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Abstract—The robustness of a quantum cryptography system is considered that uses a protocol with phase–
time coding on attenuated coherent states. This protocol admits an effective fiber optic implementation,
which does not require a phase modulator on the receiver side and adjusting the polarization state at the input
of the receiver side. The absence of a phase modulator on the receiver side excludes a side channel of infor-
mation leakage associated with the active probing of the phase modulator at the receiving station, thus making
the system more robust against such attacks compared to other systems. The nonstrict single-photon nature
of information states, as well as information leakage through side channels, is considered by the generalized
decoy state method, which takes into account joint collective measurements of information quantum states
and quantum states in side channels. An estimate for the secret key length is obtained that is expressed only
in terms of observed quantities at the receiving station and the parameters of quantum states in side channels.
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1. INTRODUCTION
Quantum cryptography systems are designed to

create a shared secret—a secret key between spatially
remote users. The distribution of keys is based on the
transmission and measurement of quantum states.
Attempts to intrude into quantum communication
channel lead to the perturbation of states and errors on
the receiver side [1].

The fundamental laws of quantum mechanics
make it possible to associate the information leakage
to the eavesdropper with the observed level of errors
on the receiver side [2, 3].

For various quantum key distribution protocols,
fundamental upper bounds for information leakage to
the eavesdropper during attacks on states in a quantum
communication channel were obtained. The source of
quantum states—a strongly attenuated coherent
state—is not a strictly single-photon source; this
leads to a number of new attacks on the transmitted
quantum states that are absent in the case of a strictly
single-photon source [4]. In [5–8], the authors
developed methods that take into account that the
source of quantum information states is not strictly
single-photon.

To date, a sufficient understanding has been
achieved regarding attacks on transmitted quantum
states in a communication channel. When proving the
secrecy of keys in quantum cryptography, it is implic-

itly assumed that the receiving and transmitting equip-
ment is absolutely isolated from the outside world.

In any cryptographic system, side channels are an
important source of information leakage. In classical
cryptographic systems, one of these channels is the
side electromagnetic radiation of electronic equip-
ment, which can be detected remotely without direct
access to the equipment itself.

In the case of quantum cryptography systems, the
situation with side channels of information leakage is
even more delicate than in classical cryptography.
Quantum cryptography systems are open systems in
the sense that, in addition to detecting the side radia-
tion of the transmitting and receiving equipment, the
eavesdropper can actively probe the state of active ele-
ments (phase modulators, an intensity modulator,
backscattering radiation of avalanche detectors, etc.)
by external radiation through a fiber communication
line. The fundamental difference between intrusion
into a quantum communication channel and the
detection of side radiation and active probing of the
equipment is that the detection of states in side chan-
nels does not lead to errors on the receiver side, since
it does not disturb the transmitted states.

The further logic of proving key secrecy with regard
to the side channels of information leakage and a non-
strictly single-photon source of information states is as
follows. The statistics of laser radiation is Poisson in
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terms of the number of photons: the communication
channel with Poisson probabilities contains Fock
states with different numbers of photons. The secret
key is composed only of the single-photon component
of the states. The information contained in multipho-
ton components with the number of photons k ≥ 2 is
assumed, conservatively in favor of the eavesdropper,
to be known to the eavesdropper. The most general
attack of the eavesdropper on single-photon states is a
unitary attack, which is constructed explicitly. A uni-
tary attack is an attack where the eavesdropper uses her
auxiliary (ancilla) state and entangles it with the trans-
mitted state using a unitary operator. The eavesdrop-
per sends the distorted information state to the
receiver side and leaves her subsystem in quantum
memory. After measurements on the receiver side,
error correction, and enhancing secrecy, the eaves-
dropper performs collective measurements over all
quantum states in her memory.

Each side leakage channel is a quantum state that
represents the state of the equipment, phase modula-
tors, intensity modulators, and avalanche detectors.
As a result, in each message, the eavesdropper has at
her disposal additional quantum states that are “tied”
to information states. Of course, side channels also
arise when the communication channel contains states
with the number of photons k ≥ 2, but the information
contained in these messages is already given (is con-
servatively assumed to be known) to the eavesdropper.
Therefore, quantum states in side channels can be
considered “linked” only to the single-photon com-
ponent of information states.

The eavesdropper also stores quantum states from
the side channels in quantum memory until the end of
the protocol, and then performs joint collective mea-
surements on the ancilla state and the quantum states
from the side channels.

The next step is to estimate the fraction of the sin-
gle-photon component that reaches the receiver side.
In this case, the decoy state method is used, which is
reduced to sending randomly coherent states with a
different average number of photons in different mes-
sages. The intensity modulation of coherent states
occurs using an intensity modulator. The decoy state
method is based on the fact that the eavesdropper,
having detected a Fock state with a given number k of
photons in the channel, cannot determine from which
coherent state and with what average number of pho-
tons a given component comes from. In the presence
of active probing of the intensity modulator, the eaves-
dropper can, albeit with a certain error probability,
determine from which state a given number of photons
come from. For this reason, the standard decoy state
method must be modified in the case of an attack on
the intensity modulator. This modification will be
made below.

In a unitary attack on single-photon states without
side channels of information leakage, one can use the
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fundamental entropy uncertainty relations, which
relate the error on the receiver side to the information
leakage to the eavesdropper. In this case, the explicit
construction of an attack of the eavesdropper—a uni-
tary operator, ancilla state, etc.—is not required. In the
presence of side channels of information leakage, one
has to explicitly construct an attack on the single-pho-
ton component of states, since the side channels do
not lead to errors on the receiver side, and the relation
between the information leakage and the errors on the
receiver side is broken. The explicit construction of an
attack is necessary also because the quantum states in
the side channels are attached in each message to
information states, which requires their explicit
knowledge.

