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Abstract—We present a consistent scheme of quantization of chiral f lows (flows with extensive vorticity) in
ideal hydrodynamics in two dimensions. Chiral f lows occur in rotating superfluid, rotating turbulence, and
also in electronic systems in magnetic field in the regime of a fractional Hall effect. The quantization is based
on a geometric relation of chiral f lows to two-dimensional quantum gravity and is implemented by the grav-
itational anomaly. The effect of the gravitational anomaly changes the major property of classical hydrody-
namics, the Helmholtz law: vortices are no longer frozen into the f low. Effects of quantization could be cast
in the form of quantum stress. We show that the quantum stress is a generator of Virasoro algebra, the cen-
trally extended algebra of holomorphic diffeomorphisms.
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1. INTRODUCTION
The problem of quantization of hydrodynamics

beyond linear approximation is commonly considered
to be intractable. Nevertheless, nature confronts us with
beautiful quantum ideal fluids with experimentally
accessible and precise quantization. Among them, two
quantum fluids stand out: superfluid helium and elec-
tronic fluid in the fractional quantum Hall state. In
both cases the precise quantization of vortex circulation
in superfluid helium and transport in FQHE leave no
doubts of the quantum nature of their flows.

The fundamental aspects of quantization of f luid
dynamics is seen in ideal f lows: homogeneous, incom-
pressible and inviscid. Dynamics of ideal two-dimen-
sional f lows is obtained by actions of area-preserving
preserving diffeomorphism SDiff, and should be stud-
ied from a geometric standpoint, see, e.g., [1]. Then,
the problem of quantization of incompressible f lows is
equivalent to a geometric quantization of SDiff. The
problem is specialized in fast-rotating f luids where the
quantum states are holomorphic. We refer to such
flows as chiral flows and study them in this paper.

The two most perfect quantum fluids, fast-rotating
superfluid helium [2] and FQHE [3, 4] fall to the class
of chiral f lows. The superfluid helium is a compress-
ible f luid, however, a fast rotating helium could be
considered as incompressible. States of electronic
fluid in FQH regime, where electrons fractionally

occupy the lowest Landau level are holomorphic;
hence, their f lows are incompressible.

In this paper we show how to quantize chiral f lows
and describe some not immediately obvious conse-
quences of quantization. The guidance for the quanti-
zation comes from the intersection between FQHE,
superfluid theory and quantum 2D gravity which we
describe below.

Hydrodynamics of ideal flows is a Hamiltonian sys-
tem. Its Hamiltonian is the kinetic energy of the flow

and the Poisson structure

(1)
is the Lie-Poisson algebra SDiff. Here ρA is a constant
density of the f luid, and ω(r) = ∇ × u is the vorticity.
Formally the quantization amounts the replacement

of the Poisson brackets by the commutator {, } →  [, ]

[5], and identification of the Hilbert space with a repre-
sentation space of SDiff. The latter, however, is not
known. A difficulty is in ambiguous  short-distance reg-
ularization. Canonical quantization of non-linear
dynamics often yields divergencies which require a reg-
ularization. A regularization must be consistent with
fundamental symmetries. The fundamental principle of
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QUANTUM HYDRODYNAMICS, ROTATING SUPERFLUID 643
fluid dynamics is the relabeling symmetry, or equiva-
lently the invariance with respect to reparametrization
of the fluid. Relabeling are diffeomorphisms in the
manifold of Lagrangian coordinates. In this paper, we
describe the diffeomorphism invariant regularization.

Invariance with respect to diffeomorphisms is also a
guiding principle of quantum gravity. The analog
between fluids and gravity we describe below suggests a
proper and unique regularization. The result of it is the
quantum correction to the Euler equation expressed in
terms of the gravitational anomaly. The correction is
small in superfluid helium, and may or may not be neg-
ligible in cooled atomic gases. But it is certainly large
and important in FQH electronic fluids. But regardless
of their size quantum corrections are fundamentally
important for the consistency of the theory.

