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Abstract—A brief review of the results on the expansion of quantum and classical gases into vacuum based on
the use of symmetries is presented. For quantum gases in the Gross–Pitaevskii (GP) approximation, addi-
tional symmetries arise for gases with a chemical potential μ that depends on the density n powerfully with
exponent ν = 2/D, where D is the space dimension. For gas condensates of Bose atoms at temperatures
T → 0, this symmetry arises for two-dimensional systems. For D = 3 and, accordingly, ν = 2/3, this situation
is realized for an interacting Fermi gas at low temperatures in the so-called unitary limit (see, for example,
L. P. Pitaevskii, Phys. Usp. 51, 603 (2008)). The same symmetry for classical gases in three-dimensional
geometry arises for gases with the adiabatic exponent γ = 5/3. Both of these facts were discovered in 1970
independently by Talanov [V. I. Talanov, JETP Lett. 11, 199 (1970).] for a two-dimensional nonlinear
Schrödinger (NLS equation, which coincides with the Gross–Pitaevskii equation), describing stationary self-
focusing of light in media with Kerr nonlinearity, and for classical gases, by Anisimov and Lysikov [S. I. Ani-
simov and Yu. I. Lysikov, J. Appl. Math. Mech. 34, 882 (1970)]. In the quasiclassical limit, these GP equa-
tions coincide with the equations of the hydrodynamics of an ideal gas with the adiabatic exponent γ = 1 +
2/D. Self-similar solutions in this approximation describe the angular deformations of the gas cloud against
the background of an expanding gas by means of Ermakov-type equations. Such changes in the shape of an
expanding cloud are observed in numerous experiments both during the expansion of gas after exposure to
powerful laser radiation, for example, on metal, and during the expansion of quantum gases into vacuum.
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1. INTRODUCTION: BACKGROUND
Symmetries in physics have always played a key

role in obtaining exact relationships and the results
based on them. It hardly makes sense to list many dif-
ferent physical examples where symmetries are used.
It seems enough to us to refer to the Landau and Lif-
shitz, Course of Theoretical Physics [4], where the
numerous symmetries are widely used.

In this brief review, we will consider how symme-
tries can be applied to the problem of expansion into
vacuum of quantum and classical gases within the
framework of the Gross–Pitaevskii equations and gas
dynamics equations, namely, the continuity equation
and the Euler equation for monatomic gases with the
adiabatic exponent γ = 5/3.

For the quantum gases there will be considered the
case when the chemical potential μ depends on the

density in a power-law fashion with the exponent ν =
2/D where D is the space dimension. Only for these
values of the exponent ν an additional symmetry arises
in the problem. Note that in the GP approximation at
a temperature T → 0 for the condensate of a weakly
non-ideal Bose gas the main contribution to the inter-
action between atoms is s-wave scattering.

For a positive value of the scattering length as the
interaction between the Bose atoms corresponds to
repulsion and such a condensate is stable in magneto-
optical traps. In this case, the chemical potential is μ =
gn, where g = 4π as/m. Thus, an additional symmetry
which we consider in the review arises only for the 2D
Bose gas. For a negative scattering length, an attrac-
tion arises between Bose atoms. In nonlinear optics,
this kind of attraction leads to the self-focusing of light
for media with Kerr nonlinearity. Repulsion, in turn,
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SYMMETRY APPROACH IN THE PROBLEM 705
leads to defocusing of the light beam, which works in
the same transverse direction as diffraction to the
beam. In the case as < 0, Bose condensates turn out to
be unstable, which leads to the formation of contract-
ing gas regions, i.e. collapse (see [5] and references
there) observed in experiment [6, 7]. To obtain an
unstable value of the scattering length in experiments,
the Feshbach resonance is used [8, 9], allowing to
change as within a wide range: from very large positive
values to strongly negative values. If for Bose atoms
with negative as a collapse occurs, then for Fermi gases
s-attraction provides the formation of Cooper pairs,
which at T → 0 form a superfluid Bose condensate. By
varying the wave scattering length using the Feshbach
resonance, it is possible to create a Bose condensate in
the so-called unitary limit [1], which is realized under
the condition (|as|kF)–1 → 0, where pF = kF is the
Fermi momentum. In this regime, the positive chem-
ical potential is given by μ(n) = 2(1 + β)εF, where
according to [10–13] β = –0.63 is a universal constant,
and

is the local Fermi energy while m is twice the mass of
the Fermi atom. In the unitary limit, the chemical
potential thus has a power-law dependence on density
with exponent ν = 2/3.

