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Abstract—We have analyzed peculiarities in the localization of light in a layer of a cholesteric liquid crystal
(CLC) for the normal incidence of light. It is shown that dielectric boundaries strongly affect the localization.
For the minimal influence of dielectric boundaries (i.e., for ns = ), the total field for the eigenmodes in
the CLC layer varies smoothly upon a displacement along the z axis directed along the axis of the medium
(here, εm is the mean permittivity of the CLC layer and ns is the refractive index of the external medium).
When ns differs from  or when the polarization of incident light differing from the polarization of the
eigenmodes, oscillations appear in the dependence of the energy of the total wave field in the CLC layer on z.
It is shown that the amount of the energy stored in the CLC layer depends on ns, and the total accumulated
energy in the CLC layer increases monotonically with ns.
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1. INTRODUCTION
It is well known that Yablonovitch and John [1, 2]

demonstrated for the first time that the structure con-
sisting of a periodic matrix made of dielectric materials
(with different refractive indices) can control the prop-
agation of an electromagnetic wave. Later, an analogous
effect was also observed in other periodic structures
consisting of metal/semiconductor, metal/dielectric,
etc. layers. Such media with a periodic variation of the
dielectric/magnetic properties on a spatial scale on the
order of the optical wavelength are known as photonic
crystals (PCs) due to the similarity of their structural
periodicity with the periodic potential energy in semi-
conducting crystals. It is well known that each PC is
characterized by a certain frequency range referred to as
the photonic bandgap (PBG) [3]. In this frequency
interval, an electromagnetic wave cannot propagate
through the crystal. This unique property of PCs ren-
ders them inimitable candidates for preparing a large
number of photonic elements/devices.

For preparing a PC, various chemical/optical
methods and various approaches to deposition are
used [4]. Laser technology was also employed for
obtaining PCs after considerable advances made in the
formation of the material surface structure [4]. Pho-
tonic crystals can also be self-organizing. A classical

example of self-organizing PCs are cholesteric liquid
crystals (CLCs). A CLC has a birefringent structure that
rotates uniformly around a certain direction known as
the direction of the optical axis of the medium [5]. Cho-
lesteric liquid crystals are also interesting because the
exact analytic solution to the problem of light propaga-
tion in a CLC along its optical axis is known [6, 7].

Peculiarities in light localization in a PC form a
rapidly developing trend in contemporary optics and
photonics. This is associated with the fundamental
importance and possible applications of features of
light localization. It should be noted that unlike the
propagation of waves that can easily be grasped from
the wave equation, localization of waves (formation of
bound states) is a more complex effect. There are
many methods of light interception, and all of them
are implemented with the help of materials or systems
in which outgoing waves are prohibited. Strong light
localization is observed in the Fabry–Perot-type sys-
tems because of the multiple reflection of light from the
boundaries as well as from the PC defects. Strong local-
ization of light can also occur due to nonreciprocal
reflection [8, 9]. In recent years, Anderson localization
of light in disordered systems and in biological nano-
structures [10], as well as light localization in nanopar-
ticles [11], have become active fields of investigation.
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In this study, we analyze some peculiarities of light
localization in CLCs. We study the effect of dielectric
boundaries on light localization.

2. FORMULATION OF THE PROBLEM
AND BASIC RELATIONS

In analysis of optical properties of CLCs, two sys-
tem of coordinates are conventionally used: (i) labora-
tory system of coordinates (x, y, z), where the z axis is
parallel to the axis of the CLC spiral, and (ii) rotating
system of coordinates (x', y', z'), where the z' axis coin-
cides with the z axis, while the x' and y' axes are parallel
to the principal directions of the permittivity tensor for
each value of z'. In this case, two approaches to solving
the Maxwell equations are possible [12, 13].

1. For invariable vectors of electric and magnetic
fields and induction, we can transform the permittivity
tensor in accordance with the law

where

is the local permittivity tensor and (az) is the rotation
matrix:

a = 2π/p, p being the CLC helix pitch.
2. For a constant permittivity tensor in the rotating

system of coordinates, in which this tensor is diagonal,
the vectors of electric and magnetic fields and induc-
tion can be transformed in accordance with the rule
E(z) = (az) (z).

Although both these methods are equivalent, we will
use the second method, which has certain advantages in
solving certain problems. The solution of the Maxwell
equations in the rotating system of coordinates for light
propagating along the cholesteric axis has form

(1)

where km are the wavenumbers in the rotating system
of coordinates. These wavenumbers are the solution to
the dispersion equation

(2)

where ω/c = 2π/λ, λ being the wavelength of light in
vacuum.
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Using the eigenvalues of wavenumbers obtained
from Eq. (2), we solve the problem of reflection,
transmission, and localization of light in the case of a
CLC layer. We assume that the CLC optical axis is
perpendicular to the layer boundaries. On both sides,
the CLC layer borders on the isotropic half-spaces
with identical refractive indices ns. The boundary con-
ditions involving the continuity of the tangential com-
ponents of the electric and magnetic fields have form

where d is the thickness of the CLC layer, ϕ0 is the
angle between the director and the x axis at the inlet
surface of the CLC layer, and , , , and 
are the electric and magnetic field components in
rotating system of coordinates (x', y', z'). In [14, 15],
exact analytic solutions of the boundary value problem
and exact analytic expressions for the reflection and
transmission coefficients were obtained (from inten-
sity) for a diffracting proper wave in the case of the
minimal influence of dielectric boundaries (i.e., for
ns =  = ). Analogous results for an
incident wave with an arbitrary polarization and for an
arbitrary value of ns were obtained in [16, 17].