For the purpose of this paper we choose the quantiza-
tion within the Eulerian specification. The quantization
within the Lagrangian specification is briefly reviewed in
the beginning of the paper. Other methods of quantiza-
tion, such as, path integral and stochastic quantization
yield the same result and will be published separately.

2. QUANTIZATION IN THE LAGRANGIAN 
SPECIFICATION

In this paper we consider only bulk f lows, ignoring
complications caused by boundaries. The bulk incom-
pressible f lows solely described by vorticity. The quan-
tization scheme we propose consists of two almost
independent steps. We demonstrate them within the
Lagrangian specification.

2.1. Semiclassical Quantization
The first step is the quantization of vortex circula-

tion. In quantum ideal f luids vorticity is not a smooth
function. It consists of a discrete array of point-vorti-
ces with quantized circulation. If u is the velocity of
incompressible f low, ∇ ⋅ u = 0, then vorticity is

(2)

where Γi are circulations of vortices quantized in units
of h/mA (mass of f luid atoms).

Hence, quantum flows confined in a finite volume
are always finite-dimensional. If one stops here we
face a problem of classical vortex dynamics. We can
formulate the dynamics in the form of Kirchhoff.

2.2. Kirchhoff Equations
We recall the Helmholtz form of the hydrodynam-

ics of ideal 2D flows. The Helmholtz law is the curl of
Euler equations. It stays that vorticity is frozen into the
flow: the material derivative of vorticity vanishes

(3)
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On other hands the f low itself is determined by
positions of vortices. In complex coordinates z,  the
complex f luid velocity u = ux – iuy generated by an
array of Nv vortices (2) is a meromorphic function

(4)

Then the Helmholtz law and Kelvin circulation theo-
rems say that the f low initially chosen as (4) retains its
form with positions of vortices zi(t) moving accord-
ingly the Kirchhoff equation (see, e.g. [6])

(5)

Kirchhoff equations are Hamiltonian. The Hamilto-
nian and the Poisson brackets are

(6)

Kirchhoff equations, being exact, for f lows with a
finite number of vortices “approximate” arbitrary
ideal f lows by a finite dimensional dynamical system.
However, in the quantum case, they are not an
approximation. They are the starting point of quanti-
zation. Because the Kirchhoff system is Hamiltonian,
the vortex dynamics could be quantized canonically.
This is the second step of quantization.

When the vortex array is dense, vortices themselves
form a f luid. In this approach trajectories of vortices zi,
rather than fluid atoms, are pathlines of the (vortex)
fluid. Then enumeration of vortices, the label i is the
Lagrangian coordinate of the vortex f luid.

2.3. Canonical Quantization
Within canonical quantization, we identify the Hilbert

space with the space of holomorphic functions of coordi-
nates of clockwise and anti-clockwise vortices, map the
coordinates to operators acting in the space of vortices and
replace the Poisson brackets by the commutator { , zi} →

[ , zi]. Since the vortex circulation is quantized in units

of Γ = h/mA, and ρA = mAnA, where nA is the density of
fluid atoms, the commutation relations read

This scheme is a guidance for the quantization of
hydrodynamics. It differs from earlier quantization
attempts where Lagrangian coordinates were chosen
to enumerate f luid atoms.

If the number of vortices is finite the quantization
presents no fundamental difficulties. The difficulties
arise when we attempt the large Nv limit, when an
array of vortices approximate realistic f lows of interest.
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644 WIEGMANN
2.4. Chiral Flows
The 2D chiral f lows are f lows with an extensive net

vorticity (vorticity is proportional to the volume of the
fluid). Such flows consist of a dense liquid array of
vortices. We assume that circulations of all vortices are
the same Γi = Γ > 0 (anticlockwise). Then vorticity is
proportional to the vortex density

(7)

We denote the mean density of vortices by nv = Nv/V,
the density of f luid atoms nA = ρA/mA and the fraction
ν = Nv/NA of vortices per f luid atom.

