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Abstract—We propose a simple model of quasi-one-dimensional steady-state nonequilibrium plasma flow
propagating along the axis of an open magnetic trap and sustained by an rf electromagnetic field. The model
makes it possible to analyze qualitatively possible regimes of the plasma flow in the presence of induced
intrinsic rf field amplified due to geometrical resonance with the plasma flow and to determine the main fea-
tures and key characteristics of nonlinear absorption of the external field energy.
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1. INTRODUCTION
The study of mutual influence of an rf field and a

plasma through the averaged ponderomotive force
originates from classical works [1–4]. Subsequently,
this topic was developed in investigations of interac-
tion of laser radiation with matter in applications asso-
ciated with plasma acceleration of particles [5–9].
Emphasis was mainly laid on analysis of effects of
nonlinear interaction of the rf field with an
unbounded transparent plasma (self-focusing and
defocusing of this field, organization of self-sustained
waveguide channels, excitation of wakefields, etc.).

Along with lasers, high-power microwave radiation
sources are used for producing and sustaining plasmas.
Such sources produce steady-state nonequilibrium
plasma in which the electron temperature consider-
ably exceeds the ion temperature. This creates favor-
able conditions for effective ionization and excitation
of ions by electron impacts, which makes it possible to
use such plasmas in a wide range of applications [10,
11]. For a microwave discharge, there arises the prob-
lem of interaction of the rf field with the plasma for-
mation with characteristic sizes that can be compara-
ble with the wavelength of electromagnetic radiation.
The description of such objects necessitates the con-
sideration of effects associated with the influence of
the plasma boundary, i.e., primarily geometrical (sur-
face plasmon) resonances in the vicinity of which the
rf field is substantially amplified [12]. In such condi-
tions, the field intensity in the plasma may be high
enough for the averaged ponderomotive force acting
on plasma particle to noticeably affect the density of
the medium. This leads to the self-consistent problem
of the nonlinear interaction of the rf field with the
plasma because the amplification of the field depends

on the dynamics of the medium, which in turn
depends on the ponderomotive force in the region of
field amplification. The specific feature of this process
is the resonant dependence of the ponderomotive
force on the plasma parameters, which renders this
process extremely sensitive to inhomogeneity of the
spatial distributions of parameters.

One of important particular cases in the interaction
of microwaves with a compact dense plasma formation
is the microwave discharge that is required for applica-
tions associated with development of sources of hard
UV radiation and high-multiplicity ions and that can
be treated essentially as a directed plasma f low with a
varying cross section [13–16]. Apart from the ponder-
omotive force, plasma inhomogeneity is also deter-
mined by the f low dynamics; therefore, a consistent
description of gas dynamics of the f low and the
dynamics of the resonant electric field induced in the
discharge is of fundamental importance for correct
construction of the theory of nonlinear absorption of
the sustaining field in microwave discharges of this
type.

In this study, we propose a simple model of a quasi-
one-dimensional steady-state plasma flow propagat-
ing along the axis of an open magnetic trap and sus-
tained by an external rf field. The model makes it pos-
sible to investigate qualitatively possible regimes of the
plasma flow in the presence of a resonantly amplified
internal rf field and to determine the main features and
key characteristics of nonlinear absorption of micro-
wave radiation.
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Fig. 1. (Color online) Explanation to the model of nonlin-
ear interaction of an rf field with a plasma formation.
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2. SCATTERING AND ABSORPTION
OF RF FIELD BY A HOMOGENEOUS

PLASMA CYLINDER
Let us consider the auxiliary problem of scattering

of an incident monochromatic electromagnetic wave
by a homogeneous plasma cylinder of radius a placed
into an external uniform static magnetic field
(Fig. 1a). This is a standard problem in the diffraction
theory, the solutions to which for an arbitrary relation
between the wavelength and the cylinder transverse
size in the form of an expansion in cylindrical har-
monics are well known for isotropic [17, 18] as well as
anisotropic [12, 19] dielectric response. If the cylinder
diameter is much smaller than the wavelength, this
problem can be solved in the quasi-static approxima-
tion [18, 20]. In this approximation, the variation of
the external field on the outer boundary of the cylinder
can be ignored.

