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Abstract—An attempt is made to answer the question posed in the title. Periodic metamaterials, namely,
cubic photonic crystals with dielectric inclusions (including those with metallic properties), methods for
introducing material equations (homogenization), and the possibility of describing metamaterials by scalar
permeability and permittivity (or two scalar parameters) including negative values of their real parts, are con-
sidered. For photonic crystals, the Landau conclusion about the absence of high-frequency (optical) mag-
netic properties is confirmed. In particular, negative values of magnetic permeability or any of its components
are impossible. Configurations of metamaterials with almost isotropic properties are presented without
regard for spatial dispersion.
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INTRODUCTION

In a broad sense, metamaterials are considered to
be any artificial media (AM), which have been inten-
sively created and widely theoretically studied in the
last two decades owing to the development of modern
technologies, including nanotechnologies. Their
investigation began more than a hundred years ago,
and by the middle of the last century, important results
were obtained on artificial dielectrics and structures
(see, e.g., review [1]). Created AM can be periodic and
chaotic, i.e., with a periodic and chaotic arrangement
of particles or metaatoms (MAs) in a base, which is
usually a homogeneous and isotropic dielectric
medium. Another type of AM is created and studied
using the theory of mixtures, mixing formulas, the
percolation theory, the compact group method, and
some other approaches [2, 3]. Here, such metamateri-
als are not considered: we study only periodic AM,
which are also called photonic crystals. Correspond-
ingly, there is an analogy between them and crystals in
optics, and amorphous dielectrics serve as an analogy
for mixtures. Metamaterials are often considered in a
narrow sense as periodic AM containing metallic MAs
or particles or, even in a narrower sense, as AM with
“simultaneously negative dielectric permittivity ε and
magnetic permeability μ” [2, 4]. They are also associ-
ated with AM in which bulk back waves (BWs) propa-
gate [4]. Interest in the metasurfaces along which BWs
are possible has recently been quickened, and the
requirement of simultaneous negativity of permittivity
and permeability (or any of their components) is not
mandatory [5]. Let us immediately make a reservation

that neither ε nor μ can be negative, since these are
complex quantities, all the more so that the losses in
metallic MA are significant and the structures with
BWs under study are resonant. In addition, BWs exist
in any photonic crystal which is strictly described only
by a tensor permittivity with allowance for spatial dis-
persion [6–8]. Therefore, many work have been
devoted to the fabrication and study of fully dielectric
AM with simultaneous electric and magnetic
responses. The answer to the question of whether it is
possible to achieve negative effective values of ε and μ
(and even more so their simultaneously negative val-
ues) in fully dielectric AM is one of the purposes of
this work and will be given below. Usually, “simultane-
ity” is understood as values at a single fixed frequency.
This idea is tempting, since the loss tangent of good
dielectrics over a wide range from microwaves to optics
can be on the order of or less than 10–4, and cryogenic
temperatures are not required here. However, these
parameters also depend on the wavevector k; i.e., it is
necessary to understand simultaneity as belonging to a
fixed point in an isofrequency surface (dispersion sur-
face in k space). Accordingly, the transition from one
region or branch of the dispersion surface to another
can be accompanied by a transition from direct waves
to back waves. The losses can be decreased by two
orders of magnitude using helium temperatures. Such
periodic AM with metallic MAs can be considered as
photonic crystals along with dielectric AM. In such
electromagnetic crystals, the absorption of photons
may be neglected, and then their behavior is similar to
the behavior of electrons in ordinary crystals. Just like
electrons and holes in a solid crystal, these are quasi-
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particles, namely, quasi-photons or polaritons, which
have dispersion and allow efficient control of light;
therefore, such nanophotonic structures are of partic-
ular interest. Quasi-photons have dispersion and
almost forbidden zones are possible for them. The
word “almost” can be omitted if we neglect dissipation
and consider an infinite periodic photonic crystal.

As is known in the electrodynamics of continua,
permeability μ loses its meaning with increasingly fre-
quency and is μ ≈ 1 in the optical frequency range;
therefore, to consider a magnetic response is meaning-
less [9, §79, §103]. This statement has been repeatedly
questioned and refuted over the past twenty years (see,
e.g., [10]). However, the conclusion about the inexpe-
diency of a high-frequency description of natural
materials and metamaterials using permeability is cor-
rect. In this paper, this conclusion, which was made in
[9], is confirmed in the general case specifically for
photonic crystals using classical electrodynamics and
homogenization. It can be extended to the interaction
of radiation with periodically located MAs as quantum
dots. The problem of creating isotropic metamaterials
is also considered. In this case, the crystal size or the
number of periods is important. This number should
be so large that the radiation losses can be neglected.
Using these approximations, we will solve the prob-
lem. For example, a thin 100-nm-thick film with five
periods and two different layers of 10 nm per period is
not an 1D crystal. It is more consistent with an optical
filter [11, 12]. For a band gap to appear, a film must
have a thickness of more than 800 nm, where the num-
ber of periods is larger than or equal to 40 [12]. A pho-
tonic crystal (like an ordinary crystal) is described by
the permittivity tensor  rather than a negative scalar.
However, there are many works in which periodic AM
are described using permittivity ε < 0 and permeability
μ < 0. Such parameters are often entered to analyze
and some properties, such as the behavior of rays.
Then, the wave vector electrodynamics is replaced by
the beam optics. At best, such permeabilities are intro-
duced into Maxwell’s equations. This is due to the fact
that strict solutions are very complex and have not
been used in the works known to us (except for the use
of commercial software packages). Below, we present
approaches to a rigorous numerical–analytical solu-
tion of such problems.

It is known that the internal field plays a key role in
the description of permittivity and permeability in nat-
ural substances. Usually, permittivity and permeability
are introduced by averaging the fields, inductions, and
polarizations of microscopic Maxwell–Lorentz equa-
tions over a physically infinitesimal volume [6–8, 13].
This process is called homogenization for crystals and
mixtures. For mixtures, averaging is carried out over
small volume with the linear size significantly smaller
than the wavelength and with many MAs. For a pho-
tonic crystal, averaging is performed over a periodicity
cell. It is not necessary to require its smallness in com-
parison with the wavelength, but it is necessary for the

ε̂
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locality of material equations. Low-frequency homog-
enization means k = 0, i.e., neglected spatial disper-
sion (SD). For a calculated band structure, the
homogenization depends on a point in a dispersion
surface. The averaging also depends on a medium
model [1, 4–8, 14]. For example, it is possible not to
introduce permeability at all, i.e., not to use a sym-
metric approach and to determine only  tensor. To
determine its six components (in general, complex
ones), six scalar Maxwell’s equations are quite suffi-
cient, which determines its advantages. The symmet-
ric approach based on  and  requires the introduc-
tion of additional conditions usually associated with
symmetry [15, 16].

BACKGROUND

In the first works on homogenization [17–19],
magnetic properties were obtained using only dielec-
tric MA when setting a medium model in the form of
ε and μ scalars. For example, Lewin [17, 18] consid-
ered the reflection of a normally incident wave from
the cubic lattice of spherical magnetodielectric MAs.
Wave polarization was fixed along one of the axes. A
number of approximations were used. Diamagnetism
was obtained for metallic MAs. For dielectric MAs
with a high permittivity, a wide variation of the values
of μ was obtained with the statement that this quantity
can lie almost at any point in the complex plane. This
is not entirely true. Figure 1 shows the results of calcu-
lations using the formulas from [17, 18]; they show that

 > 0 and  > 0 at  < 5000. At higher values of per-
mittivity and sufficiently large balls, resonances with a
small negative permittivity zone are possible. How-
ever, there are no substances with such high linear iso-
tropic permittivities, and the resonances are caused by
the function F(k0a ) introduced in [18] and are
nonphysical. At a high permittivity of the balls, per-
mittivity  is saturated, which also indicates the lim-
itation of the model. The permittivity of the base in the
calculations was 3 – i0.0003, and /  ~ 10–4 was
obtained. The permittivity of the balls was changed
from 1 to 10000 and the dielectric loss tangent was
taken to be 10–4. Lewin noted that the results are only
suitable for the macroscopic reflection coefficient at
normal incidence. That is, the parameters can change
for incidence at a certain angle. The results are valid
under the assumption k0a ≪ 1, where a is the ball
radius, and the more rigid condition k0d ≪ 1, where
a ≪ d and d is the period, should be used for homog-
enization. If this rigid condition is met, the effective
permittivity differs weakly from the permittivity of the
base and the permeability decreases by an order of
magnitude or more. Thus, the condition  ≫ 1 is the
result of a strong mutual influence of MAs (influence
of the internal field), and the model becomes less strict
because of spatial dispersion and other factors. The
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Fig. 1. (1–4) Re(εe) and (5–8) Re(μe) vs. Re(ε2) at μ1 =

μ2 = 1 and k0d  = 0.1 [12, 13]: ε1 = (1–3, 5–7) 3 and (4,
8) 1. a/d = (1, 5) 0.1, (2, 3) 0.2, and (4, 7, 8) 0.3.
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main limitation of the model induced by an increase in
the size is the disappearance of spherical symmetry
used to derive formulas.