The well known examples of quantum chiral f lows
are superfluid helium rotating with the angular fre-
quency Ω = nvΓ/2, and also FQHE, where Nv elec-
trons confined in a 2D layer are placed in a uniform
magnetic field B = (h/νe)nv, whose total number of
flux quanta NΦ = eBV/h equals the number of f luid
atoms NA. In this case electrons occupy a fraction ν of
the lowest Landau level.

The chiral f low sets the scale of length, the mean
distance between vortices  = (2πnv)–1/2, and Ω sets
the energy scale. We collect all these units below

In these units the Kirchhoff Hamiltonian and the
commutation relations read

(8)

Then the Kirchhoff Eqs. (5) become Heisenberg
equations for vortices

The fraction ν is de facto a semiclassical parameter. It
is small in helium, but is of the order one, say ν = 1/3
in FQHE.

The Hilbert space of the chiral f low, where vortices
are the same sense, is the Bergmann space [7, 8]. It is
a space of holomorphic polynomials of z and ∂z with
the inner product

Then the anti-holomorphic coordinates operators
 are Hermitian conjugations of holomorphic coordi-

nates zi realized as
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All holomorphic states are eliminated by 

We can easily determine the ground state wave
function of the chiral f low, the stationary f low. It cor-
responds to a solid rotation of the vortex system zi(t)|0
= e–iΩtzi(0)|0. In this case the velocity |0 = –iΩ |0
= ν(Γ/2πi) |0. Hence the ground state is killed by
the operator

This equation has single-valued solutions only if
1/ν ∈  is an integer: each vortex is surrounded by the
integer number of atoms. This is well known quantiza-
tion of the inverse fraction in FQHE. Then the solu-
tion is the holomorphic polynomial

(9)

This is, of course, the Laughlin wave function for
FQHE in the Bargmann space.

If we choose the standard L2 scalar product, the

factor  must be added to the holomorphic
polynomial (9). In this case the Laughlin wave func-
tion of a stationary chiral f low appears in a more
familiar form [9]

(10)

Hence, the probability distribution of vortices in the
ground state (10) could be expressed through the
Kirchhoff free energy H – ΩL, where

(11)

is the angular momentum of the vortex matter, also
called angular impulse [6], mv = mA/ν, is a “vortex
mass,” a mass of atoms trapped by each vortex, and
vi =  – Ω × ri, the velocity of a vortex in rotating
frame.

We have

(12)

This formula looks like a canonical Gibbs distribu-
tion with the temperature  = Ω. This ensemble
appears in various independent contexts and had been
extensively studied (see, e.g., [10]). Among them are
one-component plasma, Dyson diffusion, and also
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QUANTUM HYDRODYNAMICS, ROTATING SUPERFLUID 645
Onsager ensemble of vortices. It is also the equilibrium
distribution of a non-determinantal stochastic point
process, called β-ensemble, where β labels 1/ν. At
large Nv it describes a distribution with an equilibrium
density of vortices equal nv = 2Ω/Γ [11].

3. LIE ALGEBRA OF AREA PRESERVING 
DIFFEOMORPHISMS

It is a straightforward check that the brackets (6)
with the relations (2), (4) yield the canonical Poisson
structure for the ideal f luid (1). It is also well known
that the Poisson structure of ideal f lows is the Lie-
Poisson structure. The Lie group is the group of area-
preserving diffeomorphisms SDiff (see, e.g., [1]).
Hence, SDiff could be realized by operators acting in
the space of vortices. We use this realization for the
quantization.

Consider Fourier mode expansion of the vortex occu-

pation Eq. (7) nk = n(r)dV = . In the
Bargmann space, the occupation number is realized
by the normally ordered operator with respect to holo-
morphic states

where k = kx + iky is a complex wave vector. It gives the
quantum meaning of vorticity :ω(r): =

‒(Γ/V) :nk:. For certain physical problems, a
not-ordered operator is also considered nk =

 =  :nk:. When the difference between
two operators is not important we may drop the nor-
mal ordering symbol.