We assume that the dependence on coordinate z is
harmonic, and the wave is incident on the plasma cyl-
inder at a certain angle θ to its axis. We also assume
that the size of the cylinder is much smaller than the
wavelength in the plasma; therefore, we assume that
the field in the cylinder is uniform in the transverse
coordinate. Thus, the field inside and outside the cyl-
inder can be written as

where Eint and Eext are the complex amplitudes of the
internal and external fields.

When the external field is directed along the cylin-
der generatrix, an additional simplification appears
because the gyrotropy axis of the dielectric response
coincides with the cylinder axis. In this case, the prob-
lems of excitation of plasma oscillations by rf field E
parallel to the cylinder axis and perpendicular to it can
be considered independently. It is also known that res-
onant amplification of the field for scattering by a
cylindrical object which is much smaller than the
wavelength is possible only for the incident field trans-
verse relative to the cylinder axis [20]. This amplifica-
tion is associated with the excitation of the electric
dipole resonance in the system. Therefore, we can
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consider only the transverse component of the inci-
dent field. Such a description of the wave incident on
the cylinder is equivalent to expansion of the incident
field in cylindrical waves and inclusion of only cylin-
drical (TE and TM) waves with azimuthal number
m = 1 [18].

When the above conditions hold, the field outside
the cylinder can be written as

(1)

where E0 is the complex amplitude of the incident
wave field, P is the complex amplitude of the polariza-
tion vector, r⊥ = (x, y) is the radius vector component

perpendicular to the cylinder axis, and  = (1 +
cos2θ)/2. The last term on the right-hand side of
expression (1) describes the influence of radiation
corrections on wave scattering (radiation friction)1

[20, 21]. In the absence of dissipation, it is this term
that limits the magnitude of the field in the cylinder at
resonance.

The induced polarization is determined by field Eint

excited in the cylinder:

where  and  are the dielectric susceptibility and per-
mittivity tensors, respectively. By joining the tangen-
tial components of field strength and the normal com-
ponents of induction of the external and internal elec-
tric field at the plasma cylinder boundary, we obtain

(2)
This result is equivalent to the case of dipole scattering
of a transverse polarized wave relative to the axis of an
isotropic dielectric cylinder up to the substitution of
scalar polarizability χ for tensor .

For the Stix electric field components

(3)

the permittivity tensor for a cold plasma in an external
uniform magnetic field is diagonal:

(4)

where ε± and ε|| are defined as

1 This term can be obtained by expanding the field emitted by a
dipole filament in small parameter k0a ≪ 1 up to the corre-
sponding order. The components of the scattered field on the

order of a2ln(k0a), which are in phase with the induced
polarization, should be ignored because these components
induce only a slight shift of the dipole resonance position.
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Here, ωp is the electron plasma frequency, ωB is the
electron cyclotron frequency, and ν is the effective fre-
quency of collisions of electrons. Generally speaking,
the expression for ε± also contains the terms associated
with the existence of the ion component; however, the
corresponding ion frequency for a microwave dis-
charge are much lower than the radiation frequency
and, hence, these terms can be omitted.

Using relations (2) and (4), we obtain the following
expression for the field intensity in the plasma cylin-
der:

(5)

It can be seen that if conditions

(6)

are satisfied in the given case, the field is abruptly
amplified. The resonance

(7)

corresponding to such conditions is a geometrical res-
onance with the plasma cylinder. In the Stix notation,
this corresponds to ε±(ω) = –1 for ν → 0. The term
“resonant” will be henceforth referred to quantities in
the vicinity of this resonance.

It can be seen from expression (5) that in the vicin-
ity of the cyclotron resonance (ω = ωB), resonance
field component E– rotating in the same direction as

electrons assumes the smallest value | | ~
ν2ω2|E0|2/ ; i.e., it does not penetrate into a dense
plasma.