Rytov [19] considered a plane-layered periodic
medium. Scalar permittivity and permeability describ-
ing waves of two transverse directions were found for
it. The conditions were obtained by equating the wave
impedance and the deceleration factor to their effec-
tive values,  and n = . Two conditions
determine the two effective quantities εe and μe. These
quantities are different in different directions. Even if
the layers are dielectric, permeability appears. On the

μ ε/e e ε μe e
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other hand, the following material equations for such
a uniaxial dielectric AM were obtained in the long-
wavelength limit: εe⊥ = (ε1d1 + ε2d2)/d an dependences

 = ( d1 + d2)/d. In addition, a similar formula
for permeability was derived in the case of AM with
magnetic layers. Such 1D metamaterials are described
by diagonal tensors, which include the permeabilities
of the layers and their thicknesses. If the layers have no
magnetic properties, we have μ1 = μ2 = 1 and μe = 1;
i.e., AM also has no them. However, such a metama-
terial can be described by a model taking into account
magnetic properties by introducing two scalar param-
eters, εe and μe, instead of  tensor. For example, we
can require that the coefficient of reflection R from
such a medium be equal to the coefficient of reflection
from an isotropic effective medium. The reflection
coefficient depends on the angle of incidence, i.e.,
vector k in the medium; therefore, this approach
allows us to take into account SD. It can be extended
to a small-scale period structure in a large-scale period
[20]. If a structure has a large number N of periods of
two dielectric layers per period, its reflection and
transmission coefficients are exactly calculated. It is
convenient to use a transmission matrix. By describing
the structure as homogeneous with two parameters εe
and μe, we can relate them to the parameters of the
layers. Such a model will correctly describe diffraction
by plane-layered structures at other large values of N,
i.e., at other thicknesses of the entire structure. How-
ever, it is not applicable to describe the waves inside.
A model based on the permittivity tensor of a uniaxial
crystal is more suitable. The above model describing
εe⊥ and  is approximate. It is possible to take into
account SD by joining fields and calculating the
polarization under the action of a plane wave of
direction k [1],
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Here, ε  is the permittivity, d  is the layer thickness, nents. On the other hand, using the Floquet–Bloch
n n

= εn – , and d = d1 + d2. It is interesting to
note that the result of these formulas in a number of
particular cases coincides with the result given above.
The wave impedance of an extraordinary wave in such
an 1D photonic crystal normalized to the impedance

Z0 = μ  is . In vacuum,

we have  = Ex/Hy = Z0 . The reflection
coefficient R = (Z/Z0 – 1)/(Z/Z0 + 1) is related to per-
mittivity tensor, which gives another possibility of the-
oretical and experimental determination of its compo-
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equation cos( ) = (a11 + a22)/2, we can determine
Bloch wavenumber  and the impedance of an E wave

in the z direction, Z = /(  + ). Here, ann

are the elements of the transmission matrix of one
period of two layers. The difference between the two
impedances is that the first is based on homogeniza-
tion in the form of a Fresnel equation, and the second
corresponds to a rigorous solution of the Floquet–
Bloch equation. The second formula for the reflection
coefficient does not include effective permeability and
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permittivity. Equating both reflection coefficients, we
obtain the following formula for homogenization:

To study the properties of metamaterials, research-
ers used commercial software packages to calculate
configuration-complex periodic microstructures.
Such packages can demonstrate the solutions that
illustrate negative refraction (NR). However, NR does
not mean that ε < 0 and μ < 0 and does not even say
anything about the fact that some tensor components
are negative. Usually, NR is related to bulk BWs. How-
ever, BW and NR are different phenomena and can
exist independently [1, 4]. Such AMs are called left-
handed media or metamaterials with a negative group
velocity or a negative refractive index. The refractive
index cannot be negative [21]. This concept was intro-
duced in optics at the dawn of its development and is
applicable for isotropic media, where the wavelength
is larger than the molecule size by 105 times or more.
For AM, this ratio is at least three orders of magnitude
lower, and for them permittivity (ω, k) is a tensor
dependent of wavevector k [4, 6–8]. The bulk waves in
such a crystal satisfy the Fresnel equation, in the gen-
eral case, of the fourth order in k and the sixth order in
wavenumber k0. The maximum number of such waves
is four, and the question of a direct or back volume
wave in a nondissipative photonic crystal is solved by
determining the angle between the vectors k and vg =
∇kω( , k). The type of wave depends on the direction
of the group velocity (normal to the isofrequency sur-
face) with respect to vector k. In a dissipative crystal,
the Poynting vector S = Re(E × H*)/2 should be used
instead of vg. In the general case without bianisotropy,
the isofrequency surface is determined by the equation
ω( (ω, k), (ω, k), k) = const, which takes into
account SD. For a hyperbolic metamaterial, this leads
to a limited isofrequency surface [1]. A bianisotropic
metamaterial with a magnetic response is described by
two more cross-polarization tensors [14–16]. It is
characterized by a strong SD. However, it can also be
described by only one permittivity tensor, but such a
tensor in the general case cannot be reduced to a diag-
onal form. To obtain negative refraction, it is import-
ant at what angle a wave falls and what is the optical
density of the incidence medium [4]. For incidence
from a medium with permittivity , the vector  com-
ponent that is tangent to the surface is preserved and
the vector fulfills the Fresnel equation  = . Inside
the crystal, vector k satisfies a more complex Fresnel
equation. By changing the angle of incidence, we
change the position of the end of the vector in the isof-
requency surface. It is impossible to introduce a single
refractive index for such crystals, even if we take it as a
tensor. Moreover, it is impractical to introduce it: vec-
tor k and wave matrix impedances are introduced in
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electrodynamics, since homogenized (macroscopic)
Maxwell’s equations take the form

and the impedances are determined from them when
dependence k(ω) is determined for a particular disper-
sion branch and effective parameters (ω, k) and

(ω, k) are obtained. In dissipative AM, a negative
group velocity and bulk BWs are not identical con-
cepts. In the case of dissipation, the k-space is no lon-
ger three-dimensional: it is six-dimensional complex
space. This fact does not allow one to determine the
group velocity as the gradient of a scalar. Therefore,
the of energy motion velocity and the group velocity
are also different concepts. In metallic photonic crys-
tals, we have |ε'| ~ ε" in the plasmon resonance region,
and it is almost impossible to make ε"/|ε'| < 10–3 at
room temperature. Surface waves can also be back
[22], and this does not require the presence of mag-
netic properties in a medium, although there are also
back magnetostatic waves [23]. In contrast to induced
magnetism in AM, the anisotropic magnetic response
in ferrites manifests itself in the microwave range in
the presence of an external magnetic field, which is
due to limited saturation magnetization. Surface BWs
can experience negative refraction at metasurfaces.

The concepts discussed above require correct use.
Often a number of them are devoid of physical mean-
ing. For example, the formal substitution of homoge-
neous and isotropic quantities εe = ε' – iε" and μe =
μ' – iμ" into Maxwell’s equations at ε" > 0 and μ" > 0
gives n' < 0 for refractive index ne = n' – in" if we take
ε' < 0 and μ' < 0. The purpose of this work is to con-
sider whether it is possible to form an isotropic
medium with ε' < 0 and μ' < 0. Below, we will show
that this is impossible, which in some way echoes the
conclusions of [24]. The waves in such a metamaterial
in the low-frequency limit obey the Fresnel equation
k2 = εeμe. Constructed as a crystal, it should have
the following properties. The lattice should be cubic
with a period a ≪ Λ, where Λ is the minimum internal
wavelength and λ = Λ  is the wavelength in vac-
uum. The particles included in lattice sites should be
symmetric, i.e., have the same dipole moments
(polarizability coefficients) along each axis. The dissi-
pation should be small: |k"|/ |k'| ≪ 1 and |n"/n'| ≪ 1,
where k' – ik" is the wavevector and n =  = n' –
in" is the homogenization-induced refractive index
(note that vector n' = k'/k0, the modulus of which
determines deceleration in the k' direction, may be
introduced). The SD and biisotropy should be negligi-
ble. The latter corresponds to the fact that a metama-
terial should be considered far from resonances and
band gaps at small |k| and large wavelengths compared
to the particle size Λ. The neglect of biisotropy means
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Fig. 2. Photonic crystal with magnetic and electric dipoles
in the cubic lattice.
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that the secondary electric fields induced by the polar-
ization of each particle do not contribute to its mag-
netic polarization and the magnetic polarization of its
neighbors. The same applies to magnetic fields. Once
again, we emphasize that the use of scalar quantities
ε < 0 and μ < 0 in Maxwell’s equations gives a solution
in the form of a plane wave, for which k ⋅ S< 0, which
does not require the introduction of either a negative
refractive index or a negative group velocity. Since a
monochromatic wave has no wave group, there is no
reason to introduce it.