Therefore, solving the boundary value problem, we
can determine the values for the components of the
reflected and transmitted fields, as well as for the field
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Fig. 1. Intensity distribution I(z) = |E(z)|2 outside and inside of the CLC layer at wavelength λ = 625.5. nm (within the PBG near
its center) in the case of the minimal influence of dielectric boundaries (i.e., for ns = ). The polarization of light incident on
the layer coincides with the first (diffractive) (a) and second (b) EP with the left (c) and right (d) circular polarizations and,
finally, with linear polarizations along the x (e) and y (f) axes. CLC parameters: helix pitch p = 420 nm, ε1 = 2.29, ε2 = 2.143, and
layer thickness d = 50p. Vertical dashed lines in all figures correspond to the left and right boundaries of the CLC layer.
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in the medium and, hence, analyze the peculiarities in
light localization in a CLC layer.

The total electric field corresponding to the
medium on the left side of the CLC layer, inside the
CLC layer, and in the medium on the right side of the
CLC layer (we assume that the CLC layer is located
between two isotropic half-spaces z = 0 and z = d) can
be written in form
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
(3)

where Ei, Er, and Et are the fields of incident,

reflected, and transmitted waves and (az) (z) is
the total field in the CLC layer itself.
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3. RESULTS AND DISCUSSION

Each optical system has characteristic polariza-

tions called eigen polarizations (EPs). Eigen polariza-

tions are two polarizations of incident light, which do

not change upon transmission of light through the sys-

tem. These polarizations coincide with the polariza-

tions of the eigenmodes. The EPs of the CLC layer for

the normal incidence of light almost coincide with the

orthogonal circular polarizations. When light is inci-

dent along the normal to the CLC layer, the wave with

one of EPs diffracts from the periodic structure of the

medium, while the wave with the other eigen polariza-

tion practically almost does not perceive the periodic

structure of the medium. Therefore, for the normal

incidence of light on a CLC, a PBG exists only for

light with only one of the EPs (which will be referred

to as a diffracting EP); in the case of minimal effect of

dielectric boundaries, the reflection coefficient equals

unity in the PBG and decreases, oscillating outside of

the PBG. These oscillations are due to finiteness of

the CLC layer thickness, are consequences of diffrac-

tion of light in a finite volume, and are not associated

with reflections from the dielectric boundaries. The

existence of dielectric boundaries (i.e., the difference

of ns from ) leads to additional modulation of these

oscillations outside of the PBG. The reflection min-

ima can be determined approximately from condition

(4)

where

At the frequencies specified by this condition (and

known as the edge mode frequencies), strong localiza-

tion of light takes place. With increasing order of the

edge modes, light localization becomes weaker.

Localization of light in CLCs was analyzed theoreti-

cally for the first time in [18, 19]. This problem for a

diffracting EP of a CLC was considered analytically

and numerically in [20] for the minimal influence of

dielectric boundaries also. Various features of light

localization in CLCs were also investigated in [21–

25]. We will continue below the analysis of peculiari-

ties of light localization in a CLC layer.

Figure 1 shows intensity distribution I(z) = |E(z)|2

outside and inside of the CLC layer at wavelength λ =

625.5 nm (within PBG near its center) in the case of

the minimal influence of dielectric boundaries (i.e.,

for ns = ). The polarizations of light incident on
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the layer coincide with the first (diffracting) and sec-
ond EPs, with the left and right circular polarizations
and, finally, with the linear polarizations along the x
and y axes.

Figure 2 shows intensity distributions I(z) = |E(z)|2

outside and inside of the CLC layer at wavelength λ =
625.5 nm (inside of the PBG near its center), at a
wavelength outside of the PBG at the first short-wave-
length minimum of the reflection coefficient (or just
at the edge mode with m = –1), at a wavelength out-
side of the PBG at the first short-wavelength maxi-
mum of the reflection coefficient, and at a wavelength
outside of the PBG at the second short-wavelength
minimum of the reflection coefficient (or at the edge
mode with m = –2 for ns = 1 (CLC layer is in vacuum)

and ns = . The polarization of light incident on the

layer coincides with the first and second EP.

Figure 3 shows intensity distributions I(z) = |E(z)|2

outside and inside of the CLC layer at wavelength λ =
625.5 nm, at a wavelength outside of the PBG at the
first short-wavelength minimum of the reflection
coefficient, at a wavelength outside the PBG at the
first short-wavelength maximum of the reflection
coefficient, and at a wavelength outside of the PBG at
the second short-wavelength minimum of the reflec-
tion coefficient for ns = 10.