The simplest symmetry in the case of a power-law
dependence of the chemical potential on density is the
symmetry with respect to the dilatation of both spatial
coordinates and time of the form:

(1)

where α is a scaling parameter.
This fact can be easily verified based on the Gross–

Pitaevskii equation [14] for the wave function of the
Bose condensate ψ:

(2)

where n = |ψ|2. The conservation of the number of par-
ticles N = ψ|2dr and the power dependence μ ∝ n2/D

provide the same dependencies on the scaling param-
eter α for both the kinetic term and the chemical
potential (defining nonlinearity in (2)): ∝α–2.

In nonlinear optics and plasma physics, the GP
Eq. (2) is usually called the nonlinear Schrödinger
equation (NLS). The standard form of the NLS equa-
tion results from Eq. (2) rewritten in dimensionless
variables:

(3)

which can be represented in the Hamiltonian form
(see, e.g. [5])
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with the Hamiltonian

(4)

It should be noted that the scaling symmetry (1) is
also in the Schrödinger equation for the motion of a
quantum mechanical particle in the potential U = βr–2,
independently on the sign of β, for any dimension D.
The same symmetry is also present for the hydrody-
namics of an ideal gas with the adiabatic exponent γ =
5/3 for potential three-dimensional f lows [3], in the
case of two-dimensional f lows—with γ = 2. The latter,
in particular, follows from the fact that the GP Eq. (2)
in the quasiclassical limit (in the Thomas–Fermi
approximation) coincides with the hydrodynamic
equations for potential gas f lows (see [15, 16]) and
therefore this symmetry is preserved in the case of gas
dynamics with γ = 1 + 2/D. This circumstance was
first drawn to the attention of the authors of the paper
[3] by Dzyaloshinskii [17].

However, the scaling transformation does not
exhaust all symmetries of Eqs. (2) and (3). More gen-
eral is the symmetry with respect to the Talanov trans-
forms [2]—transformations of the conformal type,
which include both amplitude scaling transformations
and phase changes of the wave function ψ. This trans-
formation was found for the two-dimensional nonlin-
ear Schrödinger equation (NLS) describing stationary
self-focusing of light in a medium with Kerr nonlin-
earity, in which the role of time in (3) is played by the
coordinate z along the direction of propagation of the
light beam.

Under the Talanov transformations of the general
form (for all ν = 2/D), Eq. (3) remains invariant under
the change of the wave function ψ, coordinates r and
time t to the new wave function  and new coordinates
r' and time t' [18]:

(5)

In linear optics, these relationships are known as
lens transforms.

It is important to note that the superposition of
transforms with λ1 =  and λ2 =  represents a
transform (5) with λ3 = λ1 + λ2. Thus, the transforma-
tions (5) form the abelian group [18].

A direct consequence of this symmetry is the virial
theorem obtained by Vlasov, Petrishchev, Talanov [19]
for the two-dimensional nonlinear Schrödinger equa-
tion (NLS) with cubic nonlinearity:

(6)
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706 KUZNETSOV, KAGAN
This theorem was first established in [19] for focus-
ing nonlinearity. It is easy to see that (6) is also true in
the case of repulsion (defocusing nonlinearity) [15,
16]. It is important that the virial theorem (6) is true
for any value of ν = 2/D [18, 20]. Note that from the
classification point of view, the NLS with ν = 2/D
belongs to the so-called critical models (see, for exam-
ple, [5, 18, 20]).