ALMOST ISOTROPIC METAMATERIALS
An electric dipole of length l is well modeled by a

small thin metallic cylinder of small radius r ≪ l. An
isotropic dipole consists of three such mutually per-
pendicular cylinders (Fig. 2a). Its radiation is isotro-
pic. A magnetic dipole is a wire loop. An isotropic
magnetic dipole is represented as three crossed loops
(Fig. 2). We place two (magnetic and electric) isotro-
pic dipoles in each cubic lattice site (Fig. 2a). To elim-
inate the mutual influence of the dipoles of the neigh-
boring sites, we assume R ≪ a. In addition, we assume
l < R. Even in this case, there is a near-field mutual
influence of dipoles at a site: the excitation of an elec-
tric dipole leads to radiation, which excites currents in
the loops, and the excitation of the loops, in turn,
excites electric dipoles. Therefore, such a crystal
incompletely meets our requirements. It is more likely
to be biisotropic. Each emitter at a site in it belongs to
eight cubic cells. Since a cube has eight cubic cells, one
emitter belongs to one cube. It can be placed in the
center of the cube. Then, it is necessary to set the
decomposition of currents in the wires, to calculate
their fields using a periodic Green’s function (GF) of
a given photonic crystal, and to impose boundary con-
ditions at the wires. This allows us to formulate a dis-
persion equation. We will call it microscopic. It allows
us to construct an exact band structure and a micro-
scopic isofrequency surface. To construct it, we need a
dispersion equation, which includes only fields, fre-
quency, and wavevector k. Now, we can perform
homogenization and determine the average fields, the
inductions, and the polarizations; as a result, we can
determine the average (effective) homogeneous (in
the general case) tensor permittivity and permeability.
They correspond to a Fresnel equation for a photonic
crystal, which includes , , k, and k0. When k0 is
fixed, it gives a macroscopic isofrequency surface and
can be considered a macroscopic dispersion equation.

Figure 2b shows the AM that is more consistent
with the isotropy requirements. Obviously, the three
ring loops can be replaced with a metallic ball. The
ring currents on the ball surface induce magnetic
polarization. These are low-frequency currents. The
ball can also be an electric dipole, quadrupole, octu-
pole, etc. [25]. Multipole resonance currents corre-
spond to higher frequencies, although they exist at all

ε̂e μ̂e
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frequencies due to expansion of the total current in
terms of multipoles, i.e., the derivatives of Legendre
polynomials. However, the z axis orientation can be
chosen arbitrarily; therefore, these are isotropic emit-
ters. The currents are often considered to be surface
currents. Therefore, the penetration depth must be
significantly smaller than the MA size. When we talk
further about the currents, we always mean their den-
sities, except in certain specified cases. Too low fre-
quencies or too small sizes can lead to complete field
penetration into the balls or wires. For nanoscale
metallic structures, this situation is possible in wide
frequency ranges, including optical and UV regions.
Figure 3 shows the wavelength-normalized depth of
penetration into silver as a function of the reciprocal
wavelength in meters. The Drude–Lorentz formula
for a bulk sample was used. For nanoscale films and
quantum filaments, these results are approximate,
since the computation requires quantum approaches.

Various resonant emitters, such as open rings, dou-
ble open rings, etc., are not isotropic. The photonic
crystals based on them are not isotropic media. In the
general case, metamaterials with such MAs are bian-
isotropic: an electric field induces both electric and
magnetic polarizations in them, and a magnetic field
induces magnetic and electric polarizations, respec-
tively. Such AM can exhibit BWs, but they are not
structures with ε < 0 and μ < 0 or with n < 0. Their rig-
orous analysis is very complex. Other almost isotropic
structures are shown in Fig. 4. They are easier for an
analysis and homogenization. The metallic balls in
Fig. 4a are characterized by diamagnetism and a small
effective permittivity [26]. The metallic cylinders in
Fig. 4b exhibit isotropic electric and magnetic polar-
izations. The dielectric balls and metallic rings in
Fig. 4c demonstrate isotropic polarization of both
types. The structure in of two shifted rectangular lat-
tices with different dielectric balls in the given low-fre-
quency approximation can only create an isotropic
electric polarization (Fig. 4d). Such a metamaterial
consists of two identical cubic lattices shifted by half
the period with different spherical MAs in them.
Replacement of metal cylinders with dielectric ones is
possible. Replacing the balls with symmetrically
YSICS  Vol. 132  No. 2  2021
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Fig. 3. Normalized penetration depth in silver vs. the
reciprocal wavelength. 
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arranged cubes is also possible. Cubes are much more
convenient for modeling. But technologically, it is
impossible to place cubes at lattice sites without ran-
dom turns. The authors of [27–31] proposed to use the
AM in Fig. 4d as a metamaterial with both negative ε
and μ. This explanation was as follows. Let the reso-
nance frequencies of any E and H modes coincide for
two different balls. Then, they contribute to both elec-
tric and magnetic polarizations. Slightly shifting the
frequency up, we should obtain the polarizations
shifted in phase relative to the fields. Here, you can
argue like this. First, all resonances are high-fre-
quency. The well-known isotropic dielectric materials
with low losses do not have a very high permittivity.
MAs should be included in a dielectric base, which
weakens the effect. Second, the mode of an individual
resonator and the resonator field in a photonic crystal
are completely different when a wave moves in it. A
wave of given direction k in a crystal made of such
MAs corresponds to a certain point on a dispersion
surface, and a change in the frequency leads to a
change in k. The polarization direction depends on
this fact. Due to the openness of a spherical resonator,
its modes are quasi-eigenmodes with complex reso-
nance frequencies. They do not form a complete sys-
tem of functions, and MAs exchange energy with all
neighbors, including distant ones. The wave-excited
field inside MA consists of an infinite set of such
modes and continuous spectrum functions; i.e., it is
impossible to distinguish one mode. Third, the crystal
under study has a strong SD (i.e., it is not isotropic),
since the excitation of a ball at high resonance fre-
quencies depends on direction k and the response is
JOURNAL OF EXPERIMENTAL AN
not local. Fourth, magnetic properties can be not
introduced for dielectric structures, and they can be
described only by a permittivity tensor. Fifth, even if
magnetic polarization is introduced for some reason,
it is necessary to prove that some of its components are
in antiphase to a magnetic field in order to state that
the permeability components are negative.

INTEGRAL AND DISPERSION EQUATIONS

Consider a photonic crystal with cubic cells of face
size a, which are filled with a dielectric medium with
permittivity , and dielectric bodies or MAs in it of
volume V with surface S. The area can be multiply
connected: the volume can consist of the sum of the
volumes bounded by noncontacting surfaces. The
complex permittivity ε(ω) = ε'(ω) – iε'(ω) of MA is
considered independent of coordinate r inside a body,
the MA boundaries are considered sharp; that is, the
permittivity undergoes a jump when crossing the
boundary, ε–(ω, r) ≠ ε+(ω, r) = , r ∈ S. Here, the
normal component of the electric field also undergoes
a jump on surface S,  = , and sources, specifi-
cally, an induced bound-charge surface density, exists
at the boundary. It is obvious that its integral over the
entire surface, i.e., the total bound charge, is zero. In
this formulation, it is convenient to solve the problem
using volume integral equations and a periodic scalar
GF [1],
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Here,  = kx + 2kπ/a,  = ky + 2lπ/a, and  =
kz + 2mπ/a, which determines the periodicity in k' to
within space harmonics. When losses are taken into
account, we have k = k' – ik". GF (1) satisfies the
equation