2. PHASE–TIME CODING,
THE SINGLE-PHOTON CASE

The implementation of quantum cryptography
with phase–time coding discussed below is remark-
able in that a polarization-sensitive element—a phase
modulator—is not used on the receiver side; this
makes the system more robust against active probing
attacks compared to other systems. In addition, the
absence of polarization-sensitive elements on the
receiver side leads to the fact that the system does not
require the adjustment of the polarization of the states
arriving at the receiver side from the quantum com-
munication channel.

Further, such a system allows one to implement, in
addition to the phase–time coding protocol, the BB84
protocol [9], which provides even greater f lexibility
and universality of the system.

In a real system, strongly attenuated coherent states
are used as information states. The phase–time coding
protocol uses two bases, L and R (see the explanations
in Fig. 1; the indices L and R correspond to left and
right), each of which has a pair of orthogonal states.
Due to the overlap in time of the bases, the states are
pairwise nonorthogonal.

The states in the basis L have the form

(1)

where indices “1” and “2” correspond to the time
window (see Fig. 1) and |α|2 = μ is the average number
of photons in a strongly attenuated coherent state,
|α|2 = μ ≪ 1. Similarly, in the basis R,

(2)

Logical bits 0 and 1 in each basis are encoded in the
relative phase of coherent states in time windows 1 and
2 in basis L and in time windows 2 and 3 in basis R.
Since in each message the pulsed laser is turned on and
off during the formation of information states, the
phase θ of the coherent state itself (parameter
α = eiθ|α|) is random. For this reason, the eavesdrop-
per sees in the communication channel a statistical

→ α ⊗ α → α ⊗ −α1 2 1 20 | | , 1 | | ,L L

→ α ⊗ α → −α ⊗ α2 3 2 30 | | , 1 | | .R R
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Fig. 1. (a, b) Implementation of a system with phase–time coding. (a) Transmitter side (Alice): L is a laser operating in the CW
mode, MZ is a Mach–Zehnder interferometer, MI is an intensity modulator, and PM is a phase modulator. The whole optical
path at the transmitting station is based on a polarization-maintaining fiber. (b) Receiver side (Bob): the whole optical path is
based on a standard single-mode SM fiber. Circ is a fiber-optic polarization-independent circulator, SPAD1,2 are single-photon
avalanche detectors, FM is a Faraday mirror, PZ is a controlled piezoelectric element for equalizing the path difference between
the upper and lower arms of the interferometer, and QC is a communication line based on SM fiber. The arrows indicate the evo-
lution of states, as well as the formation of interference on the receiver side. (c–e) Implementation of a system with the BB84
protocol. (c) Transmitting station and evolution of states. (d) Receiving station and evolution of states in the direct (subscript +)
and conjugate (subscript ×) bases. (e) Interference of states on the receiver side in the direct and conjugate bases.
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mixture of coherent states rather than pure coherent
states. In the basis L, we have

(3)

(4)

where x = 0, 1; ϕx = 0 (x = 0) and ϕx = π (x = 1), ϕx is
the relative phase of the states localized in time win-
dows 1 and 2 into which information about the key bits
is encoded; and the states |m1  |k – m2 are Fock
states in time windows 1 and 2 (subscripts). In the
basis R, the expression for the density matrix is similar
to (3), (4), with the replacement of the indices of time
windows for states, (1, 2) → (2, 3).

The secret key is derived from the single-photon
component of states. The information contained in
the multiphoton components of states (3) and (4) is
assumed, conservatively in favor of the eavesdropper,
to be known to her. For the single-photon component,
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the intrusion into the communication channel leads to
a disturbance and errors on the receiver side. A further
task is to establish a relationship between the probabil-
ity of errors on the receiver side and the amount of
information that can be extracted by the eavesdropper
for a given observed error probability. In what follows,
we estimate by the modified decoy state method the
fraction of the single-photon component on the
receiver side from which the secret key is derived.

The single-photon component of information
states in the left basis has the form

(5)

(6)

while, in the right basis, the states are as follows:

(7)

(8)

to save notation, we omitted the vacuum component
of the field in the corresponding time windows; below,

 =  ⊗  +  ⊗  =  + 1 2 1 2 1 2
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|1i is a single-photon state localized in time window i.
In the basis L, information states are a superposition of
single-photon states in time windows 1 and 2; accord-
ingly, in the basis R, these states are a superposition in
time windows 2 and 3. Inside the basis, the informa-
tion states are orthogonal and are therefore reliably
distinguishable. The states of the bases L and R are
pairwise nonorthogonal and reliably indistinguish-
able. The nonorthogonality of states from different
bases guarantees that the intrusion of the eavesdropper
into the quantum communication channel perturbs
the transmitted states and leads to errors on the
receiver side. In contrast to the BB84 protocol, the
perturbation of states will also lead to counts in the
control time windows [10, 11].

A unitary attack on single-photon states can be rep-
resented as

(9)

where |EQ is an auxiliary state of Eve, ancilla; |0LX and
|1LX are Alice’s reference states that are inaccessible to
the eavesdropper, and |0LY and |1LY are states in the
quantum communication channel transmitted to Bob,
that are accessible to Eve’s attack.

Similar equations are obtained in the basis R. The
entanglement of the information state and the ancilla
state of Eve in the basis R is obtained from (5)–(8) by
linear transformation (9)–(11).

In the basis L, we find (see [10, 11] for details;
henceforth, we omit the subscript L for brevity)

(10)

(11)

The expansion (10), (11) is the Schmidt expansion
in the tensor product of the state spaces of Eve and
Bob. The expansion in the basis R is obtained by linear
transformation (9)–(11).