Let us define the energy characteristics of radia-
tion, viz., volumetric power density qe of extinction, qa

of absorption, and qs = qe – qa of scattering. Extinction
and absorption of radiation are defined as [22]

where j = ∂P/∂t = –iω Eint. Using these relations as
well as relations (2) and (4), we obtain
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(9)

where  = | |2/16π is the average energy density of
the Stix field components of the incident wave. Obvi-
ously, the expressions for the energy characteristics
contain the same resonance factor as expression (5)
for the intensity; i.e., geometrical resonance (7) also
determines absorption and scattering efficiencies of
the incident field energy. If both circular components
are present in the expansion of incident field in the
Stix components (3), the corresponding energy char-
acteristics must be added.

Generally speaking, the power of the wave incident
of the plasma column can be absorbed not only due to
collisions of electrons and ions, but also due to gener-
ation of plasma waves because of inhomogeneity of the
plasma across the z axis. The geometrical resonance
effect itself is a rough process [20]; for this reason, in
our formulation, the absorption associated with the
generation of plasma waves can be considered qualita-
tively by redefining effective collision frequency ν.
One of possible ways involves the selection of such a
value of ν, that absorption quality factor Q± assumes a
preset value (known, for example, from numerical
simulation). In terms of this paper, the absorption Q±
factor can be written as

where  = | |2/16π is the electric field energy
density in the plasma. Therefore, the above relation
can be treated as the equation for ν. Henceforth, we
will not specify the origin of the imaginary correction
to the radiation frequency and will treat ν as an extrin-
sic parameter of the problem.

3. MODIFICATION OF THE PLASMA
FLOW UNDER THE ACTION

OF THE PONDEROMOTIVE FORCE
Let us consider the equations describing a steady-

state f low of singly ionized plasma in the hydrody-
namic approximation [23, 24]:

(10)

where ne, i are the number densities of the electron and
ion plasma components, ue, i are directional velocities
of the components, pe, i are their pressures, fe, i is the
volume density of the external force acting on elec-
trons or ions, and me, i are their masses.

On the scale of variation of all gasdynamic plasma
characteristics of interest to our analysis, the plasma
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satisfies the quasi-neutrality condition: number densi-
ties ne, i of electrons and ions and velocities ue, i of their
directional motion coincide and equal n and u, respec-
tively. In analysis of the plasma flow propagating in the
axial region of an open magnetic trap, the force
exerted on the plasma component by the external
magnetic field can be taken into account approxi-
mately as the f lux of a continuous medium along the
tube with a variable cross section:

where B(z) is the magnetic field induction on the z axis
of the trap. We will mark by subscript “0” the values of
physical quantities in a magnetic plug, viz., at the peak
of the external magnetic field. In the conditions of res-
onant absorption of the rf field energy by electrons, we
will assume that their temperature considerably
exceeds the ion component temperature (Te ≫ Ti).
The high electron temperature leads to a high electron
thermal conductivity, which enables us to assume that
the electron temperature does not change along the
flow. In these approximations, by averaging the f low
characteristics over cross section S(z), we obtain
quasi-one-dimensional balance equations for particle
and momentum fluxes in the case of the steady-state
plasma flow, which are analogous to those used in
[13–15]:

(11)

(12)

where fz is the projection of the density of the aver-
aged force exerted on plasma electrons by the rf field
(ponderomotive force) onto the z axis. The corre-
sponding force acting on ions is omitted due to the dif-
ference in the masses of electrons and ions. For the
same reason, we neglect in Eq. (12) the directional
electron momentum flux as compared to the ion
momentum flux. The ion pressure is negligibly small
as compared to the electron pressure due to the differ-
ence in the temperatures of the components. Passing
to a one-liquid model, the terms corresponding to the
forces exerted by the field of charge separation are
mutually cancelled out due to the quasi-neutrality
condition.