A dielectric body c permittivity ε in a base with per-
mittivity  creates a polarization current density
Jp(r) = iωε0(ε – )E(r). The polarization current is
additional to the bias current in the base. Hence, it is
easy to see that a phase shift by –π/2 between the
polarization current and the field takes place in a neg-
ative permittivity medium and that this shift is π/2 in a
conventional dielectric. This approach is applicable
for all frequencies and any MAs. For ultralow frequen-

cies, we have Jp(r) = (ε0 /ωc)E(r) = σ0E(r), where dc
conductivity is indicated. At low frequencies, this is
the Drude conductivity. In optics, the Lorentz term is
essential. For thin and long wire structures, only the
longitudinal component of the current is important,
which simplifies the calculation. The integral of GF
(1) with density Jp(r) gives vector potential A(r); dif-
ferentiating this potential, we arrive at the volume
integral equation E(r) = (iωε0 )–1(∇∇ ⋅ A(r) +

A(r)). From here on, we designate k = k0 . In
addition, we have magnetic field H(r) = ∇ × A(r). We
can write several equations for the field E and field H
and for their combination and equations loaded by
surface integrals along boundary S and without them
[1]. In the general case, they have the form of integro-
differential equations, since the desired quantities are
under the signs of both integral and derivatives. As is
seen from Figs. 2 and 4, the use of surface integrals is
inconvenient for algorithmization. We use the volume
integral equation

(2)

Here the operator  ≡ k2  + ∇ ⊗ ∇ is denoted. The
integral in Eq. (2) is taken as the Cauchy principal
value. The dependence of GF on k and k is omitted
despite the fact that it determines the dispersion equa-
tion. In the right-hand side of Eq. (2), the multiplier
κ = ε/ε – 1, which does not depend on the volume of
homogeneous particles, is taken out from the integral
sign. Due to GF (1), it is sufficient to solve this integral
equation only in one (zero) periodicity cell and only
inside particles, where ε(r) ≠ . Therefore, the multi-
plier of the field in the left-hand side is 1 + κ/3. GF
ensures the correct interaction of the entire infinite
ensemble of MAs. In Eq. (2), we can use the ratio

(r – r') = (r – r'), where the prime means dif-
ferentiation with respect to the dashed coordinates
(point of origin). Field E is approximated by three-
dimensional cubic piecewise constant finite elements,
numbering them with one-dimensional index m. Let
the number of such elements be M. The Galerkin
method for Eq. (2) leads to a homogeneous system of
linear algebraic equations (SLAE) (1 + κ/3)  =
κ  of dimension 3M, where  is a unit matrix of
dimension 3M and E is a vector column of dimension
3M consisting of vector columns Ex, Ey, and Ez of
dimension M. The values of , , and  corre-
spond to the corresponding electric field components
in an element with number m. Matrix  of dimension
3M has a block structure , where α and β take the
values of x, y, and z. The dispersion equation has the
form of equality of the determinant of the SLAE to
zero. Finding the roots of such an equation is very dif-
ficult. It is more convenient to use the stationary qua-
dratic functional obtained by scalar multiplication of
Eq. (2) by E*(r) and by volume integration. It is con-
venient to solve it for k2,

(3)

The right-hand side of Eq. (3) depends nonlinearly
on k; therefore, Eq. (3) should be solved iteratively
together with Eq. (2). It is convenient to find an
approximate solution to the dispersion equation, to set
one of the amplitudes (e.g., , which specifies the
wave amplitude), and to solve the SLAE using direct

methods. This allows us to refine the solution of the
dispersion equation and to use iterations. If we divide
a particle into 10 finite elements for each coordinate, we
form 103 elements and the dimension of the problem is
3 × 103. For the SLAE matrix and functional (3),
quadrature formulas can be written. The diagonal ele-
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ments in calculating integrals in the sense of a princi-
pal value can be equated to zero, or other approximate
estimates can be used.

In principle, the dispersion equation allows us to
determine ω at a given k. Without taking into account
the dissipation, k can be set arbitrarily. By fixing k0, we
can construct an isofrequency surface in the k space.
Quantity vg = ∇ω(k) is the group velocity indicating
the energy motion direction. In the case of dissipation,
the group velocity cannot be used: the cell-averaged
Poynting vector S should be calculated. It can not
match the direction of vg. In this case, the vector k =
k' – ik" is complex. The scalar components to be
determined become larger (six) and one complex dis-
persion equation is no longer sufficient. The k space
also becomes six-dimensional. It is necessary to calcu-
late the Poynting vector S = Re(E × H*)/2 and to use
the condition S/|S| = k''/|k''|. Its meaning is that the
wave attenuation direction k" coincides with the
energy motion direction.

Since the dispersion equation in the form of a high-
order determinant equal to zero is very complex, a
simpler approximate approach can be based on an
equation in the form of a functional based on Eq. (2).
To this end, we multiply Eq. (2) by E* and integrate in
volume or MAs. An approximate equation is obtained
by choosing an electric field (or current) for physical
reasons. For wire MAs, where the penetration depth is
smaller than the wire radius, it is convenient to use an
axial current instead of a field and to impose boundary
conditions at the wires surfaces. This gives rise to sim-
ple dispersion equations [26]. For MAs in the form of
a homogeneous dielectric cylinder or ball, it is conve-
nient to use explicit low-frequency solutions of the
Helmholtz equation inside and to determine unknown
coefficients from functional extremum conditions.
Often, e.g., for thin and long cylinders, some field
components (radial and/or azimuthal ones) may be
neglected.

HOMOGENIZATION

Homogenization is a procedure (generally ambigu-
ous) for achieving effective parameters of homoge-
neous media, which are electrodynamically equivalent
in some sense to the original AMs; it is based on solv-
ing inverse problems. In the general case, it requires
some averaging procedures. The dependence of aver-
aging methods is one of the ambiguity causes. Another
cause is the ambiguity of a homogeneous medium
model. The third cause consists in different homoge-
nization methods. One of the first methods used in the
theory of artificial dielectrics is the use of diffraction
parameters [17]. To meet the extinction theorem con-
ditions, AM must have many periods in each dimen-
sion. This approach is electrodynamically complex,
especially for 3D problems. The second method is
based on comparing the dispersion calculations based
JOURNAL OF EXPERIMENTAL AN
on electrodynamic models (e.g., equations of type (2),
(3)) with the Fresnel-equation-based dispersion. It is
relatively simple if a microscopic dispersion equation
is obtained. The third method, which will be used
here, is the homogenization based on calculating the
cell-averaged polarization periodicity for a wave spec-
ified by wavenumber k0 and wavevector k. Conceptu-
ally, it corresponds to the determination of the macro-
scopic electrodynamic parameters by averaging over
physically infinitesimal volume. However, periodicity
cell size a is not necessarily small as compared to the
wavelength. In any case, for a rigorous solution of
Maxwell’s equations, averaging is possible for any
relations, unless the condition a ≪ λ is imposed. This
condition is important for introducing local permea-
bilities. We introduce cell-averaged fields, polariza-
tions, and inductions, e.g.,

The electric polarization is written as

Here, we have considered a bianisotropic model.
Similarly, for magnetic polarization we have

We introduce magnetization M = (  – )H. Writ-
ing other averaged components, we obtain SLAE for
determining the effective parameters. The approach is
suitable for anisotropic and bianisotropic medium
models with allowance for symmetry relations for
material parameters. At a large number of unknowns,
we can write an overdetermined SLAE and solve it by
regularization. In the case of an isotropic model, we
have  =  = 0. In the case of a biisotropic model,
these parameters are nonzero pseudoscalars. In the
case of a dielectric anisotropic medium, we have three
equations,

and two similar ones for other components. If dissipa-
tion is neglected, the Onsager–Casimir symmetry
conditions εeαβ = εeβα take place; i.e., the tensor is
symmetric. In the case of dissipation, the tensor is not
Hermitian but the condition  =  is met. From
the three equations, three quantities are determined if
symmetry conditions are taken into account. The
equations are simplified by reducing the permittivity
tensor to principal axes. Thus, three permittivity ten-
sor components can be determined from three polar-
izations. If there are only two tensors ( , ) and they
can be simultaneously reduced to a diagonal form, in
the general case six complex components can be deter-
mined from six independent complex scalar Maxwell’s
equations. However, the possibility of this reduction
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depends on the structure of AM. For example, sup-
pose we have an AM with magnetic and electric
dipoles at the sites of two identical interpenetrating
cubic lattices. We can make AM by moving the lattices
relative to each other by an arbitrary distance. For-
mally, we can also rotate one lattice relative to the
other through three arbitrary angles relative to differ-
ent axes. It is unlikely that such a thought experiment
should be implemented, but this distinguishes AM
from natural environments, where symmetry is essen-
tial. In the case of only a dielectric AM model without
dissipation, the Onsager–Casimir conditions are met
and the tensor is reduced to a diagonal form in the
general case. It may turn out that the coordinate sys-
tem in which it is sufficient to determine six rather
than three components from six Maxwell’s equations
is more convenient. For the isotropic AM of interest,
it is sufficient to write relations for only one compo-
nent. We have