The occupation number operator is chiral  = n–k,
and eliminates the ground state

(13)
With the help of (8) we obtain their algebra

(14)

with the structure constants

(15)

Since NA is an integer (a large integer), the algebra
(14), also known as sine-algebra [12], is finite dimen-
sional. It is a quantum deformation or an “approxima-
tion” of SDiff. In the classical limit, as well as in the
long-wave limit when we neglect the discreetness of
atoms nA → ∞
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It brings us back to the Lie-Poisson structure of clas-
sical hydrodynamics (1).

4. QUANTIZATION IN THE EULERIAN 
SPECIFICATION

Despite straightforward quantization of f lows with
a finite number of vortices described above, the quan-
tization of general f lows approximated by a large num-
ber of vortices meets essential difficulties. The source
of difficulties is the same as in any quantum theory of
continuous media—a passage from the finite dimen-
sional to the infinite dimensional system. Formally the
problem arises as follows. The advection term u ⋅ ∇ω in
the Helmholtz Eq. (3) possesses two operators sitting
at the same point. It requires a regularization. A stan-
dard recipe of a regularization commonly adopted in

the field theory is the point splitting u  ⋅

∇ω , when points are split by the shortest dis-

tance between atoms. However, in quantum hydrody-
namics, this recipe leads to inconsistencies. It violates
the relabeling symmetry of the f luid. The difficulty is
that in hydrodynamics contrary to a field theory the
point-splitting distance, the short distance cut-of,
itself depends on the f low [u]. Similar difficulties also
arise in the quantization of gravity, where this problem
had been understood and resolved [13]. In the nut-
shell, the recepie suitable for the hydrodynamics is
that the variable short-distance cutoff is the distance
between vortices [u] ~ 1/ . This regularization had
been explored in the theory of rotating superfluid a
long ago for regularization of vortex energy in rotating
superfluid and explained in details in Khalatnikov’s
book [2], see also original papers [14–17]. Correction
to the energy of the f low obtained in these papers has
a classical nature and locally depends on vorticity.
Nowadays, it is called odd, or anomalous viscosity
[18], but because it is local, its contribution to the
stress is divergent-free. It does not affect the Euler
equations for the bulk f low. However, it is essential at
the boundary [15], on the interface between the vortex
array and a potential f low [19], and also, on curved
surfaces [20].

Here we push this idea forward. We determine the
quantum correction. The quantum correction
depends on a gradient of vorticity, hence enters the
equation for the bulk f low. We express it in terms of the
quantum stress.

4.1. Quantum Corrections to the Helmholtz Equation
and Quantum Stress

The quantization of the field equations, such as
Helmholtz equation essentially means normal order-
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646 WIEGMANN
ing of operators entered the equation with respect to a
flow (quantum state) of interest. The problem of reg-
ularization problem comes when we attempt to order
the advection term. The advection term of the Helm-
holtz equation reads

Hence, we have to understand the quantum meaning
of uiuj by ordering the product of two velocity operators.

We denote the Wick contraction  =: AB: – : A:: B :

and compute . This is the quantum correction
received by the momentum flux tensor. It should be
interpreted as a quantum analog of the Reynolds stress

(16)

Since quantization is the sole origin of the stress we
refer it as quantum stress. The quantum stress corrects
the Helmholtz law

(17)

We comment that only traceless part of the stress
enters the Helmholtz equation.

In this equation, all entries are assumed to be nor-
mally ordered. The implication of quantum stress is
that the Helmholtz law held for quantum operators
does not hold for their matrix elements.

We will show that the stress is not divergence-free
as it happens in the case of odd-viscous stress [18], and
that vorticity is no longer frozen into the f low. Never-
theless the Kelvin theorem, the conservation of vortic-
ity in a f luid parcel remains intact. Condition for the
Kelvin theorem to hold is that the divergence of the
stress has no circulation along the boundary of a par-

cel. We will see below that Tijdxi = dn,

indeed, vanishes.
We will show that the quantum stress reads

For references we write the stress in complex coordi-
nates

(18)

The quantum stress is small. It consists of higher
derivatives, but it is the only source which deviates vor-
tices away from the f low.
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Below we obtain these formulas.