The normalization of states has the form (see [10,
11] for details)

(12)

For what follows, it is convenient to introduce the
normalized states

(13)

taking into account (12) and (13), instead of (10) and
(11) we obtain
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(14)

(15)

A measurement at the receiving station in the basis
L is given by the resolution of identity:

(16)

where |cLY = |13 is a state in time window 3 in the basis
L. A similar resolution of identity, describing a mea-
surement in the basis R, has the form

(17)

where |cRY = |11 is a state in time window 3 in the basis R.
In what follows, we omit the index L for brevity.

After measurements in the corresponding basis, we
obtain the following expression for the Alice–Bob–
Eve density matrix:

(18)

The density matrix (18) should be given a physical
interpretation. With probability 1/2, Alice sends a
state corresponding to 0 to the channel, and, with
probability 1/2, she sends a state corresponding to 1.

Suppose that Alice sends the state |0YY0| in the
basis L (the reference state |0XX0| remains at Alice’s
disposal). After Eve’s attack and Bob’s measurements
on the receiver side, Bob sees with probability (1 –
ζ)(1 – Q) the state |0YY0|, which will give the correct
outcome of measurements. Bob will interpret the out-
come of measurements as logical 0. In this case, Eve
has the state | QQ | at her disposal.

Further, with probability (1 – ζ)Q, Bob sees the
state |1YY1|, which gives an erroneous outcome of
measurements. Bob will interpret the outcome of the
measurements as logical 1. In this case, Eve will have
the state | QQ | at her disposal.

The total probability of counts, both correct and
erroneous, in information time windows 1 and 2 is
(1 – ζ)(1 – Q) + (1 – ζ)Q = 1 – ζ. In addition to the
counts in the information time windows 1 and 2, the
perturbed states will give counts in the control time
window 3 in the basis L (respectively, in the control
window 1 in the basis R). The unperturbed states in the
basis L never give counts in the control time window 3.
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The probability of counts in the control time win-
dow 3 is ζ. In this case, Eve has the state | QQ | at
her disposal. As a result, the total probability of
counts in the information and control time windows
is 1 – ζ + ζ = 1.

We emphasize that information leakage to the
eavesdropper is determined not only by the error in
information time windows but also by the count prob-
ability in the control time window (see details in [10,
11]). To calculate the information leakage to Eve, one
needs to know (measure) the probability of counts in
the control time window 3.

Since the key is obtained only from the counts in
information windows, in what follows it is convenient
to pass to the reduced density matrix—the matrix nor-
malized by the probability of counts in information
time windows. We obtain (omitting the index L in
Bob’s states)

(19)

Accordingly, for the Alice–Eve density matrix we
obtain

(20)

The Alice–Bob density matrix has the form

(21)

The density matrix that is seen by Eve is

(22)

Similarly, the density matrix that is seen by Bob is

(23)

An estimate of the secret key length in the asymp-
totic limit for error correction by random Shannon
codes is given by (see details in [2])
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(25)

Taking into account (19)–(25), we obtain

(26)

(27)

Taking into account (24), we obtain the following
expression for estimating the secret key length:

(28)

If the error correction is performed by constructive
codes, then the last term in (28) must be replaced by
leak(Q):

(29)

where leak(Q) is the information leakage during error
correction, which depends on the total error.

Formula (29) has an intuitively transparent inter-
pretation. It implies that the protocol is a two-param-
eter protocol and the length of the secret key depends
not only on the observed error Q in information time
windows but also on the probability of counts ζ in the
control time windows. This reason can be easily
understood by an example of the simplest intercept–
resend attack. The states from different bases L and R
are nonorthogonal; they overlap in time window 2 (see
Fig. 1). Eve does not know the basis, so the resending
of states in a wrong basis will inevitably lead to counts
in the control time window, where they should not be
present. For example, if the basis of Alice and Bob is L
and Eve resends the states in the basis R, then this
leads to counts in the control time window 3. Simi-
larly, for the measurement basis R of Alice and Bob,
resending of states in the basis L leads to counts in the
control time window 1, where they should not be pres-
ent. Of course, the intercept–resend attack is not the
most common attack. The most common attack on
single-photon states is the unitary attack (9)–(11).

3. DETECTION OF THE SIDE RADIATION
OF THE TRANSMITTING EQUIPMENT

The eavesdropper can obtain information about
the transmitted key not only from the quantum com-
munication channel, but also using side channels of
information leakage. In this case, obtaining informa-
tion from these channels does not lead to the distor-
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tion of information states and errors on the receiver
side. Side channels of leakage are an informational
“free bonus.” One of these channels is the side electro-
magnetic radiation of the transmitting equipment.
When the equipment prepares the state |0XX0|, a
quantum state |e0SSe0| arises outside Alice’s transmit-
ting station. If the equipment prepares the state
|1XX1|, then this leads to the emission of the state
|e0SSe0|. The states corresponding to 0 and 1 in the
side channel can be considered orthogonal, and their
indistinguishability can be taken into account in the
discrimination probability p. Effectively, the eaves-
dropper sees in the side channel the density matrix
(1 – p)|e0SSe0| + p|e1SSe1|, which is interpreted as fol-
lows: with probability 1 – p, the eavesdropper sees the
state |0XX0| and believes that Alice has prepared bit 0.
In this case, Eve recognizes the key bit by measuring
the side radiation. With probability p, Eve detects the
state |1XX1| and believes that Alice has prepared bit 1,
that is, Eve makes an error with probability p, and sim-
ilarly if Alice prepared bit 1. Taking into account the
aforesaid, we can rewrite the Alice–Bob–Eve density
matrix as