(4)

Having obtained the solution of the problem for E,
field h(r) = ∇ × A(r) is found as H = E, where the
introduced matrix is determined by the integro-differ-
ential operator for obtaining a magnetic field. Con-
sider the polarization calculation

(5)

Here, there the charge density is ρ(r) = i∇ ⋅ Jp/ω =
–ε0∇ ⋅ [(ε – )E]. Since we consider MAs of a homo-
geneous dielectric, we have ∇ ⋅ E inside it. Therefore,
the surface divergence associated with the induced
surface charge density ρS = ε0Eν(1 – /ε) should be
calculated. Here, Eν is the external normal coordinate.
Since ∇ ⋅ (εE) = 0, we have ∇ ⋅ E = –( /ε)E ⋅ ∇ε and
∇ε = (  – ε) and the charge density is proportional to
the delta function of the normal coordinate. There-
fore, the first integral in Eq. (5) becomes a surface
integral,

Denote χ = ε/  – 1. Equation (2) can be written in

the following form: E = (χE) and  = (), where

 is an integral operator with kernel  and  = ∇ ⊗ ∇ +
k2 is a differential operator. Since ∇ ⋅ ∇ ⊗ ∇ = ∇ ⋅ ∇2

and (∇2 + k2)  = –δ(r), we can easily see that the
action of the divergence operator on the left on the
integral equation gives identity. When solving this
equation, we have to determine the normal compo-
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nent of the electric field and the surface charge den-
sity.

Consider a number of simple cases. Let us have a
photonic crystal of wire rings oriented along the z axis.
For this crystal, we have εe = 1, μezz = μ, and μexx =
μeyy = 1. We have one electric current component Jϕ =
σ(ω)Eϕ. For simplicity, let the wire radius be smaller
than the skin layer thickness and the current is uni-
formly distributed. The solenoidal current creates two
vector-potential components [25],

Integration is carried out over the ring volume, and
the current can be taken out of the integral, since it is
constant. The wires are taken to be thin and a field is
taken to penetrate into them completely. It is more
convenient for us to use the conventional GF

and to continue it periodically. We have

and for GF we write the expressions

GF Gxlm corresponds to a source located at point x =
la, y = 0, and z = ma, and GF Gylm corresponds to a
source located at point x = 0, y = la, and z = ma. How-
ever, fields from all sources are considered in a zero
cell. Therefore, using the summation

we obtain a periodic GF acting in the zero cell associ-
ated with the origin of coordinates. Denote ψlm(kx, ky,
kz)= a ⌊mkz + l(kx + ky)⌋. For GF, we have [25]

(6)

Obviously, G0(r, r') = G00(r, r'). Calculating the
integral equation in the zero cell, we obtain the solu-
tion of the problem. In order not to move to a toroidal
coordinate system, we are still in the cylindrical system
and replace the circular cross section of the wire of
radius r0 with a rectangular cross section of area 4 ,
almost without changing the result. Assuming the field
is constant, we have
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Denoting the integral in Eq. (6) as gnim(ρ, z|ρ', z'),
we obtain

We used the equality J–1(x) = –J1(x) for the Bessel
functions. The vector potential has one component
independent of ϕ. The electric field has three compo-
nents, Eρ = ∂ρAϕ/(iωε0), Eϕ = Aϕ/(iωε0), and Ez =
∂zAϕ/(iωε0). The magnetic field has two components,
Hρ = –∂zAϕ and Hz = ρ–1∂ρ(ρAϕ). The Cartesian sys-
tem has all six components. Components Eρ and Ez
inside a wire may be neglected in comparison with the
constant azimuthal component of the field. The elec-
tric field inside the wire (Eϕ) is the sum of all the peri-
odic-GF-induced responses,

(7)

(8)

In Eq. (7), we performed integration over angle;
therefore, the integration in Eq. (8) is performed over
the cross section of the wire. Assuming the field is
constant, we multiply Eq. (7) by ρ, integrate again over
the cross section, and cancel the field. 4R  is retained
in the left-hand side of Eq. (7). The right-hand side of
Eq. (8) is considered separately for zero and nonzero

values of subscript m, denoting α = . In the
first case, the dashed coordinate area of integration is
divided into two. The result has the form

If α is small, we have κ2 ≈  and f = 4 . In the sec-
ond case, integrals with positive subscripts and the
negative subscripts that are equal in absolute value are

Passing to summation over positive indices, we
obtain 2fm(κ, k0, r0). Calculating integrals over ρ', we
perform integration over regions la – R – r0 < ρ' < la –
R + r0 and la + R – r0 < ρ' < la + R + r0 and obtain

Here, R is the ring radius. We used the smallness of
the wire radius and the mean-value theorem. Since
I‒l = Il, we perform summation over positive indices
by doubling Il. An analogous result is obtained for a
complex-conjugate dispersion equation. Taking into
account σ(ω) = iωε0(εL – /(ω2 – iωωc)) and multi-
plying both results, we derive the equation

(9)

It connects the frequency and the wavevector. This
result shows that the solutions in noncoordinate prob-
lems take a complex form even for strong simplifica-
tions. In the low-frequency limit, we have α = κ and
can explicitly express  from Eq. (9). The magnetic
moment for the problem takes the form Mz =
Jϕ(πr0R)2/a3. To solve the question of the sign of per-
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meability, it is necessary to calculate the average com-
ponent of the field,

Such calculations are more convenient to perform
in the Cartesian coordinate system. The sign of per-
meability is determined by the formula μ = 1 +
Mz/Hz. If there is no dissipation, the magnetization
should be in antiphase to the field, i.e., negative, and
exceed unity in absolute value.

We show how this problem is solved in the Carte-
sian system. From here on, instead of Eq. (9), we
derive a new dispersion equation assuming that the
loop is rectangular. A ring of radius R is replaced by a
rectangular loop with an arm b = R  and cross sec-
tion 4δ2 = π . We take density J directed clockwise
along the x and y axes out of the integral and obtain the
components of the vector potential and the field,

(10)

(11)

(12)

(13)

Now, we average field (12) as follows:

As a result, we have

(14)

The functions sinc = sin(x)/x are even and rapidly
decreasing. Although the zero term of the sum in
Eq. (14) makes a significant contribution, a strict
result requires taking into account a large number of
terms. We now write

(15)

In Eq. (15), the solution to the microscopic disper-
sion equation should be substituted. If we substitute
the wavenumber squared from the macroscopic Fres-
nel equation  = (  + )/μezz + , we have an
implicit equation by setting k. Its solution is symmetric
in wavevector, μ(k) = μ(–k). Simplification can be
achieved by choosing the wave propagation direction.
For example, choosing kx = ky and kz = 0, we find the
frequency from Eq. (9) and substitute it into Eq. (15).
We have F000(k⊥) = 2sinc(kxδ)[kxsinc(kxb/2)]2 and the
following zeroth approximation:

It is very rough, which is determined by the slow
convergence of series (15). For a slow wave, the sign of

susceptibility  is negative. As follows from the Fres-
nel equation, 2  = μ ; therefore, the solution μ(0) =
1 takes place in the low-frequency limit. If μ < 0, the
wavenumbers are imaginary. This is possible for the
Bragg resonance in the band gap. For a slow wave, the
deceleration is maximal at kx = ky = π/a; hence, the
maximum value is μ = 2π2/(k0a)2 > 1. The maximum
deceleration frequency can be found from the disper-
sion equation. Above the resonance frequency, we
have μ < 0 in the band gap. However, this is true on the
assumption that the Fresnel equation is still valid. This
approach for a crystal made of metal loops was used in
[26]. Here, there is an analogy with crystal optics, for
which strong SD and Bragg resonances occur in the
X-ray range. Using an approximate formula with
allowance for only one term of the series, we obtain
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We took into account that b ≪ a. In the general
case, we denote the sum in the denominator in
Eq. (15) as

where

All other sums, namely, triple, double, and single
ones taken at positive subscripts, are calculated in the
same way. Then, we have

Since (k) = (–k), we have μ(–k, k0) = μ(k, k0).
For k = 0, the solution to the dispersion equation is
k0 = 0; therefore, μ(0, 0) = 1. For small sizes δ and b,
we have μ(k, k0) ≈ 1. A strong SD means that it is
impossible to obtain a μ(ω) dependence: the result
depends significantly on k. The resulting material
equation is nonlocal: it refers to the entire cell area,
and locality occurs at λ ≫ a, i.e., at k2 ≈ k0, when
μ(k, k0) ≈ 1. By increasing the loop sizes, we can
obtain the permeabilities that are different from unity
and even negative; however, it is not a fact that a neg-
ative permeability is actually achieved in the usual
sense: in this case, the model becomes very approxi-
mate and the result depends on k.