5. GEOMETRIC INTERPRETATION
OF THE CHIRAL FLOWS
AS QUANTUM GRAVITY

We start from a general discussion of a parallel
between 2D chiral f lows and 2D gravity. The surface
which hosts the f luid is a complex manifold equipped
with a closed vorticity 2-form, ωijdxi  dxi, ωij = ∂iuj –
∂jui. Because vorticity of the chiral f low does not
change sign, in our convection, it is positive ω =

ωij > 0, it gives the host surface a Kähler structure

with the Kahler form Γ–1ωdz  d  = ndz  d .
Hence, the differential ds2 = 2n|dz|2 can be treated as a
Riemannian metric. The interval ds = |dz|/ [n], where

[n] = 1/  is a distance between vortices in the parcel
of the size |dz|, and the volume element of the metric is
dNv = ndV, the number of vortices in the f luid parcel
of the volume dV = dz  d . Obviously a map of coor-
dinates of vortices to points of an auxiliary surface
whose metric is ds2 is the map to Lagrangian coordi-
nates.

We can interpret f lows of the f luid as a f low of the
metric. Consider the stationary state, where vortices
are distributed uniformly with the density nv. The
(background) metric which corresponds to this state is
d  = nv|dz|2. Then a general f low can be seen as a Weyl
transformation of the background metric

(19)
This map constitutes a f low. Adopting the language of
quantum gravity we may identify the manifold of
Lagrangian coordinates with a target space, and the
host surface as a world sheet. The metric ds had been
used in studies of a vortex lattice in [21, 22]. Here we
utilize it for a liquid.

If the f luid resides on a f lat surface, then, generally
the metric obtained by the Weyl transformation is
curved. Its scalar curvature is

(20)
A reparametrization of the axillary surface is equiv-

alent to relabeling vortices with no effect on the f low
(a diffeomorphism invariance or relabeling symme-
try). In hydrodynamics, the relabeling symmetry usu-
ally refers to f luid atoms. In our approach, it is a rela-
beling symmetry of vortices. We want to keep this
major symmetry intact in quantization. This amounts
to implement a uniform short distance cut-off on the
target space, the space of labels. In the host plane, the
world sheet, the cut-off is a function of the f low. This
principle uniquely determines the regularization.

We illustrate this idea in terms of the path integral
approach to quantization. In this approach we inte-
grate over all pathlines of f luid parcels. We choose to
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QUANTUM HYDRODYNAMICS, ROTATING SUPERFLUID 647
integrate over pathlines of vortices, instead. The mea-
sure of the path integral must be invariant with respect
to relabeling. We want to integrate over f lows which
consists of a large number of vortices when vorticity
admits a coarse-grained limit and could be approxi-
mated by a smooth function. Since vorticity is a metric
we effectively integrate over all metrics ds2 = n|dz|2.
The measure in the space of metrics which is invariant
with respect to diffeomorphisms is unique. It has been
well established in quantum gravity [13]. That measure
possesses a Jacobian of the map of the space of path-
lines to the space of metrics. That Jacobian is a source
of the quantum stress.

Below we present a somewhat heuristic, but eco-
nomic approach to the quantization based on diffeo-
morphism (relabeling) invariance. In practice it
requires that all observable quantities are expressed
through invariant geometric objects of the metric,
such as geodesic distance, curvature, etc.