(30)

In order not to complicate the calculations, in (30)
the side channel of information leakage is assumed to
be symmetric for preparing 0 and 1. A generalization to
the asymmetric case is done in a similar way. Passing
to the reduced density matrix, we have
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Bob’s density matrix is expressed as

(33)

The conditional entropy has the form

(34)

where h(x) = –xlog(x) – (1 – x)log(1 – x), log ≡ log2.
Let us calculate the Alice–Eve density matrix:

(35)

Eve’s density matrix is expressed as

(36)

The eigenvalues of  are
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and are doubly degenerate. The entropy H( ) is

(38)

Eve’s density matrix takes the form

(39)

Taking into account that (see [10, 11] for details)
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it suffices to diagonalize the terms in each individual
square bracket. For the first bracket, the eigenvalue
problem gives

(41)

where I is the identity operator in the subspace
spanned by {| Q, | Q}; in the basis of these vec-
tors, the determinant of the secular equation has
the form

(42)

The roots of (42) are given by

(43)

Carrying out similar calculations for other terms,
we obtain a complete set of eigenvalues

(44)

which are doubly degenerate. The von Neumann
entropy  is equal to

(45)

where χ is the Holevo information [12–14],

(46)

Finally, taking into account (40)–(46), we obtain
the following expression for the conditional entropy:

(47)

Accordingly, for the key length we obtain

(48)

Note that the information leakage in (48) during
error correction corresponds to the Shannon limit.
When correcting errors by constructive codes, the last
term in (48) should be replaced by leak, the number of
bits per message spent on error correction.

It is important that, in formula (48), the lower
bound for Eve’s lack of information admitted by the

fundamental laws of quantum theory is expressed in
terms of conditional entropy. This lower bound is
attained on the collective joint measurements of Eve,
which implies joint collective measurements of Eve
over quantum states in the side channel and over dis-
torted ancilla states in the quantum communication
channel.

Formula (48) has a simple interpretation. If the
probability of distinguishing between states 0 and 1 in
the side channel is p = 1/2, then h(p) = 1, and expres-
sion (48) turns into expression (28) for the key length
without taking into account the side channel of infor-
mation leakage. If p = 0, then Eve reliably distin-
guishes between states 0 and 1 in the side channel and
knows the transmitted key bits even without intruding
into the quantum communication channel and with-
out making errors (Q = 0) on the receiver side. In this
case, h(p) = 0, and the length of the secret key turns
out to be formally negative; i.e., the secret key cannot
be distributed. Thus, the leakage of information
through the side communication channel reduces the
length of the secret key. To reduce information leakage
through this side channel, the transmitting station
should be effectively shielded. The discrimination
parameters of the state p must be determined experi-
mentally for each specific implementation of the
quantum cryptography system.

4. ACTIVE PROBING OF THE PHASE 
MODULATOR STATE AT THE 

TRANSMITTING STATION
The eavesdropper can probe the state of the phase

modulator at the transmitting station through the
fiber-optic communication line. The state of the phase
modulator is uniquely related to the key bit transmit-
ted by Alice. Eve has at her disposal an additional
quantum state correlated with the state of the phase
modulator. In favor of Eve, we can assume that the
reflected states are pure, which increases their distin-
guishability. Our method allows us to take into
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account not only pure reflected states but also the den-
sity matrices. Pure states are chosen in order not to
overload the calculations with insignificant technical
details.

The intensity of the reflected probing states is not
known exactly, but the intensity of the input probing
states can be limited by input fiber-optic isolators with
known backward transmission. The input intensity of
the probing radiation is limited, since it cannot exceed
the critical intensity at which the fiber melts. By
choosing a proper backward transmission of the opti-
cal isolator, one can limit the output intensity of
reflected states to the required value.

In an attack with active probing of the state of the
equipment by external radiation, we should introduce
another side channel. Formally, this reduces to intro-
ducing quantum states correlated with Alice’s state.
We obtain

(49)

For the density matrix, instead of (30) we obtain

(50)

The Alice–Eve density matrix takes the form

(51)

Taking into account the normalization (13), (40),
we can rewrite the eigenvalues as

(52)

For the entropy, we find

(53)

To calculate the eigenvalues, we should diagonalize
the density matrix ; we obtain

(54)

If the probing occurs by coherent states whose
phase is uniquely linked, conservatively in favor of
Eve, to the state of the phase modulator, i.e., if the
phase is equal to either 0 (|λ0T = |  T or π (|λ1T =
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|– T) depending on the transmitted bit, then we

obtain |Tλ0|λ1T| = η =  for the scalar product of
the reflected states. With this in mind, we find the sec-
ular equation for the first term in (54):

(55)

Taking into account the secular equation, we can
write the eigenvalues of the density matrix as

(56)

For the entropy H( ), we obtain

(57)

where the Holevo information is [12–14]

(58)

Finally, taking into account (53) and (57), we obtain
the following expression for the length of the secret key:

(59)

The smaller the average number of photons μT in
the reflected states, the larger the scalar product η: the
states stick together stronger, and therefore the
reflected states are less distinguishable. As η → 1
(μT → 0), the states stick together completely and are
completely indistinguishable. For small μT, the length
of the secret key decreases and becomes equal to

(60)

which is less than the length without probing the phase
modulator. We also note that the lower bound for the
lack of eavesdropper’s information, which is expressed
in terms of the conditional entropy, is attained in joint
collective measurements of reflected quantum states and
of the ancilla quantum states under an attack on infor-
mation quantum states in the communication channel.
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5. JOINT DETECTION OF SIDE RADIATION 
AND ACTIVE PROBING OF THE PHASE 