Simple integration of (6) gives that the mean
square of the cloud size R2 = |ψ|2dr/N changes in
time quadratically:

(7)

In the case of repulsion (defocusing nonlinearity),
the Hamiltonian H is positive. Therefore, for large
times, t → ∞, the average size of R grows linearly with
time. The relation (7) contains two constants C1 and
C2, which are new in comparison with H and N inte-
grals of motion. However, they differ from the Hamil-
tonian and the number of particles by the presence of
an explicit dependence on the time t:

(8)

Integrals of this kind are non-autonomous, which,
as will be seen below, does not allow one to establish
complete integrability in the case of self-similar reduc-
tion of the quasiclassical equations. An example of
such nonautonomous integrals of motion is the law of
conservation of the center of mass, which explicitly
contains the time t.

In the case of gas dynamics, to our best knowledge,
this symmetry was first found by Ovsyannikov [21]. It
was effectively used by Anisimov and Lysikov in [3] to
construct an exact axisymmetric self-similar solution
describing nonlinear angular deformations of a gas
cloud against the background of its expansion into
vacuum. Subsequently, it was found that such defor-
mations are observed in various physical systems, e.g.
for the action of the powerful laser radiation on the
solid substance. As a result its original shape in the
form of a disk is converted into a sigar-shape against
the background of the expanding gas (see the mono-
graph [22] and references therein).

For quantum gases expanding into vacuum, such
transformations are also typical for both Bose gases
and Fermi gases (see, respectively, [23–25] and refer-
ences therein). It should be noted that the first scale-
invariant time-dependent solutions for Bose conden-
sates in the hydrodynamic regime for an anisotropic
trap were found by Kagan, Surkov and Shlyapnikov
[26]; in particular, they found a spectrum of oscillating
breathing modes. Later, self-similar regimes were
observed in experiments by Thomas’ group [24, 25]
with anisotropic expansion from an optical trap into
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vacuum of a strongly interacting degenerate Fermi gas
of atoms 6Li.

We should note that in nineteen sixties this prob-
lem, namely the problem of the gas expansion into
vacuum was a very popular one. The first classical
results in this field were obtained in 1956 by Ovsyan-
nikov [21] and in 1968 by Dyson [27]. These works had
a lot of different applications not only in hydrodynam-
ics but in astrophysics as well (see e.g. the original
paper by Zel’dovich [28]).

In this brief review, we mainly restrict ourselves to
considering the quasiclassical expansion of quantum
gases into vacuum, which coincides with the expan-
sion of an ideal gas with the adiabatic exponent γ = 1 +
2/D. It will be shown, using a self-similar solution,
how the form of an expanding cloud evolves for quan-
tum gases in the quasiclassical limit and, accordingly,
for the expansion of an ideal gas. The dynamics of self-
similar expansion in this case is described within the
framework of a system of ordinary differential equa-
tions of the Ermakov type. It should be noted that the
considered symmetry was first used by Ermakov in
1880 [29] when constructing solutions for a number of
mechanical systems, including the motion of a classi-
cal particle in a potential representing the sum of the
oscillatory potential and V(r) = β/r2.

Note that the same symmetry is helpful also in
finding the spectrum in the quantum case for the sys-
tem of N particles moving in a plane and interacting
with each other with the potential V(rij) = β/  (see
[30] and also [31]). It is worth noting also that in nigh-
teen seventies the results of Ermakov were rediscov-
ered by Ray and Reid [32]. Nowadays this type of
equations are usually called as Ermakov–Ray–Reid
systems of equations (see e.g. [33] and references
therein).

In the conclusion, we will discuss the difference
between the expansion of a quantum gas and a classi-
cal one, as well as experimental data on the expansion
of quantum gases into vacuum.

2. BASIC EQUATIONS AND QUASICLASSICS
Consider the Gross–Pitaevskii equations for the

wave function of the Bose condensate ψ [14]:

(9)

Here  is the Planck constant, m is the boson mass.
In the case of Bose atoms, m is the mass of the atom;
for Fermi atoms, m is the mass of the Cooper pair, i.e.
equal to twice the mass of an atom. The chemical
potential μ for Bose atoms is

(10)

is the interaction constant proportional to the s-wave
scattering length as. For positive values of the scatter-
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SYMMETRY APPROACH IN THE PROBLEM 707
ing length between the bosons, repulsion takes place,
and for as < 0—attraction. In the latter case, the con-
densate is unstable—the development of this instabil-
ity leads to a collapse (see, for example, the review
[5]).