6. GRAVITATIONAL ANOMALY

We now describe the major effect of quantization,
the gravitational anomaly. In complex coordinates

uz = ux – iuy, ∂z = (∂x – i∂y) the advection term and

the quantum stress read

(21)

We express the quantum stress through the occupa-
tion number with the help of the formula uz =

2iΓ∂zV‒1 k–2nk

Hence, we need to compute the contraction of the
normally ordered two-modes operator. Its normal
ordering reads

(22)

With the help of the algebra (8) we find (we recall that
(2πnA)–1 = ν )
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Now we have to evaluate the expectation value
n|u(r)u(r')|n on the f low with the density n(r). But we
know that f lows belong to the orbit of the Lie algebra
(14). Therefore, it is sufficient to start from any state.
The easiest is the ground state (the stationary f low) |0.
It is a uniform state, hence, we have (13). Hence,

In the limit, where points are well separated, p is
small and the integrand behaves as 1/p2. At short dis-
tances p is large, the integral converges. The crossover

between two regimes is assisted by the factor 

(24)

This is of course the Green function of the Laplace
operator GR regularized at short distances by the inter-
vortex distance . We arrive to the expression for the
quantum stress

(25)

We now extend this result to a non-uniform flow.
An economic way to do this is to invoke the geometric
interpretation of the f low, where the vorticity is under-
stood as a metric. Then, at large distance one expects
to have the Green function of the Laplace-Beltrami
operator Δ = –(4/n)∂z  in the metric ds2 = n|dz|2. At
short distances the Green function diverges as r → r',
but the result must be finite as in (24). We obtain the
crossover by a unique covariant regularized Green
function consistent with the metric. The infinity at
short distances is subtracted by adding to the Green
function the logarithm of the geodesic distance
between merging points

(26)

Formally, this is equivalent a modification of the

factor  in the integrand of (26) by the operator

 and the replacing the integral by the trace. This is
equivalent the usual heat-kernel regularization. The
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result of the limit of merging points in (25) is known to
be the Schwarzian of the metric

Hence

(27)

This effect is analogous to the gravitational anom-
aly in quantum gravity. Physically, it amounts a f low-
dependent cut-off [n] = (2πn)–1/2, rather than a uni-
form cut-off .

7. QUANTUM STRESS
The following arguments help to determine the

trace of the quantum stress . The stress tensor of the
metric (19) is divergence-free. In complex coordinates
this means

(28)
With the help of (27) and (28) we obtain the trace
anomaly: the trace of the quantum stress is propor-
tional to the Ricci curvature

(29)

It follows that in the metric of the host surface, the
tensor is not conserved (we raise indices with the met-
ric of the host surface)

(30)

The right-hand side of this equation is the source of
the quantum correction.

8. QUANTUM CORRECTIONS
TO THE HELMHOLTZ LAW

Few equivalent forms of the quantum Helmholtz
equation follows from (17), (29), and (30). One is

(31)

In this equation, all terms are normally ordered. It
could be treated as a classical equation.

If vorticity waves are small, we may expend the
quantum Helmholtz Eq. (31) about the net vorticity

ω = 2Ω + V–1 ωk. In harmonic approxima-
tion (the leading order in nk) we obtain

(32)
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For some physical applications the sum over modes
could be truncated.

9. FLUID FLOW AS METRIC FLOW
Since vorticity of the chiral f low could be thought

as a metric, the quantum Helmholtz equation
describes a metric f low. We cast it in the form

where ϖi = ∂jlogn is the transversal part of the spin

connection of the target surface. This form suggests
that the chiral f low is merely a dilatation of the target
space.

10. VIRASORO ALGEBRA
The gravitational anomaly is essentially equivalent

to the Virasoro algebra. To shorten the formulas we set
Ω = 1.

Since, a change of vorticity is interpreted as a Weyl
transformation of the metric, the trace of the quantum
stress is a generator of dilatations

where  is an arbitrary operator. With the help of the
conservation law (28) and the —formula we write it as

(33)

(we dropped the normal ordering symbol).

We now specify  to be  = T(z')  and evaluate the
relation (33) with the help of (27). The calculations are
standard in conformal field theory (CFT) literature
(e.g., [23, 24]), since (33) is equivalent to the CFT
Ward identity. They yield

It is well known that this relation is equivalent to the
Virasoro algebra

whose generators are defined by the Laurent series

Tzz(z) = (z – z')–n – 2 about a pont z'. The central
extension of the Virasoro algebra appears to be c = –1.