The ponderomotive force can be written in form [8]

Here, Φ is the potential of the averaged force acting on
a solitary electron in the external rf electromagnetic
field in the presence of a constant magnetic field [25],

(13)

where e is the electron charge. Since there is no reso-
nant amplification of the longitudinal electric field
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component, we will ignore the first terms in poten-
tial (13).

In this paper, we consider the case when character-
istic scale l of the longitudinal plasma inhomogeneity
is much larger than the scales of the transverse inho-
mogeneity and the wavelength of the heating field,

(14)
In these conditions, we can assume that local rf field
Eint is defined by relation (1) in which  is replaced by
differential operator

Equation (2) for the internal field in this case takes
form

Considering expression (4) for the Stix components of
the plasma polarization, we can verify that the deriva-
tive with respect to the coordinate can be ignored
when condition (14) in which the longitudinal inho-
mogeneity scale is defined as

Here, Lpl ~ (dlnB/dz)–1 are the inhomogeneity scales
for the external magnetic field and the plasma density,
which coincide in order of magnitude. The physical
meaning of the resultant condition is quite clear: the
inhomogeneity scale for the electrodynamic problem
is determined by the size of the region of resonant field
enhancement, which is determined either by dissipa-
tion (proportional to ∝ν) or by scattering (propor-
tional to ∝(k0a)2). If this region is much larger than the
wavelength, we can define the internal field using local
expression (5) in which a, ωp, and ωB are functions of
coordinate z:

(15)

In other words, in analysis of the electrodynamic part
of the problem, the plasma flow can be considered as
a set of homogeneous cylindrical objects with param-
eters distributed in accordance with the solutions to
hydrodynamic equations (see Fig. 1b). This is the
main assumption forming the basis of the model con-
sidered below.

Substituting relations (15) into geometrical reso-
nance condition (7), we can define “resonant number
density”
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where superscripts “±” correspond to circular compo-
nents E+ and E–. The difference between two resonant
number densities for different Stix components
exceeds in most cases the maximal possible spread in
the plasma density in the trap.2 Therefore, the exis-
tence of geometrical resonance with one of the circu-
lar field components guarantees the absence of reso-
nance with the other component. For definiteness, we
will henceforth consider the field of the incident wave
containing only the E+ component corresponding to
the larger value of the resonant number density. With
allowance for relation (5), potential Φ of the pondero-
motive force acting on electrons can be written as

This expression was obtained in approximation ν ≪
ω + ωB; otherwise, by virtue of condition (6), resonant
amplification of the field is not manifested.

4. BASIC EQUATIONS
If the electron temperature is independent of the

coordinate, set of equations (11), (12) can be reduced
to the first two integrals:

(17)

where c =  is the “isothermal” ion acoustic
velocity, w = /8πn0mic2 is the specific density of the

incident wave energy, φ = 8πn0Φ/  is the dimension-
less potential of the average ponderomotive force,

(18)

where  = ωp/ω,  = ωB/ω, and  = ν/ω is the elec-
tron plasma, electron cyclotron, and collision fre-
quencies normalized to the radiation frequency.

The integration constants in Eqs. (17) were chosen
in accordance with the familiar boundary condition of
equality of the f low velocity and the sound velocity at
the peak of the magnetic field: u0 = c. This condition
holds in the case when the coordinate dependence of
velocity of the f low contains a smooth transition

2 Difference Δn = (  – 1)n0 between the plasma densities at the
magnetic field minimum and maximum can be estimated from
the condition that the maximal possible variation in the ion
velocity directions in the subsonic regime (inside the magnetic
trap) cannot exceed the ion sound velocity. Combining this with

relation (16), we obtain (  – )/Δn ≳ 6ωωB/ .

e

+
resn −

resn ω2
p

Φ =

ω ω + ω×
νω + π ω + ω − ω ω + ω�

2 0 2

2 2 2 2 2 2

( )