We now replace a metallic ring with a thin dielec-
tric one and neglect the transverse fields in compari-
son with the toroidal field. A polarization current
flows through the ring, and it excites the same field as
the conduction current. For a metallic ring, there is no
difference: a high-frequency current is also a polariza-
tion current to some extent. For a dielectric ring, there
is no current at zero frequency. In the above formulas,
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it is sufficient to put  = 0 for conductivity. It is very
tempting to form magnetic properties of AM on struc-
tures such as dielectric rings, dielectric spirals, and in
general on MAs with solenoidal polarization currents.
However, the currents should be strictly solenoidal.
For a dielectric ring of radius R, the condition
k0 R ≪ 1 must be met; for a high permittivity, it leads
to very small radii and small effective permeabilities.
The permittivity of a dielectric ring located in a dielec-
tric base should differ significantly from its permittiv-
ity. The dielectric ring should be very thin so that
transverse fields and resonances can be neglected.
This leads to small effective parameters. Unlike a
metal, the polarization current at low frequencies is
low, and the approximation works poorly at high fre-
quencies. Nevertheless, the results obtained can be
formally used for dielectric rings. In vacuum, such a
ring is a resonator with the H01δ type of oscillation (see
[29]). In a photonic crystal, such a resonator is the
source of a wave and, at the same time, is excited by it.
The polarization and the ring current should be in
antiphase to the Hz component. When the MP com-
ponent is negative, the photonic crystal becomes a
hyperbolic metamaterial. Considering a square dielec-
tric loop, we can use components (10) and (11) to
obtain a dispersion equation. The electric field is
determined in terms of the vector potential as E =

( + ∇∇⋅)  ((ε – 1)E), where A = iωε0 ((ε – 1)E)

and  is an integral operator with kernel (1). To use an
algorithm with the kernel ∇ ⊗ ∇  is problematic due
to its non-integrable feature. Assuming the field is
solenoidal inside a ring and transferring operator ∇⋅ to
(ε – 1)E, we obtain surface integrals of the surface
charge density. Since we neglected the normal compo-
nents of the field at the ring boundary, we also
neglected the surface charges, and a good approxima-

tion is the integral equation E = ((ε – 1)E) =

(ε – 1) (E). A dispersion equation based on it is
written in the form

(16)

In the Cartesian system, it is more convenient to
consider a rectangular loop. Considering now the field
constant and having one constant component, Ex or
Ey, in each arm, Ex = (x, –b/2, z) = –Ex (x, b/2, z) =
Ey(b/2, y, z) = –Ey(–b/2, y, z) = E, we obtain the
equation

where

ω2
P

ε

2
0k �̂G �̂G

�̂G
�G

�

2
0

ˆk G
2
0k �̂G

2 = ε −

×



 �

3 2
0

3 3

| | ( 1)

*( ) ( , ') ( ') ' .
V

d r k

G d rd r

E

E r r r E r

∞

=−∞

δ ε −=
+ + −

� � �

2 2 2
0

3 2 2 2 2
, , 0

4 ( 1) | ( )|1 ,klm

k l m xk yl zm

k b G
a k k k k

k

D THEORETICAL PHYSICS  Vol. 132  No. 2  2021



CAN ISOTROPIC NEGATIVE PERMITTIVITY 171
Setting vector k, we can determine the wavenumber
using this equation,

(17)

Equation (17) can be solved iteratively. It is also
suitable for a metallic loop, the permittivity of a metal
is taken as ε. If  is the permittivity of the base, it is
necessary to make the substitutions  →  and ε →
ε/ . Assuming k = x0kx and kx ≈ k0 ≪ π/a and taking
into account only the large zero term of the sum, we
obtain  ≈ /⌊1 + 4δ2b(ε – 1)/a3⌋. The approxima-
tion is valid if 4δ2b(ε – 1)/a3 ≪ 1. In this case, we have
kx ≈ k0. Of course, Eq. (17) is very approximate. Speci-
fying the field as a cyclic polarization current, we
imposed the following symmetry conditions: Ex(x, y, z)
is an even function in x, z and odd function in y, and
Ey(x, y, z) is an even function in y, z and odd in x. Due
to symmetry, such a solution can exist, but solutions
with other even–odd relations can exist. Solving the
problem in a general form, e.g., by the finite element
method, we can find waves of all possible symmetries
and their corresponding dispersions. Equation (17) for
a completely even field is even. In the case of wave dif-
fraction by a metamaterial of finite sizes, the given
symmetry of the fields, generally speaking, does not
hold. It means the presence of two electrical walls nor-
mal to the loop plane, and it can be implemented
using phase shift π per cell along both coordinates,
which can be performed in a band gap, which corre-
sponds to the attenuation band of the filter made of a
finite sample. For diffraction by a metamaterial in the
low-frequency limit, a near-zero phase shift takes
place. The use of constant components of the electric
field inside a loop is the most severe limitation of the
model. However, it is this limitation that allowed us to
obtain a simple explicit result.

NEGATIVE  AND  
IN THE LORENTZ MODEL

The classical Lorentz model for a rarefied oscillator
gas (electric dipoles or oscillators) with frequencies
ω0el gives the following permittivity equation [13]:

(18)

Here, the frequency squared  = e2Nl/(ε0ml) is
determined by the concentration (Nl) and the mass of
charged particles of kind l, and the pulse relaxation
frequency ωcl (collision frequency) determines the
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broadening of a spectral line. The quantum descrip-
tion based on the semi-classical approximation gives
the same form of permittivity [6, 13, 32],

(19)

Here, the summation over subscripts ν is per-
formed for all kinds of atoms, over subscripts k, for all
energy levels, and over l, for all allowed transitions
from level k. Accordingly,  is the number of atoms
of kind ν in state k, ω0ν =  = (Ek – El) , and  is
the width of the transition k → l line associated with
the lifetime. If the number of atoms in excited states is
larger than that in the ground state, we have ε" < 0 and
the medium is active. The oscillator strength  =
2me| || |2/(3e2 gl) of a dipole transition for an atom
with dipole moment dν is determined by the squared
modulus of the matrix element  = –eψl|r|ψk [6,
32]. In the general case, to calculate (19), it is neces-
sary to perform summation over all electric multipole
transitions that satisfy the selection rules. It is easy to
see that the condition (ω)< 0 can be met. However,
Eq. (19) does not give the correct value of permittivity,
since it was derived when the field of a plane wave in
vacuum is applied to a single atom by summing the
contributions of atoms to polarization. It is necessary
to take into account the mean field [6]. Researchers
often write a formula of type (18) for μe to achieve  <
0 from solutions to diffraction problems using com-
puter simulation packages. However, a formula of type
(18) has no relation to μe. In quantum analysis, a per-
turbed Hamiltonian is known to be written as  =

+ , where  = –(e/m)  ⋅ Ae + (eAe)2/(2m) + 
the perturbation associated with field B = ∇ × A [32,
33]. Here,  = μBgsB ⋅ /μ0, Ae = μ0A, A is the vector
potential introduced earlier, gs ≈ 2, and one electron in
an atom with spin  is considered for simplicity.
Neglecting the second term and taking into account
the commutation properties, we can write  =
μB( + 2 )/μ0, where μB is the Bohr magneton and 
and  are the complete operators of the spin and
orbital moments of the atom (including nucleus) [33].
The magnetic susceptibility depends on the total mag-
netic moment of an atom; if it is nonzero, the suscep-
tibility consists of polarization paramagnetism, pre-
cession diamagnetism, and orientation paramagne-
tism [34]. In weak fields, to determine the
contribution of an atom to magnetic polarization, it is
necessary to calculate matrix elements mlk =
‒μBψl|2  + |ψk. The rotational spectra of polar
molecules in a gas and liquid can also form a magnetic
moment. However, this is usually a microwave range
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with strong line broadening, and no contribution to
permeability occurs. In the optical range, natural sub-
stances do not exhibit a significant difference between
the permeability and unity [9, 34]. AM made of metal-
lic nanoparticles, which are quantum dots or 3D
quantum boxes, can be modeled using quantum
methods. By determining the energy levels and wave-
functions for them or using the density functional the-
ory, one can calculate the current density induced by
field B(ω). This field also acts on a classic loop with a
current; therefore, Pm(ω) is proportional to B(ω)
rather than H(ω) in weak fields.