For Fermi atoms, the negative value of as with
decreasing temperature, T → 0, first promotes the for-
mation of Cooper pairing of atoms, which subse-
quently form a Bose condensate. As noted in the
Introduction, the limit (|as|kF)–1 → 0, where pF = kF
is the Fermi momentum, corresponds to the so-called
unitary regime, for which

(11)
where β = –0.63 and

is the local Fermi energy. In this case, the equation of
motion for the wave function of the condensate ψ
(T → 0) is the generalized Gross–Pitaevskii equation
(2) with μ(n) (11).

Transition to the dimensionless variables in the GP
equation for ν = 2/D leads to the standard form of the
nonlinear Schrödinger equation (3) with the Hamilto-
nian (4), in which the first term coincides with the
total kinetic energy, and the second term is responsible
for the repulsion between Bose particles.

Introducing by the standard way the amplitude and
phase ψ = Aexp(iϕ(r, t)) (n = A2), NLS Eq. (3) is rewrit-
ten as two equations, namely, the continuity equation
for n and the eikonal equation for the phase ϕ:

(12)

(13)

where v = ∇ϕ represents the velocity (we assume the
absence of the vortices ∇ × v = 0). In the second equa-
tion the term

(14)

is responsible for the quantum pressure.
The equations for the density n and the phase ϕ

preserve the Hamiltonian form:

(15)

where the Hamiltonian coincides with (4). In terms of
n and ϕ H has the form

(16)

As noted in the Introduction, the nonlinear
Schrödinger equation (3) for ν = 2/D has an additional
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symmetry relative to Talanov transformations [2].
Talanov transforms contain scaling transformation of
the form t → α2t and r → αr due to the conservation of
the total number of particles N = ψ|2dr as well as
phase transformations. Both of these symmetries are
of the Noether type and lead to the appearance of two
additional integrals of motion C1 and C2 (7), following
from the integration of the virial relation (6).

The quasi-classical approximation (the non-sta-
tionary Thomas–Fermi approximation) for the
Gross–Pitaevskii equation corresponds to neglecting
the quantum pressure in (13):

(17)

As a result the equations of motion transform into
the hydrodynamic equations for the potential f low of
an ideal gas with the adiabatic exponent γ = 1 + 2/D:

(18)

(19)

It should be emphasized that all symmetries in
these equations are preserved. The virial theorem also
remains valid for this system; in this case, in the Ham-
iltonian (16), it is necessary to neglect the second term
responsible for the quantum pressure.

Basically, further we will neglect quantum pres-
sure. Neglecting quantum pressure implies faster spa-
tial and temporal phase changes (large phase gradients
and derivatives with respect to time) compared to
space-time variations of the modulus of the ψ-func-
tion in the GP equation. Let us emphasize that all the
indicated symmetries do not depend on the nature of
the interaction—repulsion or attraction. The same
applies to the virial theorem (6). For repulsion, it fol-
lows from the virial theorem that asymptotically at
large t the average size of a quantum gas cloud expand-
ing into vacuum, independently on whether or not
quantum pressure is taken into account, grows linearly
with time, i.e. the ballistic regime is reached [34, 35].

Let us consider how the expansion of the quantum
gases into vacuum occurs in the quasi-classical
approximation. In this case the equations of motion,
as already mentioned, coincide with the hydrody-
namic equations for the ideal gas with γ = 1 + 2/D.
Thus, in a three-dimensional case we deal with the
expansion of the monoatomic gas into vacuum (note
that for the ideal gas γ = (i + 2)/i where i is the number
of the degrees of freedom).

In 1970 Anisimov and Lysikov [3] discovered a very
interesting phenomenon associated with the nonilin-
ear deformations of the shape of a gas cloud expanding
into vacuum. This behavior follows directly from the
solution which they found for a gas with γ = 5/3 (see
also [22, 36, 37]). In this section we will use the virial

 |
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Fig. 1. Dependence of f(ξ) for Fermi gas in the unitary
limit (arbitrary units).
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0
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theorem and construct an anisotropic quasiclassical
solution which coincides with the result of Anisimov
and Lysikov for D = 3.