MODULATOR STATE AT THE 
TRANSMITTING STATION

Consider a combined attack with the detection of
side radiation of the transmitting station and active
probing of the phase modulator. To this end, we have
to include quantum states in both side channels of
information leakage in the density matrix. Taking into
account formulas (30) and (50), we rewrite the Alice–
Eve density matrix for the combined attack as

(61)

The calculation of the entropy for the density
matrix (61) yields

(62)
Further, with regard to (61), the partial density

matrix that Eve has at her disposal is expressed as

(63)

Similar to the previous case (see (42), (55)), the
secular equation for the eigenvalues of the density
matrix (63) is expressed as

(64)

Taking into account the secular equation (64), we have the eigenvalues of (63):

(65)

where

(66)

Taking into account (65), we obtain the following
expression for the entropy H( ):

(67)

where the Holevo information is [12–14]

(68)

Combining formulas (62) and (67), we finally
obtain the following expression for the length of the
secret key:

(69)

6. JOINT DETECTION OF SIDE RADIATION, 
ACTIVE PROBING OF THE PHASE 

MODULATOR OF THE TRANSMITTING 
STATION, AND DETECTION OF THE 

BACKWARD RADIATION OF AVALANCHE 
DETECTORS ON THE RECEIVER SIDE

Taking into account the above-mentioned side
channels of information leakage, we can represent the
Alice–Bob–Eve density matrix as
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(70)

The density matrix has a simple interpretation. The
detection of the states |0YY0| or |1YY1| on the receiver
side is performed by two avalanche detectors (see
Fig. 1). When the detector is triggered, an avalanche of
carriers is formed; the recombination of these carriers
may give rise to backward radiation into the fiber-
optic communication channel, which can be detected
by Eve. To take into account such radiation, it is nec-
essary to introduce one more side leakage channel,
more precisely, a quantum state associated with back-
ward radiation.

If, for example, the state |0YY0| is detected, then this
gives rise to the state [(1 – d)|d0DDd0| + d|d1DDd1|]
of the density matrix in the side channel. Informally,
this means that, with probability 1 – d, Eve will have
the state |d0DDd0| at her disposal and, with probability
d, she will have the state |d1DDd1|. The states |d0DDd0|
and |d1DDd1| can be considered orthogonal (in order
not to overload the calculations with insignificant
details); then, with probability of 1 – d, Eve correctly
recognizes the detected key bit by detecting the back-
ward radiation, but, with probability d, she makes an
error. The probability of discrimination is included in
the probability d. The states in the side channel are
taken into account in a similar way when 1 is detected.
Note that we consider a symmetric situation in the
side channel. This is done solely to save mathematical
calculations. It is not difficult to generalize the calcu-
lations to the case when the states and probabilities
when detecting 0 and 1 are different.

The implementation of the phase–time coding
protocol (see Fig. 1) does not involve a phase modula-
tor on the receiver side; therefore, there is no side
channel of information leakage associated with prob-
ing the phase modulator on the receiver side. The
absence of a phase modulator is due to the use of the
phase–time coding protocol, which makes the system
robust against such an attack compared to other sys-
tems.

When detecting 0 or 1, the state of the electronic
equipment of the receiving station is different; there-
fore, the side electromagnetic radiation associated
with the operation of the electronics is also different.
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Electromagnetic radiation can be detected by Eve.
The side channel associated with the electromagnetic
radiation of the electronic equipment of the receiving
station during detecting 0 and 1 can be included in the
states |d0DDd0| and |d1DDd1|, which correspond to
probabilities d – 1 and d. With regard to (70), the
Alice–Eve density matrix is given by a partial trace
over Bob’s state space; we obtain

(71)

The eigenvalues of (71) are

(72)

(73)

the eigenvalues are doubly degenerate. Taking into
account (72) and (73), we obtain the following expres-
sion for the entropy:

(74)

Let us proceed to calculating H(ρSQTD). For the
density matrix ρSQTD, we find
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The eigenvalues of ρSQTD are given by the roots of
the secular equations
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(77)

(78)

(79)

(80)

The roots of (76)–(80) are

(81)

The eigenvalues of (76)–(80) are

(82)

Introduce the notation

(83)

For the conditional entropy, we obtain

(84)
As a result, taking into account (74) and (83), we

have the following estimate for the length of the secret
key in the strictly single-photon case:

(85)

where the information leakage during error correction
is taken in the Shannon limit. During the correction
with constructive codes, the last term on the right-
hand side of (85) should be replaced by the real num-
ber of bits per position, which was found during error
correction, h(Q) → leak.

Note once again that expression (85) for the secret
key length takes into account the joint collective mea-
surements of Eve over quantum states in side channels
and in the quantum communication channel.

7. ACTIVE PROBING OF THE INTENSITY 
MODULATOR STATE AT THE 

TRANSMITTING STATION
Above, we obtained formulas for the length of the

secret key, taking into account the side channels of
information leakage when the states are strictly single-
photon. In a real situation, information states in a
quantum communication channel are a statistical
mixture of different Fock (photon-number) states. We

emphasize that the implementation of a system using a
pulsed laser, which is turned on and off in each mes-
sage on the transmitter side (see Fig. 1), leads to the
randomization of the phases of information coherent
states in different messages. It is for this reason that the
quantum communication channel contains a statisti-
cal mixture of Fock states with Poisson statistics on the
number of photons, rather than pure coherent states.