It follows from the figures that

(i) in the case of the minimal influence of the

dielectric boundaries, the value of |E(z)|2 for the eigen-
modes in the CLC layer varies smoothly;

(ii) when ns differs from  or when the polariza-

tion of incident light differs from the EP, oscillations
appear in the dependence of energy of the total wave
field in the CLC layer on z;

(iii) the amount of energy accumulated in the CLC
layer depends on ns.

Let us now consider the influence of the dielectric
boundaries on the luminous energy accumulated by
the CLC layer.

We will first analyze the spectra of the averaged
luminous energy density in the CLC layer for different
values of ns. The averaged luminous energy density in

the CLC layer can be calculated using formula

(5)

Figure 4 shows the spectra of w for different values
of ns. Figure 5 shows the evolution of the w spectra

upon a change in ns. Finally, Fig. 6 shows the depen-

dences of w and wavelength λm of the edge modes on ns
for the first three short-wavelength edge modes with
m = –1, –2, and –3.
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Fig. 2. Intensity distribution I(z) = |E(z)|2 outside and inside of the CLC layer: (a, b) at wavelength λ = 625.5 nm (within the PBG near

its center); (c, d, e, f) at a wavelength outside the PBG at the first short-wavelength minimum of the reflection coefficient (or just at the
edge mode with m = –1); (g, h, i, j) at a wavelength outside of the PBG at the first short-wavelength maximum of the reflection coef-
ficient; (k, l, m, n) at a wavelength outside of the PBG at the second short-wavelength minimum of the reflection coefficient (or at the

edge mode with m = –2); (a, b, e, f, i, j, m, n) ns = 1 (the CLC layer is in vacuum); (c, d, g, h, k, l) ns = . The polarization of light

incident on the layer coincides with the first (a, c, e, g, i, k, m) and second (b, d, f, h, j, l, n) IP. Parameters are the same as in Fig. 1.
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Fig. 3. Intensity distribution I(z) = |E(z)|2 outside and inside of the CLC layer (a) at wavelength λ = 625.5 nm, (b) at a wavelength

outside of the PBG at the first short-wavelength minimum of the reflection coefficient, (c) at a wavelength outside of the PBG
at the first short-wavelength maximum of the reflection coefficient, and (d) at a wavelength outside of the PBG at the second

short-wavelength minimum of the reflection coefficient for ns = 10. Parameters are the same as in Fig. 1.
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Fig. 4. Spectra of w for ns = 1 (1),  (2), 2.5 (3), 0.2 (4), 1.5 (5) and 10 (6). The remaining parameters are the same as in Fig. 1.
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These figures lead to the following conclusions.

1. For the minimal inf luence of dielectric bound-

aries (i.e., for ns = ), the maximal localization is

observed at edge modes with m = ±1. With increas-

εm
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ing m, the localization of the luminous energy

decreases.

2. With increasing difference |ns – |, the maximal

localization is shifted towards edge modes with larger

εm
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Fig. 5. Evolution of the w spectra upon a change in ns.

Parameters are the same as in Fig. 1.
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index m. The change of ns also leads to a change in the

wavelengths of edge modes. For ns = , the wave-

lengths of short-wavelength (long-wavelength) edge

modes take on a minimal (maximal) value. With increas-

ing difference |ns – |, the wavelength of short-wave-

length (long-wavelength) edge modes increase

(decrease).

3. With increasing ns, the value of w at different

edge modes increases in different manners.

We have also analyzed the effect of the variation of

ns on total luminous energy W localized in the CLC
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Fig. 6. Dependences of (a) w and (b) wavelength λm of the edge m

m = –1 (1), –2 (2), and –3 (3). Parameters are the same as in F
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layer in a finite spectral range. This total energy was
calculated using formula

(6)

Figure 7 shows dependence W(ns). With increasing

ns, the value of W increases monotonically, but not

linearly.

4. CONCLUSIONS

In should be noted in conclusion that we have
investigated peculiarities in light localization in a CLC
layer in the case of normal light incidence. We have
analyze the influence of dielectric boundaries on light
localization and have demonstrated the strong effect
of refractive index ns on the localization. The impor-

tance of our results lies, in particular, in the knowledge
of exact analytic solution to the Maxwell equations for
light propagating along the CLC axis and, hence, our
results are correct. These results can serve as a goal-
post for systems for which the exact solution is
unknown. It should also be noted that according to the
results of our analysis, the maximal localization is
observed at the edge modes with m = ±1 in the case of
the minimal influence of dielectric boundaries. With

increasing difference |ns – |, the maximal localiza-

tion is shifted towards edge modes with a larger index
m. A variation of ns also leads to a change in the wave-

lengths of the edge modes.

The importance of this research is due to the fact
that in the presence of certain boundaries, modes of a
new type, at which strong localization can also be
observed, can appear apart from the edge modes. In
recent years, systematic studies of optical Tamm
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Fig. 7. Dependences of W on ns; λ1 = 600 nm, λ2 =

650 nm. The remaining parameters are the same as in Fig. 1.
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modes have been launched and continued for various
optical structures, in particular, in view of their possi-
ble wide application (see, for example, [26–33] and
the literature cited therein). It is well known that
strong localization is also observed at defect modes
[33–39].
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