We will look for a solution to Eqs. (12) and (13) in
a self-similar form:

(20)

where the scaling parameters a are functions of time t,

ξl = xl/al are self-similar variables, and V(a) = 
is the volume in the space of scaling parameters. Note
that the ansatz (20) preserves the total number of par-
ticles.

Substitution (20) into the continuity Eq. (12)
allows integration, as a result of which the phase ϕ is
found up to an arbitrary function ϕ0(t):

(21)

The function ϕ0(t) is determined from the eikonal
equation. Substitution (21) in (13) gives D equations of
motion for the parameters al:

(22)

where λ is an arbitrary positive constant determined
from the initial conditions. For f(ξ), as a result, we
have

(23)

Thus, the density in terms of the variables ξ
depends only on the modulus |ξ|. For

the density n should be taken equal to zero (see Fig. 1
for D = 3). In accordance with (22) the dynamics of
the parameters ai(t) (i = 1, …, D) is described by the
Newton equations for a particle motion in the
D-dimensional space

(24)

in the potential

(25)

Note that these equations correspond to the so-
called systems of the Ermakov-type [29] (see also [33]
and references therein).

It is evident that Eq. (24) should have the same
symmetry as the initial GP Eq. (2). First, Eqs. (24)
conserve the energy
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(26)

Second, for Eqs. (24), a virial relation (6) written in
terms of ai is easily established by direct computation.

For  we have

Substitution of (24) into this relation gives

which is the same as (6). Integrating twice, we obtain
two integrals C1 and C2:

(27)

It would seem that the presence of three integrals
for the system (24), i.e. E, C1 and C2, guarantees its
integrability for all physical dimensions, including
D = 3. However, this is not so due to the fact that the
integrals C1 and C2, as functions of ai, explicitly
depend on time:

(28)

(29)

for this reason, they are non-autonomous, although
they are in involution with other integrals of motion,
cf. with (8).

2.1. Two-Dimensional Gas Expansion

Let us first consider the expansion of a two-dimen-
sional gas in more detail (see [16]). In a cylindrical
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SYMMETRY APPROACH IN THE PROBLEM 709
coordinate system with a2 =  +  and polar angle φ
the energy integral is written as

Next multiplying E by a2 = 2Et2 + C1t + C2, it is
easy to obtain that the combination

is a constant (Ermakov’s integral). As a result, we
come to the law of conservation of the new “energy”

(30)

with new time τ:

(31)

where

(32)

plays the role of potential energy. Ueff is always positive
and tends to infinity as φ → 0 and φ → π/2. Minimum
Ueff = 2λ for φ = π/4 corresponds to the isotropic case.
In this case, only a2 changes, which is determined
from the virial relation: a2 = 2Et2 + C1t + C2.

New time τ (31) can easily be expressed in terms of t,

where χ2 = /E and t0 = , so τ = 0 at t = 0. If the

initial gas velocity is zero (which is typical for an
experiment), then the constant C1 = 0 and

In this case, asymptotically for t → ∞

(33)

The trajectory φ(τ) is found by integrating Eq. (30):

Hence, the τ-period in the potential Ueff(φ) (32) is
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where φ(±) are the roots of the equation  = Ueff(φ)
(turning points). For large values of  the oscillations
weakly depend on the details of the function Ueff(φ).

Asymptotically the angular “velocity”  → ±

while the τ-period T → π/ , i.e. in this limit T is
twice τ∞ given by (33). Note also that the dependence
T( ) is monotonic for Ueff(φ) with a maximum corre-
sponding to the potential minimum Ueff(π/4). This
means that for C1 = 0 the second turning point is
unreachable when t → ∞.

In particular, if we start from the left turning point,
then the system does not reach the right turning point.
And vice versa: if the starting point is right, then the
left is unreachable. This situation, as we will see below,
is also typical for the three-dimensional cylindrically
symmetric case.