The secret key is composed solely of the single-
photon component of the statistical mixture of states.
Conservatively in favor of the eavesdropper, it is
assumed that the information contained in the multi-
photon components of states is known to the eaves-
dropper. Therefore, to estimate the fraction of the sin-
gle-photon component of states that reaches the
receiver side, one applies the decoy state method. In
this method, states with different average numbers of
photons are randomly sent to the quantum communi-
cation channel. A Fock state with k photons can be
obtained from a state with any average number of pho-
tons. The key point of the decoy state method is the
fact that, having found a Fock state with a given num-
ber of photons in a quantum communication channel,
the eavesdropper cannot know from which state and
with what average number of photons a given compo-
nent of states occurs.

In active probing of the state of the intensity mod-
ulator, this condition is violated. The eavesdropper,
albeit with some probability, knows from which state
the component of Fock states with a given number of
photons comes from. For this reason, the standard
decoy state method does not work in the case of active
probing of the intensity modulator. Below we clearly
show at what stage this occurs.

The side channel of information leakage associated
with active probing of the intensity modulator at the
transmitting station is fundamentally different from
other side channels. The probing states reflected from
the intensity modulator do not carry direct informa-
tion about the transmitted key bit, but only about the
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intensity of a state—the average number of photons.
Therefore, the reflected quantum states cannot be
directly included in the Alice–Bob–Eve density
matrix, in terms of which the conditional entropy and
information leakage to the eavesdropper are calcu-
lated.

In the previous sections, we “linked” the states in
the side channels of information leakage to the single-
photon component of states. Naturally, side leakage
channels also exist in the case when there are non-sin-
gle-photon components of states in the quantum
channel. However, since the information about the
key bits contained in these components is assumed,
conservatively in favor of the eavesdropper, to be
known to Eve, there is no need to “link” the states in
the side channels to the multiphoton components of
information states.

The probing of the intensity modulator state, in
contrast to probing the state of the phase modulator,
does not give direct information about the transmitted
key bit, but gives information only about the intensity
of the transmitted state. The fraction of the single-
photon component of the states and the error proba-
bility in it in the messages in which the information
states were sent is estimated in terms of the change in
the statistics of photocounts in the messages in which
“decoy” states have been sent. Having additional
information about what state is transmitted in a partic-
ular message—either information state or a decoy
state—the eavesdropper can change her strategy for a
given detected number k of photons. For example, if it
is known that a decoy state has been sent, then the
eavesdropper does nothing (behaves passively) and
does not distort the statistics of photocounts of the
decoy states.

Below we modify the decoy state method for the
case of active probing of the intensity modulator infor-
mally, when the eavesdropper additionally has at her
disposal a reflected quantum state that carries infor-
mation about the state of the intensity modulator, and,
hence, about the average number of photons.

Denote the probing quantum state reflected from
the intensity modulator by |ψ(ξ) . Assume that this
state depends only on the state of the intensity modu-
lator, i.e., on which state with the average number of
photons ξ ∈  = {μ, ν1, ν2} is sent to the communica-
tion channel. A generalization to the case when this
state also depends on the state of the phase modulator
is possible. However, in order not to overload the cal-
culations, we give the derivation only for the former
case.

When measuring the number of photons in a com-
munication channel, instead of the state | BB |,
which does not depend on the average number of pho-
tons ξ, Eve has the state | (ξ)BSBS (ξ)| at her dis-
posal. This state contains information about the aver-
age number of photons, which is given by the presence


MS
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Ψ x
k Ψ x

k

Ψ x
k Ψ x

k
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of the reflected probing state |ψ(ξ) . This state gives
Eve additional information about the intensity of the
transmitted state. The information quantum state,
together with the reflected probing state accessible to
Eve, has the form

(86)

where the state |ψ(ξ)  reflected from the intensity
modulator does not depend on the information state.

Eve has at her disposal a quantum state reflected
from the intensity modulator; therefore, Eve’s actions
after detecting a Fock state with a given number of
photons depend also on the additional information
that the eavesdropper can obtain from the reflected
state. Eve’s actions are determined by the result of on-
the-go measurement of the reflected state. The pur-
pose of Eve’s measurements is to find out from the
state with what average number of photons ξ the com-
ponent with a given number k of photons came from.
In fact, the purpose of the eavesdropper is to distin-
guish one of the states |ψ(μ) , |ψ(ν1) , or
|ψ(ν2) .

The complete measurement of Eve and Bob (  =
{μ, ν1, ν2}) is given by the resolution of identity:

(87)

The eavesdropper’s measurement over the
reflected state is given by positive-valued measures

. Naturally, the eavesdropper chooses an optimal
measurement that minimizes the error in distinguish-
ing between reflected states corresponding to states
with different average numbers of photons. To con-
struct an optimal measurement, one should know the
structure of the reflected state, which should be deter-
mined experimentally for a specific implementation of
the cryptographic system.

Further, we do not explicitly need the reflected
states themselves; we only need to know the probabil-
ities of distinguishing between different states, which
we consider to be known from experimental measure-
ments. Taking into account (86) and (87), we obtain

(88)
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where PJ|I(ξ'|I = ξ) is the conditional probability that a
state with average number of photons ξ was sent to the
channel and the eavesdropper, as a result of measure-
ments (87) and (88), obtained an outcome ξ′—Eve
made a decision that the channel contains a state with
average number of photons ξ′.

In view of the aforesaid, the action of Eve’s super-
operator can be represented as

(89)

Let us give an interpretation of formula (89). After
detecting k photons in the channel, Eve, depending on
the outcome of measurements over the reflected
quantum state, transforms the Fock information state.
This means that the transformed density matrix ,
in contrast to the situation without a side channel,
depends on the initial state—on the average number of
photons ξ in it. This dependence is expressed in terms
of the transition probabilities PJ|I(ξ'|I = ξ), which are
determined by the distinguishability of the reflected
states.

