Micro-
scopically derived expression for the dependence of
the Dzyaloshinskii vector on the superexchange
geometry made it possible to find all the overt and hid-
den canting angles, that is weak ferro- and antiferro-
magnetic modes in orthoferrites RFeO3. The theoret-
ical predictions have been successfully confirmed by
various experimental techniques. Being based on the
theoretical predictions regarding the sign of the
Dzyaloshinskii vector we have predicted and studied
in detail a novel magnetic phenomenon, weak fer-
rimagnetism in mixed weak ferromagnets such as
RFe1 – xCrxO3 with competing signs of the
Dzyaloshinskii vectors. In contrast to the end compo-
sitions, weak ferrimagnets possess a complex of
unusual magnetic properties, including concentration
and temperature compensation points, new spin-
reorientation transitions, including the newly discov-
ered transition to the angular phase with the spatial
orientation of the antiferromagnetism vector and
emergence of the b-component of the magnetic
moment. These new materials have broad prospects
for practical application, including thermally assisted
magnetic random access memories, thermomagnetic
switches and other multifunctional devices.

The ligand NMR measurements in weak ferromag-
nets are shown to be an effective tool to inspect the
effects of DM coupling in an external magnetic field
and determine the mutual orientation of the vectors of
ferro- and antiferromagnetism, and therefore establish
the sign of the Dzyaloshinskii vector. We considered a
number of exchange-relativistic interactions, which in
one way or another have a common nature with the
spin-bilinear DM coupling. As a result of a detailed
analysis of the tensor structure of the exchange-rela-
tivistic two-ion anisotropy, the emergence of new
nondipole contributions with an unconventional tem-
perature dependence has been established. It is shown
that an analysis of the field dependencies of the 57Fe
NMR frequencies in orthoferrites indicates the exis-
tence of a noticeable antisymmetric supertransferred
hyperfine interaction as an electron-nuclear analogue
of the Dzyaloshinskii interaction. A new unusual ana-
logue of the DM coupling, the antisymmetric spin-
other-orbit interaction can make a decisive contribu-
tion to the circular magneto-optics of weak ferromag-
nets. We considered the exchange-relativistic antisym-
metric contribution to the spin-dependent electric
JOURNAL OF EXPERIMENTAL AN
polarization for 3d magnets and established the
dependence of the dipole moment of superexchange-
coupled ions on the bonding geometry.

The DM coupling as well as related exchange-rela-
tivistic effects are nowadays believed to play further-
more a prominent role in many strongly correlated
materials.
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