Considering classic contours with currents excited
by magnetic induction B(ω) = μ0μeH(ω), we have to
take into account that the current in the circuit in the
absence of a field is attenuated and has no resonance
frequencies. At room temperature, the free path of
electrons in a metal is several tens of nanometers. In
addition, unlike a spin, the magnetic moment of the
circuit in an atom cannot change the orientation
direction depending on the angle of a magnetic field.
This induced magnetism at low frequencies is diamag-
netism [26]. It is possible to derive a formula of type
(18) without resonances for , since field B(ω) act
on moving charges. The MA-induced contribution to
polarization is proportional to B(ω) rather than H(ω).
The classical approach can easily be applied to the
integral equation for wire microrings (Fig. 4c). It is
convenient to place them on the edges of a cubic crys-
tal. Resonance structures such as open microrings
with a capacitance gap are often considered. Such an
RCL circuit has a resonance frequency (LC)–1/2 of
forced resonance, but it is very high because the edge
capacitance is low. To decrease ω0, it is necessary to
increase the capacitance. A ring with a capacitance
create magnetic and electric dipoles oriented normal
and tangentially to the plane of the ring, respectively.
The electric dipole is normal to the gap, which makes
the ring an asymmetric emitter in its plane. Therefore,
a crystal with open rings is not isotropic (Fig. 4c). A
double open ring does not save the situation. We need
quadruple open rings with gaps rotated through 45°
and placed on the edges of a cubic photonic crystal.
Due to the Lenz rule, such an AM has diamagnetism
at low frequencies. It is important to synchronize the
rotation angles of all rings. In reality, such a 3D pho-
tonic crystal is possible in the radio range, where con-
centrated capacitances can also be used. Creating such
an AM in the microwave range is already problematic.
Near the resonance frequency, we have (ω) = 1 +

/⌊  – (ω2 – iωωc)⌋. Consider . We have

The condition  < 0 has the form (  – )2 >
4(ωmωc)2. Denote Δ = (  – )2 > 4(ω0ωc)2. For

−μ 1
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weak dissipation, we have  –  > 2ω0ωc or ωm >
. In this case, there is a region of negative  <

0; it is- located at

Denoting Ω = ω2 – , we have the equation Ω2 –
Ω(  – ) + (ω0ωc)2 = 0 to determine the boundary fre-
quencies at which  = 0. Such frequencies can be absent
if we take into account dissipation. At the resonance fre-
quency, we have  = 1 – 1/⌊1 + (ω0ωc/ )2⌋ > 0. In this

case, we obtain  = 1/2 at ω0ωc = . When dissipa-
tion increases,  at resonance increases and tends
toward 1; when dissipation tends toward zero, it also
tends toward zero. At low frequencies, we have 0 <  <
1, i.e., diamagnetism, and  → 1 at ω → 0. At very high
frequencies (ω2 ≫  + ), we have = 1 + (  +
2 )/ω2 → 1, i.e., paramagnetism. Note that we intro-
duced the resonance frequency artificially using the
circuit theory and the formula to be derived in terms of
electrodynamics. That is, we have to solve the problem
for open rings rigorously.

Thus, permeability can be negative in resonant AM
but only in a resonant region, where SD is significant,
and the description by two scalar quantities, εe and μe,
is incompletely correct. In the low-frequency region
(where these parameters can be introduced), AM
behaves like a diamagnet, 0 < μe < 1. Since the particle
size is substantially smaller than a, these resonances
usually lie above the first Bragg resonance, where the
isotropic approximation is not applicable. Induced
magnetism, however, takes place over a wide fre-
quency range.

FRESNEL EQUATION
AND NUMERICAL RESULTS

Periodic photonic crystals are described by the
Fresnel equation. This is a dispersion equation based
on the results of homogenization. In the classical case,
there are two approaches to describing effective AM
parameters: symmetric in terms of fields E and H and
inductions D and B and asymmetric using three vec-
tors E, D, and B [8, 9]. In this section, we follow the
first approach. In this approach, the following four
tensor parameters are introduced in the general case of
a bianisotropic AM: permittivity tensor (ω, k), per-
meability tensor (ω, k), and cross-polarization ten-
sors (ω, k) and (ω, k). During the propagation of
plane waves E = E0exp(iωt – ik ⋅ r) (or for a combina-
tion of the fields of such waves) for symmetric consid-
eration, the relations
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and the Fresnel equations [1, 9]

(20)

take place. Here ∇ × E = –ik × E = E and matrix 
determines curl operator

If we consider isotropic metamaterials in the sense
of [4], i.e., consider all effective material parameters as
scalars, then, in the general case, AM becomes biiso-
tropic with scalar parameters ε, μ, ξ, and ζ and the
Fresnel equation det⌊  + (ξ – ζ) + εμ⌋ = 0. If
polarization can be neglected and anisotropy cannot
be neglected, the Fresnel equation takes the form

(21)

In the completely isotropic case (  = εeff ,  =

μeff ), the Fresnel equation det⌊  – εμ⌋ = 0 is
equivalent to the simplest dispersion equation for an
ordinary wave k2 = εμ.

For AM made of balls of two types, we estimate the
resonance frequencies, which, of course, does not
mean that a homogeneous metamaterial described by
permittivity and permeability is achievable (Fig. 4d).
To justify this statement, we set field Eϕ = const in
small balls and place these balls on the edges. As noted
above, this excitation cannot appear during wave dif-
fraction by a finite sample. Since the orientations of
the axes are different, the balls contribute to the mag-
netic moment in three directions. Such balls are simi-
lar to the considered rings and create a magnetic
moment. Of course, this is an approximation: the field
in the balls should be expanded in all spherical har-
monics [18, 25]. Let balls of a larger size be located in
the corners. These balls create an electric moment.
The permittivity of the balls is taken to be the same. To
expand the field, we can take several spherical har-
monics with respect to three axes. We artificially intro-
duced symmetry into such an AM. Then, we have to
calculate the field excited by the balls taking into
account periodic GF (1) and to solve an integral equa-
tion. This solution takes into account the mutual
influence of all balls. Then, we should calculate the
electric and magnetic moments and the averaged
fields. In natural media, the atomic size is r ≈ 0.05 nm;
at a light wavelength λ ≈ 500 nm and base permittivity
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0Îk

− −

− −

 ε μ − = 

 μ ε − = 

1 1 2
0

1 1 2
0

ˆ ˆ ˆˆ ˆdet 0,
ˆ ˆˆˆdet 0.

k k Ik

k Ik

ε̂ Î μ̂
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 ≈ 10 or lower, we arrive at the ratio of the size to the
wavelength r/Λ ≈ 3 × 10–4 in the medium. For crystals,
this ratio has the same order. Atoms are affected by a
local field, and the precession of spins gives a magnetic
moment, which is proportional to the component of
the local magnetic field in a linear approximation. To
excite a current loop or ball, their size, which is com-
parable with the wavelength, is important. The mag-
netic moment is not proportional to the local field,
and the magnetization depends on k. For a photonic
crystal with a ≈ 50 nm, we have a/Λ ≈ 0.1, and parti-
cles with r < 5 nm should be used for sparseness. We
estimate minimum Λ at 100 GHz, a wavelength of
3 mm,  = 10, and ε = 400. Since isotropy involves
operation far from Bragg resonances, a good and
accurate approach for this is the use of methods for
chaotic metamaterials, e.g., mixtures: mixing formu-
las for effective medium models, compact group
method, and the percolation theory methods [7, 35].
Using Garnett’s formula (  – )/(  + 2 ) = C(ε –

)/(ε + 2 ), we can estimate for dielectric ball con-
centration C for  =  + 1 = 11, C = 1/30. A similar
result is given by the Bruggeman effective field for-
mula. Since C = (4π/3)(  + )/a3, we have r1 ~ a ×
10–4 at r2 = 2r1. At  = 11, we should have Λ < 1 mm,
i.e., at least a < 0.1 mm, which gives an estimate r1 ~
10–5 mm. The minimum distance between emitters is
a /2, therefore, it is impossible to take r1 larger than
0.01 mm without a significant violation of sparseness.
However, this increase violates the condition  ≈ 
and decreases Λ. It is easy to see using the exact for-
mulas from [36] that the resonance frequencies of such
isolated nanoballs do not lie in the range stated by the
authors of the idea. In free space, H01δ is the funda-
mental (low-frequency) magnetic mode, and the indi-
ces (except for azimuthal one) cannot be considered as
integers (due to radiation losses, they even need to be
considered complex numbers). A photonic crystal has
no radiation losses, but it exhibits dipole–dipole inter-
action of scatterers, which is to be strictly taken into
account.