2.2. Expansion of Three-Dimensional Gas

For the expansion of the Fermi gas in the unitary
limit, when ν = 2/3, the equations for the scaling
parameters are integrated in the same way as in the
two-dimensional case. Foe D = 3, the energy (26)
should be written by introducing a spherical coordi-
nate system (a, θ, φ):

Accordingly, we introduce again the energy  =

Ea2 –  = EC2 – /8 (the Ermakov integral), the

conservation of which is a consequence of the symme-
try with respect to dilatations, and new time τ using
the same formula (31). As a result, we get

(34)

where the effective potential is expressed in terms of
spherical angles,

(35)

Thus, we obtain a system with two degrees of free-
dom specified by the angles θ and φ.

For the cylindrically symmetric solutions, when
cosφ = sinφ = /2 (i.e., for φ = π/4), we can write 
in the form:

(36)
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analogous to (30) for the two-dimensional case. The
only difference is in the form of the effective potential
Ueff. Integration of this equation leads to the Anisi-
mov–Lysikov result [3].

In the general case, when we take into account the
dependence from the both angles, the knowledge of
the only one integral  is not enough. As it was shown
by Gaffet [38], the given system has one more addi-
tional integral of motion (besides ), which follows
from the Painleve test. The existence of two integrals
of motion already guarantees the complete integrabil-
ity of this system. It is important to note, as in the pre-
vious case, that the motion in the potential (35) retains
its nonlinear quasi-oscillatory character.

2.3. Account of the Quantum Pressure

Let us now discuss the role of quantum pressure in
the expansion of quantum gases into vacuum. Note
that for the solutions obtained above, the quasi-classi-
cal criterion (17) is violated at this point at the point
ξ = ξmax. Namely, the second derivative of the ampli-
tude A with respect to ξ becomes infinite at this point,
and accordingly the term of the quantum pressure
becomes infinitely large. This is a typical situation for
quasiclassical solutions in quantum mechanics, when
it is required to solve the problem of matching the
solutions at the turning point (see [39]). In our case,
the role of the turning point plays ξ = ξmax. In the
neighborhood of the point ξ = ξmax we should match
the solution constructed for ξ < ξmax (the internal
region) with the solution in the external region for
ξ > ξmax.

In the internal region far from ξmax the solution
should transform into the quasi-classical one which
we found before. In the same time in the external
region the function ψ should be governed by the linear
Schrödinger equation. It should be said that this prob-
lem was discussed in details in [40] for the regime of
strong three-dimensional collapse in the cubic NLSE
(ν = 1). In this case, the matching problem can be
considered in a similar way.

In what follows, we will assume that Δξ ≪ ξmax rep-
resenting the transition region Δξ to be rather narrow.
It is easy to understand that the problem then can be
considered as a one-dimensional one in the direction
normal to the surface ξ = ξmax.

Let us start with the isotropic expansion of the two-
dimensional Bose gas when the chemical potential
μ(n) = n. Turn to the equation (13) for the phase ϕ. For
the self-similar quasiclassical solution, the recalled
phase can be found from the integration of the conti-
nuity equation, i.e., the phase ϕ is not sensitive to the
variation of the amplitude in the matching region.
This means that everywhere in the transition region we
can assume that

�E

�E
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where  = a–2(1 – λξ2/4) is the solution of the quasi-
classical equations. As a result, the equation for the
amplitude A in the matching region can be written as

Since A0(ξmax) = 0 (ξmax = 2/ ), in this equation

it is necessary to keep in  linear deviations in χ = ξ –
ξmax:  ≈ –χa–2 , and in the Laplace operator ∇2,
due to the narrowness of the transition layer, leave the
second derivative with respect to χ. As a result, we
come to the following differential equation for the
function g = A/a

with the boundary conditions g → 0 for χ → ∞ and

g →  for χ → –∞. This equation represents the
Painleve II equation (see, e.g. [40]). For large positive
χ this equation turns into the Airy equation with an
exponentially decaying solution. For smaller |χ| the
solution will be close to the Airy function and will have
an oscillatory character. As we move further from the
boundary ξ = ξmax into the internal region, oscillations
will remain in the solution, however their amplitude
will be decreased. The solution itself for ξ → –∞ will
approach the required asymptotic form.