( ) .
4( /4) ( 2 ( ))

e

B

p p B

e E
m

k a

=
 − + φ − φ = 
 

0 0
2

02
0

,

1ln ( ) ,
22

Snu S n c

u uS w
cSc

/e iT m
2
0E

2
0E

ω + ω
φ =

ν + π ω + ω − + ω
� �

�

� � �

2
0

2 2 2 2 2 2

2 (1 )
,

4( /4) ( 2(1 ))
p B

p p B

n
nk a

ω� p ω� B ν�
JOURNAL OF EXPERIMENTAL AN
through the sound barrier [15, 26]. Here, we assume
that the plasma is produced by a source located in the
vicinity of a magnetic plug and initially has no direc-
tional velocity, acquiring it only as a result of relax-
ation to the steady-state f low. In this case, the f low
stabilized in the trap is subsonic, while outside it, it is
supersonic.

From the physical point of view, the first relation
in (17) is the conservation law for the particle f lux
during the propagation along the z axis, while the
second relation is the effective Bernoulli law. The
nonlinear interaction of the field and the f low in
expressions (17) is determined by the term propor-
tional to parameter w. Choosing the form of spatial
dependence (z) and the value of normalized plasma
frequency (0) at magnetic field maximum, we can
also determine unambiguously the position of the geo-
metrical resonance satisfying condition (7) in the
framework of the model. In the linear approximation,
the coordinates of the cross sections in which the geo-
metrical resonance is realized can be determined from
equation

(19)
where nres(z) is defined by expression (16) and nlin(z) is
the solution to system of basic equations (17) for w = 0.

We will perform below the qualitative analysis of
possible plasma flows in the conditions of the nonlin-
ear interaction with the external rf field.

5. CONTINUOUS FLOWS
Let us choose the parameters of the problem so that

(i) conditions (6) ensuring substantial amplification of
the resonant field are satisfied and (ii) resonance con-
dition (19) holds in the trap. For definiteness, we spec-
ify the following model profile of the external mag-
netic field:

where L is the trap length and R is the mirror ratio. Let
us consider a modification of the plasma flow depend-
ing on the relative field energy density w of the inci-
dent wave, the remaining parameters being fixed.

Case with w = 0. An example of solution of set (17)
for the plasma density in the absence of the rf electro-
magnetic field is given in Fig. 2. In the subsonic f low,
the density is maximal at the center of the trap and
decreases monotonically with increasing distance
from it. Conversely, the resonant density is minimal at
the center and maximal at the points corresponding to
the external magnetic field maximum.

Case with w < . For a finite field energy density,
as long as w is quite small, the effect of the external rf
field on the plasma characteristics is local. This case is
illustrated in Fig. 3, which shows the characteristic
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Fig. 2. (Color online) Distributions of plasma density n(z)
(solid curve) and resonant density nres (dashed curve) in
the linear absorption regime (w = 0). The trap length is L =
26 cm, mirror ratio is R = 3.7,  = 1,  = 1.5,  =
0.001, and a = 0.05.
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Fig. 3. (Color online) Distributions of plasma density n(z),
resonant density nres(z), and linear absorption power den-

sity (z)S(z). The energy density of the incident wave field
is w = 1.5 × 10–7. Other parameters are the same as in
Fig. 2. Fine dot-and-dash line shows for comparison the
n(z) dependence for w = 0.
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dependences of the plasma density and the linear sat-
uration power density on the z coordinate. We will
henceforth characterize this case as a weak nonlinear-
ity regime. An increase of w to above a certain thresh-
old value  leads to the emergence of a singularity
near the resonance, which is associated with the ambi-
guity in the solution to system (17). The emerging sin-
gularity violates the above assumption concerning the
parametric dependence of the field characteristics on
the coordinate along the f low. In this case, Eqs. (17)
do not permit continuous solutions any longer, but
solutions with a discontinuity of gasdynamic charac-
teristics formally remain possible.