The low-frequency dispersion branch correspond-
ing to Eq. (17) is shown in Fig. 5. Figure 6 (curve 1)
shows the results of calculating permeability by
Eq. (15). The sums of Eqs. (15) and (17) have poles
determined by the condition  +  +  = .
They result in zeros in the right-hand sides of Eqs. (15)
and (17). In addition, the functions Fmlk(k) and
|Gmlk(k)|2 have zeros. They take place at sufficiently
high |k| and cause poles. Such resonances in permea-
bility are nonphysical and occur when a band gap is
reached, i.e., where the model is not applicable. Poles
can be avoided by taking into account losses or build-
ing a more rigorous model. In the low-frequency
region |k| ≈ k0, a zero compensates for a pole, the per-
meability is almost unity, and the model demonstrates
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Fig. 5. Dispersion in a metamaterial made of rectangular
dielectric loops.
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infinitesimal diamagnetism. Negative values are not
reached. The calculations in this region were per-
formed by introducing an infinitesimal dielectric loss
tangent of 10–10. To calculate permeability at high |k|,
we used the relations kx = kx(k0) and k = kx + ky = k(k0)
determined from Eq. (17) and took a loss tangent of
10–2. Note the dispersion of permeability can be con-
structed using the homogenization results and the
Fresnel equation μ = (kx/k0)2. This model at |k| ≈ k0
gives weak paramagnetism. At point X, we have μ =
JOURNAL OF EXPERIMENTAL AN

Fig. 6. Effective permeability of a metamaterial made of
rectangular dielectric loops according to Eq. (15), which
corresponds to the dispersion of Fig. 7. 
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1.061. When moving to the reverse branch kx → π/a –
kx, the deceleration and the permeability grow
strongly. In the band gap, the kx component is imagi-
nary and the permeability is negative. The permeabil-
ity becomes first negative and then positive and
smaller than unity during passage through band gap to
the high-frequency (optical) dispersion branch when
only kx changes. Like in the resonance fields in Fig. 6,
the resonance values of permeability that differ from
unity here have no physical meaning, although these
values describe the dispersion by the Fresnel model.
When this model is used for diffraction by a photonic
crystal sample, it is important at which point of the
dispersion surface at a given frequency vector k is
located with allowance for all waves, including
reflected ones, which is very difficult.

At low frequencies, other deceleration depen-
dences can be constructed using an effective dielectric
medium in the form of a mixture. For it, we have a fill-
ing factor C = 16bδ2/a3 and depolarization coefficients
Lx = Ly = 1/2 – δ/b and Lz = 2δ/b (see [7, 37]). Using
Garnett’s formula, for a thin dielectric loop we obtain [1]

ε −ε = ε = +
+ ε − −

δ ε −≈ +
+ ε − − δ

2 3

2 3

( 1)1
1 ( 1 )

16 ( 1)/1 ,
1 ( 1 16 / )/2

exx eyy
x
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L C

b a
b a
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Fig. 7. Dispersion (lower frequency branches) in a cubic
photonic crystal with cubic a0 × a0 × a0 MAs in a dielec-
tric base with  = 3.0. The permittivity of inclusions is ε =
(1–4) 6.0, (5) 0.5, (6) –1.0, and (7) 3.1. a0 = (1, 4–7) 0.1a,
(2) 0.2a, and (3) 0.5a.
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Fig. 8. Homogenized effective permittivity εeff for config-
urations (1–7) corresponding to Fig. 7. (8) ε = –1.0, a0 =
0.3a, and  = 1.0. 
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Thus, at low frequencies, the AM is described by
dielectric properties and a wave with kz = 0 moves
almost at the velocity of light. Now the Fresnel equa-
tion at ky = kz = 0 has the form kx = k0 .

The results of calculating the low-frequency dis-
persion branches for (17) with an effective permittivity
for a cubic crystal with cubic dielectric MAs are shown
in Figs. 7 and 8. Since an approximate model in the
form of approximation of the Ex, Ey, and Ez compo-
nents by piecewise constant elements with a symmet-
ric field distribution was used, the equation was solved
in the first octant of the cube. Two or three approxi-
mations per component were used; therefore, the
dimension of the problem was either 8 or 27. Homog-
enization was performed by a formula similar to
Eq. (15). Note that a simple algorithm can be created
by taking field approximations of the type Ex(x, y, z) =
E0xcos(αxx)cos(βxy)cos(γxz). Then a dispersion equa-
tion is derived in the form of a functional, which
depends on 12 parameters in addition to k0 and k. They
can be reduced to 8 by imposing a solenoidity condi-
tion and the condition that each wave component sat-
isfies a wave equation. However, such a problem is
nonlinear.

δ ε −ε = +
+ δ ε − − δ

≈ + δ ε −

2 3

2 3

2 3

16 ( 1)/1
1 2 ( 1 16 / )/
1 16 ( 1)/ .

ezz
b a

b a b
b a

εezz
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CONCLUSIONS

The structures of periodic metamaterials with iso-
tropic effective material parameters, including those
with permittivity εe and permeability μe, were consid-
ered. Since all MAs (excluding ferromagnetic particles
in an external magnetic field) can be described by per-
mittivity, a symmetric cubic crystal is also modeled
only by a diagonal tensor with the same components
εe(k0, k) [1, 6]. Therefore, the introduction of μe is an
artificial technique. An exception may be magnetic
MAs made of ferrites and magnetic metals, the mag-
netism of which is due to the precession of the uncom-
pensated magnetic moments of atoms or domains in
an external magnetic field. Such AM can exhibit reso-
nant properties and a change in the sign of the perme-
ability components, but they are anisotropic and usu-
ally exhibit such properties in the microwave range or
below. Gyrotropy takes place there.

The so-called induced magnetism demonstrates
the dependence of magnetization on k even in the low-
frequency limit. In this case, we have μe(0, 0) = 1.
Weak diamagnetism was shown to occur in ring AM in
the low-frequency limit |k| ≈ k0(0, 0) ≪ π/a (see [26]).
We now consider this situation qualitatively for a single
wire loop of area S. We have A = (J), H = ∇ × A =
–jk × (J), and dM = r × Jdl. For a f lat round loop
with current I = |J|δ2, we obtain M = n0SI. Diamagne-
tism provides the Lenz rule. Since the averaged mag-
netic field is not local, local material parameters can-
not be introduced. The high values of permeability are
due to the fact that Hz(k0, k) ≈ 0 for some points in a
dispersion surface. A nonlocal magnetic field means
that a high permeability does not have a usual physical
meaning. Permeability takes on a local meaning in the
low-frequency limit at a small phase shift per cell.

For a wave-supporting polarization current Jp
(even a closed one), we may not to introduce magne-
tization and to introduce only electric polarization
Pe = ε0(ε – 1)EV. Averaging here is performed over
MAs. Such a dipole moment differs from (5) and is
more approximate. In the low-frequency limit, the
field is constant and EV = VE/a3. Formally, we can
introduce various AM models using tensor or scalar
material parameters and then determine them under
homogenization conditions. These parameters can be
represented by the properties of waves in a metamate-
rial, the scattering parameters, and the polarizability
parameters. The ambiguity of the inverse homogeni-
zation problem requires the solution of an overdeter-
mined system of equations. In particular cases, the
number of equations and unknowns may coincide.
Determining permeability by such methods does not
guarantee that there is a local relation between mag-
netic induction and a magnetic field. Formally, the
introduction of magnetic properties is based on the
fact that the scattering of a plane wave by a small par-
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ticle in the low-frequency limit can be described as the
appearance of electric and magnetic dipoles in it [7,
17, 37]. However, to meet boundary conditions, we
can introduce an additional orthogonal electric dipole
rather than a magnetic dipole. We have not considered
a number of important issues: the influence of quad-
rupole and higher multipole moments on polariza-
tion, close-packed (not sparse) photonic crystals,
strongly nonlocal AM, and some others.

Thus, homogeneous periodic AM described by
permittivity can exist in the low-frequency limit if SD
is neglected. When their permittivity and permeability
are described, the latter is close to unity, especially in
the optical range. Homogeneous metamaterials with
negative permittivity can also exist. These are metals at
ultralow temperatures and the frequencies up to
plasma ones. Mixtures of metallic and dielectric MAs
in the low-frequency limit can also exhibit a negative
permittivity. Induced magnetism is possible; however,
the corresponding metamaterials are not isotropic and
can be described by other material parameters. In
optics, the permeability of metamaterials is almost
unity, which is consistent with the analogous conclu-
sion drawn for natural substances [7, 30]. For periodic
AM, the question posed in the title should be
answered in the negative.
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