In fact, it is for this reason that the standard decoy
state method does not work under an active probing
attack on the intensity modulator.

The probability of measurement outcomes on the
receiver side of Bob is expressed in terms of the density
matrix in (89); taking into account (88), we find

(90)

For the partial count rate in information time win-
dows on the receiver side, we obtain

(91)

Similarly, for the partial count rate in the control
time window on the receiver side, we get

(92)

For the total count rate in information time win-
dows y = 0, 1, taking into account (91), we find
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(93)

For the total count rate in the control window
(index c) 3 in the basis L and in window 1 in the basis
R, taking into account (92), we find

(94)

Passing to more compact notation for the probabil-
ities of counts in information time windows, we obtain

(95)

To avoid misunderstandings, it is necessary to
interpret the quantities (y, ξ' | X = x) and explain
the notation. Although this quantity looks like a prob-
ability, it is not normalized to unity. Consider mes-
sages in which the bases of Alice and Bob coincided
and Alice sent states with an average number of pho-
tons ξ. Let us single out the messages in which Alice
sent states corresponding to bit x with probability
PX(x). Suppose that there were N(x) such messages.
Consider Bob’s counts in information time windows.
Eve’s actions depend on the outcome of measure-
ments over the states reflected from the intensity mod-
ulator. Suppose that Eve decided that the k-photon
component of the states came from the states with the
average number of photons ξ′ for a given (real) ξ (see
formula (91)). On the receiver side, for the k-photon
component of states, provided that Eve has decided
that, in the channel of the state with the average num-
ber of photons ξ′, the information bit is x, N(k)(ξ', y)
counts are detected, and the result of detection of the
bit is interpreted by Bob as y. For large N(ξ, x), the

fraction  of counts tends to (y, ξ' | X = x)

(see formula (95)).
For the probability of counts in control time win-

dows, we obtain

(96)

Next, denoting for brevity P(ξ'|μ) = PJ|I(ξ' | I = μ)
for (88), we find
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(97)

(98)

We obtain the following expression for the partial
error in information states:

(99)

Using (91), (93), and (96), we obtain an expression
for the total error in information states:

(100)

8. ESTIMATION OF THE PARAMETERS
OF THE SINGLE-PHOTON COMPONENT

OF INFORMATION STATES
AT THE RECEIVING STATION

Our further goal is to estimate the probability of the
single-photon component and the error in the single-
photon component to determine the length of the
secret key. To calculate the length of the secret key,
one needs to know separately the quantities Y1(μ),
Y1(ν1), and Y1(ν2); similarly, for the error probability,
one needs separate quantities e1(μ), e1(ν1), and e1(ν2).

The decoy state method does not allow one to
obtain expressions for individual fractions of single-
photon components and errors. The decoy state
method allows one to obtain only their combinations
(the sum of all values, see below). However, it is possi-
ble to obtain an estimate for the key length using only
the sum of the values.

Let us proceed to obtaining the necessary combi-
nations of single-photon components. For what fol-
lows, we introduce new notation:
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Note that, unlike the standard decoy state method,
the expression for the count rate of states with different
average numbers of photons includes different quanti-
ties  with different weight coefficients—condi-
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tional probabilities depending on the states reflected
from the intensity modulator.

Introduce new, more convenient notation for the
error probability:

(103)

Next, denote
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Using (101)–(104), we obtain the following chain
of inequalities:
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Next, we have
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as well as (110) and (111), we obtain

(112)

Finally we have

(113)

As mentioned above and seen in (106) and (113),
we can obtain only an estimate for the sum of single-
photon components , rather than an estimate for
individual components. At the same time, the estimate
for the length of the secret key (see formula (129)
below) includes the values of individual components.
Below we will see that this problem can be circum-
vented by using the convexity of conditional entropies
(see below).

To estimate the total fraction of the vacuum com-
ponent , we obtain
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According to formulas (28) and (40), the length of
the secret key for the single-photon component
includes the ratio of count probabilities in the control
time windows and information time windows, ζ/(1 – ζ)
(see details in [10, 11]). Eve’s lack of information
about the key is expressed in terms of this ratio.

Let us obtain an estimate for the probability of error
in the single-photon component of states:
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Similar to the previous case, we find
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(118)

Combining inequalities (116) and (117), we obtain

(119)

where the notation

(120)

is introduced. Let us estimate the probability of the
single-photon component of the states in the control
time windows:
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Similar to the previous case, we find
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Combining inequalities (121) and (122), we obtain
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which, together with the convexity of the entropy, are
sufficient to calculate the length of the secret key.

9. ESTIMATION OF THE SECRET KEY 
LENGTH WITH REGARD TO SIDE 

CHANNELS OF INFORMATION LEAKAGE 
AND THE NON-SINGLE-PHOTON NATURE 

OF INFORMATION STATES

Above, we obtained estimates for the length of the
secret key for a strictly single-photon component. In
this case, the parameters describing the side radiation
(p, d, and η) should be referred to messages in which
information states with an average number of photons
μ were transmitted. Expressions for the secret key
length have the following structure:

(129)

Informally speaking, after detecting a state with the
number of photons k in the channel, Eve performs
measurements over the reflected probing state in order
to find out from which state, information state or a
decoy state, the detected state came from. After the
measurement, the probability of the outcome is given
by the conditional probability P(ξ'|ξ), and Eve makes
a conclusion about further actions. In other words, the
probabilities of counts in the control windows, ζ1(ξ),
and of the fraction of the single-photon component,

(ξ), depend on the outcome of the measurements
over the reflected state. The conditional probabilities
P(ξ'|ξ) are known. Note that the length of the secret
key (129) includes the partial quantities

ζ1(ξ) , which are different in messages for

states with different intensities ξ.