Case with w > . However, upon a further
increase of parameter w to above a certain level , the
solution to system (17) turns out to be unambiguous
again. We will refer to this case as the strong nonlin-
earity regime. The characteristic dependences of the
plasma density and absorption power are given in
Fig. 4. Resonance in the strong nonlinearity limit is
not localized any longer since the sustaining electro-
magnetic radiation prevents via the ponderomotive
force the increase in the plasma density at the trap
center to above the resonance level. As a result, there
exists an extended region of the f low, which is charac-
terized by an increased value of the absorbed power.

6. FLOWS WITH DISCONTINUITIES
We can assume that in the case of slow application

of the rf field, there must exist a transition between
the weak and strong nonlinearity limits, which is
continuous in energy density w. The emergence of a
singularity violates the initial approximations of the
model in a region which is small as compared with
the characteristic scales of magnetic configuration
and with the radiation wavelength. If we admit the
possibility of discontinuity of plasma density n and
f low velocity u in this region, it is possible to unam-
biguously restore steady-state f lows for an arbitrary
energy density of the field of the incident wave even

1*w

2*w
2*w
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in the formulation of the problem considered here.
Certainly, in applications, a continuous transition
between the values of plasma characteristics before
and after discontinuity is realized; however, this
region cannot ensure an appreciable contribution to
absorption in view of the smallness of this region as
compared to the wavelength.
YSICS  Vol. 129  No. 3  2019
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Fig. 5. (Color online) Actual isotherm (dashed curve) and
the isotherm of the equation of state near resonance (solid
curve). Field energy is w = 1.4 × 10–4. Other parameters
are the same as in Fig. 2.
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For determining the exact positions of the corre-

sponding surfaces of discontinuity, we consider the
energy balance equations for electrons and ions of the
plasma [23]:

(20)

(21)

where Ue, i is the internal energy, se, i is the entropy, Te, i
is the temperature, Qe, i is the heat flux density, and qe, i
and  are the densities of the amount of heat and of
the nonthermal energy supplied by unit time to the
electron and ion fractions, respectively.

The amount of heat supplied to ions due to qi and
div Qi and, hence, the change in the entropy equal
zero. Using Eqs. (10) and (21), we eliminate qe and Qe
from Eq. (20) for electrons and then sum the result
with Eq. (20) for ions. In the constant electron tem-
perature approximation, this ultimately gives

(22)
where  = 1/n is the specific volume of the plasma and
U is the total internal energy of plasma electrons and
ions. The last term in Eq. (22), which is responsible for
the nonthermal power, receives a contribution only
from the work of the ponderomotive force acting on
electrons (work done by the electric field of charge
separation is cancelled out during the summation of
contributions from electrons and ions). Therefore,
(  + )dt = nΦed . As a result, Eq. (22) takes the
standard form of the basic thermodynamic relation:

The expression in the parentheses can be treated as a
new effective pressure

(23)
where φ( ) is defined by formula (18). In accordance
with the terminology used in [27], expression (23)
defines the isotherm of the equation of state. An
example of such an isotherm is given in Fig. 5 (solid
curve). It can easily be seen that dependence ( ) of
the effective pressure on specific volume in the iso-
thermal process in the vicinity of geometrical reso-
nance is generally nonmonotonic. The existence of an
unstable ascending branch indicates that a jump
(phase transition) from one descending branch to
another is possible.

In the case of a classical Van der Waals gas, this
leads to the replacement of the unstable region on iso-
therm ( ) by formal solution  = const, which cor-
responds to simultaneous existence of two phases in
the system [27]. In our case of the spatially inhomoge-
neous system, the isobaric region of the actual iso-
therm must be modified so as to ensure the fulfillment

+ + = +,
, , , , ,**div div ,e i

e i e i e i e i e i
dU

n p q q
dt

u Q

+ =,
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of relation (17). Namely, eliminating wφ with the help
of relation (23), we can write the effective Bernoulli
law in form

(24)

Simultaneous fulfillment of conditions (23) and (24)
determines binodal points  and , at which a state
with a single phase is realized (see Fig. 5). The values
of the work done by the medium upon a transition
from the initial to the final state along the isotherm of
equation of state (23) and actual isotherm (24), which
will be henceforth denoted by  and , must
coincide:

(25)

Here,  and  are defined as the roots of equation
( ) = ( ). Condition (25) can hold only for a

certain value of spatial coordinate z, on which the inte-
grand and the integration boundaries depend para-
metrically. Therefore, integral condition (25) is analo-
gous to the well-known condition of equality of areas
for a phase transition in a real gas (Maxwell’s equal
area rule); however, in the case of the inhomogeneous
problem, it determines not binodal points  and ,
but the spatial position of the region in which the
phase transition considered here occurs.