The appearance of these oscillations is the main
manifestation of the quantum nature of the Bose con-
densate during its expansion into vacuum. These
oscillations are of the diffraction origin and are similar
to the Newton’s rings.

We would like to note that in the one-dimensional
problem of the expansion of a Bose gas into vacuum,
as shown in the work [41] (see Fig. 3f in this paper),
there are no oscillations at all at the edge. The reason
is that the density in this case in the vicinity of the
extreme point behaves quadratically and therefore no
violation of the quasi-classical approximation at this
point is observed. However, under different conditions
[42] oscillations at the edge are observed. We empha-
size that the matching problem in the limit of small
Δξ ≪ ξmax is reduced to a one-dimensional problem,
but by construction it differs significantly from the
expansion problem within the one-dimensional NLS
equation, integrable by means of the inverse scattering
transform [43].

In the anisotropic case, the oscillations will obvi-
ously be preserved. First, in the Laplace operator, the
largest derivative will be along the normal to the sur-
face ξ = ξmax. Secondly, angular velocity  = r  for
sufficiently long times t → ∞, when the size of the gas
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Fig. 2. Images of an expanding strongly interacting Fermi
gas in time (in μs). Initial form is a cigar. 
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Fig. 3. Dependencies of τ2(t). On the vertical axis the exper-
imental values of τ2(t) ≡ m[r2 – r2t = 0]/r ⋅ ∇Ut = 0
are measured for expansion of strongly interacting Fermi
gas as a function of time t, U(r) is the initial trap potential
value. Black markers correspond to the gas at resonance
1/(kFas) = 0, red and blue 1/(kFas) = 0.59 and 1/(kFas) =
–0.61, while the solid curves are the calculation results
[25]. 
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cloud R significantly exceeds the initial size of R0,
turns out to be much less than . According to the
virial theorem (6),  ≈ , and

This means that the main changes will occur along
the normal to the boundary ξ = ξmax, and temporal
changes in the angle can be neglected. If at the initial
moment the condition of quasiclassical approxima-
tion is satisfied, then it will be satisfied everywhere
except for the narrow region δξ ≫ |ξ|max. In this case,
the ratio of δξ and |ξ|max, due to self-similarity, can be
considered unchanged, which is true at least for large
t. Thus, asymptotically, the matching problem should
be considered one-dimensional in |ξ| with a locally
frozen direction of the normal. Hence, it becomes

�R
�R ∞v

Ω ∞= Ω = Ω τ ≤v v
� �| | | / |/ 2 /( ).r d d r E t
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clear that a belt of diffraction-like density oscillations
is formed around the surface ξ = ξmax.

The behavior of a quantum Fermi gas in the unitary
limit in the vicinity of the surface ξ = ξmax is analyzed
in a similar way.

3. CONCLUSIONS

Thus, we have shown how the symmetries for the
GPE, when the chemical potential has a power-law
dependence on the density n with exponent ν = 2/D
(where D is the space dimension), affect the expansion
of quantum gases into vacuum. As a consequence of
the virial theorem, independently of the relation
between the quantum pressure and the chemical
potential, the average size of the expanding cloud
grows asymptotically at large times linearly with t, so
that the expansion rate tends to a constant value  =
(2H/N)1/2. The most general symmetry of the GPE
corresponds to the Talanov transformations which
form the abelian group. The same symmetry takes
place for potential gas f lows with the adiabatic expo-
nent γ = 1 + 2/D, described using the equations of gas
dynamics: the continuity equation and the Euler equa-
tion. It is important that this hydrodynamic system
coincides with the Gross–Pitaevskii equation in the
quasiclassical limit and thus inherits the symmetries of
the GP equation.