11. QUADRUPOLE MODES
We conclude by a brief discussion of the global

symmetry of the quantum flow.
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Infinite dimensional algebra SDiff possesses a
finite dimensional subgroup. This is sl(2, ) algebra
(isomorphic to su(1, 1) ≈ sp(2, ) ≈ so(2, 1)). The
maximal compact subgroup of SL(2, ) is SO(2), a
group of planar rotations, the symmetry of the f luid.
The generator of global rotations is the angular

impulse (11) L = mv ri × vi). Hence, the Hamilto-
nian and angular impulse act as diagonal operators in
a module (SL(2, ), SO(2)). The angular impulse is
quantized in units of the Plank constant. We use it to
label weight states L|l = l|l.

In geometry of the (punctured) sphere we can real-
ize sl(2, ) algebra by the quadrupole moment of vor-
ticity, the rank-2 symmetric tensor

In complex coordinates, we have

The Lie–Poisson algebra of quadrupoles follows
from (1)

When we replace the Poisson brackets by the com-
mutator we obtain sl(2, ) Lie algebra. In complex
coordinates it reads

The trace of the quadrupole moment is conserved

 = (i/ )[H, ] = 0 [6]. This is an immediate

consequence of the Kirchhoff or Euler equations. Up
to an additive number which depends on the choice of
a frame, and an overall factor,  is equivalent to the
angular momentum L. It generates in-plane rotation
SO(2). The eigenvalues of the angular impulse follow
from the Kirchhoff Eq. (5)

where k = NA(Nv – 1). This constant is called Barg-

mann index. It gives the value to the Casimir operator
of sl(2, )

(34)

The operators  and Qzz generate clockwise and
anticlockwise shear f lows. They are ladder operators
changing the angular impulse by ±2  [25]
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Therefore, the f low is the weight state with a given
angular impulse raised and lowered by the quadrupole
operators by the increment 2. Say, the shear operator

 acting on the ground state |0 creates a spin-2 state
(called squeezed modes in optics). The “squeezing
operator” exp ( – ξ2Qzz) creates a f low equivalent
to a coherent state.

Let us now turn to the dynamics of the quadrupole
operators. From Kirchhoff equation we obtain

where θij = arg(zi – zi). The coarse-grained version of
this expression follows from (17)

(35)

The term in the lhs is the advection. The rhs is the
effect of the quantum stress. In the classical f luid only
advection deforms the quadrupole moment of vortic-
ity. For example, the viscous stress does not contribute
to the volume integral in (35). However, the quantum
stress does (see (18)). Its effect stabilizes instabilities
driven by the advection. In a near stationary f lows with
a small advection the quantum stress could be a dom-
inant contribution. We omitted the boundary line
integral in (35). It could be the major source of quad-
rupole modes when the bulk vorticity is uniform.

Summing up, we computed the quantum correc-
tion to the Euler equation for 2D chiral f lows. The
quantum correction appears in the form of the quan-
tum stress, as an additional force exerted by vortices. It
consists of higher derivatives, hence has a scale of fun-
damental vortex circulation Γ. The quantum correc-
tion destroys the scaling invariance of Euler equation,
and the major law of 2D classical f lows. The matrix
elements of vorticity are no longer frozen into the f low.
This is the price of maintaining a fundamental sym-
metry of f luid f lows, the relabeling symmetry.

This effect is in parallel to the quantization of 2D
gravity, where the invariance with respect to diffeo-
morphisms uniquely determines the Polyakov-Liou-
ville action. In both cases upholding the diffeomor-
phism invariance is implemented through the gravita-
tional anomaly.

Quantum corrections appear as an added stress.
There is no surprise that the Lie-Poisson algebra of the
quantum stress is the Virasoro algebra, the centrally
extended algebra of holomorphic diffeomorphisms.

The author acknowledge helpful discussion with
M.F. Lapa.
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