Further, we assume that if the steady-state f low is
possible in principle for the preset extrinsic parameters
and condition (25) can be satisfied in the bulk of the
discharge, the “phase transition” necessarily occurs.
Analysis of the possibility of stabilization of metastable
states for a plasma f low is a separate problem that is
beyond the scope of this paper. Thus, the theory con-
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Fig. 6. (Color online) Plasma density and linear absorption
power density for variation of energy density w of incident
radiation from 0 to 5 × 10–4. The increase in the energy
density corresponds to a displacement of the discontinuity
to the center. Other parameters are the same as in Fig. 2.
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structed here makes it possible to describe any f low
intermediate between the strong and weak nonlinear-
ity limits (i.e., a f low for  < w < ). A transition
from weak to strong nonlinearity is illustrated in
Fig. 6. In the strong nonlinearity regime for w > ,
condition (25) of equality of areas cannot be satisfied
at any point of space; therefore, the solutions to
Eqs. (17) contain no singularities.

7. BIFURCATION VALUES
OF FIELD INTENSITY

The formalism of effective phase transitions makes
it possible to establish the values of electromagnetic
energy density  and  in the incident wave, for
which a transition to the weak and strong nonlinearity
regimes occurs.

Boundary  of the weak nonlinearity regime is
defined as the minimal value of w, for which an
ascending segment of the isotherm of equation of state

( ) appears. The change from the monotonicity
of the isotherm is preceded by the emergence of the
inflection point in the vicinity of geometrical reso-
nance (19); i.e.,

(26)

for z = zres. Using expression (18) and (23), we can
obtain the minimal value of w for which condition (26)
can be satisfied:

1*w 2*w

2*w

1*w 2*w
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( )/ 0,
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d d

v v
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3

3
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(27)

where nres is the resonant density of the plasma at
point zres. For examples of numerical calculations con-
sidered here, our analytic estimate of energy density

 ensures relative error smaller than 10%.

Boundary  of the strong nonlinearity regime is
the largest value of w at which the f low is still discon-
tinuous. For our model of the magnetic field (trap
with magnetic plugs), this boundary can be defined as
the value of w for which the discontinuity occurs
exactly at the magnetic field minimum (center of the
trap; see Fig. 6). In the case of strong resonant rf field
amplification, which is of interest to our analysis,
when conditions (6) are satisfied, the integral over the
isotherm of equation of state ( ) in law (25) of
equality of areas can be simplified using the fact that
wφ( ) is a function with a sharp peak in the vicinity of

 (see Fig. 5). In this case, the integral on the left-
hand side of equation (25) of equality of areas can be
split into two integrals:

In the case of a large difference in magnetic field val-
ues (S/S0 ≫ 1), the real isotherm is close to constant,

( ) ≈ const (as in a spatially homogeneous sys-
tem). Under the above assumptions, we can evaluate
all integrals in the equal area rule and obtain an alge-
braic equation for . Its solution in the case when the
discontinuity occurs at the magnetic field minimum
can be written as

(28)

where ξ = n0/  and  is the resonant density at
the magnetic field minimum. Function ψ2(ξ) ≈ ξ2 for
not very large values of ξ is simplified. The results of
comparison of the resultant analytic estimate with the
results of numerical simulation will be considered in
the next section.