− μ

μ
μ

ξ=μ ν ν

− μ

μ μ
μ

ξ ξ=μ ν

ξ

 μ= 


 
× ξ μ ξ − χ ζ ξ η 
 


  μ− = 
 



  ξ μ ξ
× ξ μ ξ 
  ξ μ ξ






1 2

1

2
inf,tot

inf,tot

inf
1 Hol 1

, ,

2
tot inf,tot

inf,tot

inf
inf 1

1
' , inf

1
'

(2 )

( | ) ( )[1 ( ( ), , , )]

(2 )leak(Err )

( | ) ( )
( ' | ) ( )

( ' | ) ( ')

eP
P

P Y p d

eP
P

P Y
P Y

P Y

,

ν

μ








 
 

× − χ ζ ξ η − 
 
 


2,

tot
Hol 1[1 ( ( ), , , )] leak(Err ) .p d

inf
1Y

 ζ ξ
 − ζ ξ 

1

1

( )
1 ( )
JOURNAL OF EXPERIMENTAL AN
The functions χHol(ζ1(ξ), p, η, d) in (129) are con-
vex functions of the arguments. By definition, a con-
vex function f(x) satisfies the inequality

(130)
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taking into account (130), we obtain the following
chain of inequalities:
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As a result, using (132) and, for brevity, notation (133),
we obtain the following expression for the fraction of
secret bits:
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Formula (135) contains the integral fraction of the
single-photon component  and the integral ratio
(ζY) . In fact, this means that the partial ratios in
the argument of χHol(ζ1, p, d, η) in formulas (134) and
(135) should be replaced by the mean values:

(136)

These quantities are expressed in the modified
decoy state method in terms of the observed quanti-
ties—the count rate on the receiver side for states with
different average numbers of photons. Recall that this is
the length of the secret key in one basis. In order to
obtain the key length over all bases, it is necessary to
apply once again the convexity of the functions in (135).

10. ESTIMATION OF THE SECRET KEY 
LENGTH OVER ALL BASES

Let us estimate the length of the secret key over all
bases. Now, the quantities in (135) must be supplied
with the subscript of a basis b = L, R; we obtain

(137)

where

Using the convexity of the functions leak( (b))
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Finally we obtain

(139)

where

11. DISCUSSION OF THE RESULTS
Formula (139) gives the length of the secret key in bits

per detected message over all bases. The length of the key
per detected message over all bases is expressed in terms
of the average values of the observed parameters on the
receiver side. These parameters are as follows.

1. The total error probability  in information
time windows averaged over all bases. This quantity
can be determined both by disclosing a part of the
sequence of detected messages and actually, provided
that the error correction occurs immediately without
preliminary estimation of the error probability. In this
case, the fraction of corrected positions in the asymp-
totic limit immediately gives the quantity .

2. The total probability of detected messages
 over all bases.

3. The total probability of detection of the single-
photon component of states, , in information
time windows over all bases. This quantity is estimated
in terms of the quantities, observed on the receiver
side, for information messages and the messages with
decoy states.

4. The total averaged probability of detection of the
single-photon component of the states (ζY  over
all bases in the control time windows. This quantity is
estimated in terms of observed quantities for informa-
tion messages and the messages with decoy states.

5. The quantities pmax(μ) and pmin(μ), which deter-
mine the maximum and minimum probabilities of dis-
tinguishing the probing states reflected from the inten-
sity modulator, depend on the specific experimental
implementation of the quantum cryptography system,
and must be determined/calculated in special studies.

6. The quantity η, which determines the minimum
overlap (maximum distinguishability) of the probing
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states ref lected from the phase modulator on the
receiver side, should also be measured/calculated in
special studies and determined for the specific imple-
mentation of the system.

7. The quantities p and d, which describe the prob-
ability of distinguishing quantum states in side chan-
nels associated with the passive detection of electro-
magnetic radiation and backward radiation of ava-
lanche detectors, should be determined
experimentally and also depend on the specific imple-
mentation of the system.

The upper bound for the information leakage to the
eavesdropper under an attack on information states in
a quantum communication channel can be obtained,
at least for single-photon states, without resorting to
any model considerations, but relying only on the fun-
damental limitations of quantum theory, for example,
on the entropy uncertainty relations [3], since the type
of information states sent to the communication chan-
nel is known. The situation with states in side channels
is fundamentally different. The introduction of side
channels of information leakage and quantum states in
them cannot be done without some model consider-
ations. The structure of quantum states in side chan-
nels is not known exactly. Theoretically, the structure
of quantum states in side channels for each specific
implementation of a quantum cryptography system
can be determined by quantum tomography. However,
this is only speculative. In practice, this is impossible
due to the huge number of degrees of freedom of the
system. For example, the exact type of side electro-
magnetic radiation from electronic equipment is
unknown due to the macroscopically large number of
degrees of freedom. Therefore, model considerations
are required. Above, we considered the models of
binary quantum channels for side radiation. The
method proposed allows one to consider any other
types of side channels on a regular basis. Moreover,
according to the above consideration, the exact form
of the states themselves is not required; it suffices to
know the upper bound of the distinguishability of
states, which is a simpler experimental problem.

We have considered the asymptotic limit of long
transmitted sequences. The consideration of the finite
length of transmitted sequences is a more or less stan-
dard problem on the f luctuations of observed quanti-

ties due to the finite length of the sequences, which is
a standard problem in the classical probability theory.
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