We showed also that, in the quasiclassical approxi-
mation, the GP equation has self-similar anisotropic
solutions describing nonlinear angular quasi-oscilla-
tions of the cloud shape against the background of the
quantum gas expansion. In the three-dimensional
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case, these solutions coincide with those found by
Anisimov and Lysikov for the expansion of a classical
monoatomic gas with the adiabatic exponent γ = 5/3
into vacuum excluding the region where the density
vanishes in the quasiclassical theory. This is a whole
surface which plays the same role as a turning point in
the quasiclassical approximation in standard quantum
mechanics. The problem of matching the solutions in
the internal and external regions shows that spatial
density oscillations of a diffraction nature arise in the
neighborhood of this surface. This is what distin-
guishes quantum and classical gases as they expand.

In conclusion, let us discuss to what extent the
experimental data correspond to the obtained analyti-
cal results. The self-similar expansion of a strongly
interacting Fermi gas from a trap of a cigar-shape was
observed in experiments [24]. Figure 2 taken from [24]
shows the expanding Fermi gas. At the initial moment
of time, the gas cloud had the shape of a strongly elon-
gated ellipsoid in the form of a cigar (time t = 100 μs),
then at t = 600 μs was almost spherical and at the final
stage the cloud had the shape of a disk. The total
observation time was 2000 μs, which can be taken as a
half-period (or less) of angular oscillations of the gas
cloud shape, t ≤ tosc/2, according to the results of the
previous section. Thus, all these stages qualitatively
correspond to the self-similar solution.

Figure 3 presents the results of the measurements
of the average size as a function of time for three values
of 1/(kFas) [25].

All three dependencies τ2(t) represent with good
accuracy parabolic dependencies, in full accordance
with the relation (7) following from the virial theo-
rem (6). Strictly in resonance at 1/(kFas) = 0 the mean
size of the cloud r2 can be expressed via the initial
trapping potential U(r) in the following form [25]:

(37)

The calculations presented in [44] show that the
expansion law (37) coincides with the quasiclassical
dependence of r2 (27) in the unitary limit. Note that
in accordance with (27), the mean size r2 indeed lin-
early depends on energy that was verified in the exper-
iments [25].

We emphasize that these dependencies are based
on the quasiclassical theory, which is not different
from the hydrodynamics of an ideal gas with the adia-
batic exponent γ = 5/3. As we have shown, the differ-
ence between a quantum gas and a classical one in the
problem of expansion into vacuum consists in taking
into account the quantum pressure, which leads to the
appearance of density oscillations at the boundary of
the expanding cloud. Apparently in the experiments
[24] and [25], we think that the expansion of the nor-
mal Fermi gas rather than the superfluid gas was
observed.
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Concerning the expansion of the Bose atoms note
that in the experiments [23], qualitatively the same
sequence of the shape variations of the gas cloud was
observed (as in the three-dimensional Anisimov-
Lysikov solution [3]). This fact serves as an evidence
that in the experiment the normal component plays
more essential role than the superfluid one.

Recall that one of the key experiments for the dis-
covery of Bose–Einstein condensates in gases of alkali
elements 7Li, 23Na, 87Rb [45–47] was the determina-
tion of the distribution function of Bose atoms during
the gas expansion into vacuum when the trapping
potential was switched off. The distribution function
had a bimodal form, which corresponded to normal
and superfluid components. For the normal compo-
nent, the velocity distribution was wide—thermal—of
the Maxwellian type, and the superfluid component
had a narrower distribution with a width determined
by the interaction parameter (in the sense of Gross–
Pitaevskii).

At low but finite temperatures, the Bose condensa-
tion temperature drops due to the density decrease
during expansion, which must inevitably lead to an
increase in the number of atoms of the normal compo-
nent. For this reason the shape of the cloud should be
determined by the normal component, which can be
considered as a monoatomic gas. Cold superfluid
component will be concentrated inside the expanding
cloud. For Fermi gases, this situation, apparently, also
occurs. In contrast to Bose gases, the transition to the
normal component upon expansion of the Fermi gas
will also be accompanied by the destruction of Cooper
pairs. Thus, the expansion of a quantum gas should
lead to the appearance of Newton’s rings, which was
not observed in the experiments [23], as well as in [24,
25]. Observation of such oscillations, at least at the ini-
tial stage of expansion, would be an evidence that the
gas is in a quantum state.
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