8. ABSORPTION POWER
IN THE NONLINEAR REGIME

Let us apply the model developed here to analysis
of the dependence of absorbed microwave radiation
power on flow parameters. The most interesting in this
case is the dependence of the absorbed power on
energy density w of radiation introduced into the
plasma.
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Fig. 7. (Color online) Dependences of the absorption
power on energy density w of the field for different values
of  = 1.9 (1), 1.6 (2), 1.3 (3), 1.0 (4), and 0.7 (5).
Dashed lines are analytic estimates of bifurcation values of
energy density  (28) and absorption power  (32).
The inset shows the plasma density in limit w = 0 and the
resonant plasma density for indicated values of  (num-
bers on the curves correspond to those in the main figure).
Other parameters are the same as in Fig. 2. The power is
normalized to Pnorm = ωn0TeS0L/2.
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Figure 7 shows the dependences of the absorbed rf
field power on w in the conditions of resonant absorp-
tion for different positions of linear resonance (see
inset) and for fixed ratios of the collision frequency to
the frequency of the incident radiation  and trans-
verse size of the f low to radiation wavelength a. In
the linear regime, total absorbed power linear in w
(quadratic in the incident field amplitude). In the
nonlinear regime, the absorbed power increases faster
than w! This effect can be explained as follows. With
increasing field amplitude, the region in which the
averaged ponderomotive force prevents the increase in
density to above the resonance level expands; in this
case, the field in the entire region becomes resonantly
amplified. The absorbed power increases with the
growth of the field amplitude faster than in the linear
regime due to the expansion of the resonant interac-
tion region. It can be seen from numerical calculations
that the dependence is effectively saturated (the
growth rate decreases) upon a transition to the strong
nonlinearity regime for w ≈ . At this point, the
region of resonant interaction of the rf field with the
flow occupies the entire volume located between two
geometrical resonances (19).

Critical value  of the power at which the kink is
observed on the curves in Fig. 7 can be estimated from
the following physical considerations. We assume that
for w = , the rf field is present only in the central
region of the discharge confined between two geomet-
rical resonances. In this range, the plasma density is
approximately equal to its resonance value, while out-
side this region, the plasma density is not perturbed,
i.e.,

(29)

where  and  are determined from the condition
of continuous joining of solutions, which coincides
with expression (19). Such a coordinate dependence of
the plasma density is ensured due to the action of the
ponderomotive force; potential φ(z) corresponding to
this force in resonant amplification region  < z <

 can be determined from the effective Bernoulli law

(30)

It should be noted for methodological purpose that
the distribution of resonantly amplified electromag-
netic field, which ensures density distribution (29), is
in fact established due to small detuning |n – nres| ≪ n.
In deriving formula (30) from the “nonresonant” Ber-
noulli law, we can ignore this detuning and determine
its magnitude using perturbation theory by equating
the potential obtained from “electrodynamic” defini-
tion (18) to potential (30).
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Using definitions (8) and (18), we can express total
absorption power  in terms of the potential of the
ponderomotive force:

In the range of parameters of interest to our analysis,
the value of this integral can be estimated by retaining
only the first (leading) term in expression (30) for the
potential, disregarding the variation of the plasma
cross section in the region of resonant interaction and
assuming that the coordinate dependence of the reso-
nant plasma density is quadratic:

(31)

Here,  is the resonant density at the magnetic field
minimum;  is the density at the resonance region
boundaries (for estimates, we can connect this quan-
tity with the plasma density at magnetic field maxima,

 ≈ n0); and Lres =  –  is the length of the res-
onance region (Fig. 8). As a result of simplifications
performed above, the expression for the critical
absorption power assumes the following quite simple
form:

(32)
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Fig. 8. (Color online) (a) Dependences of plasma density
(solid curve), plasma density in the linear approximation
(fine dot-and-dash curve), and approximate quadratic
dependence of plasma density (31) (dot-and-dash curve)
on the coordinate along the f low. Vertical lines mark posi-
tions  and  of linear resonance. Horizontal line is

= n0. (b) Normalized linear absorption power density
obtained as a result of simulation (solid curve) and its

approximate value 8 Sln( n0/nres)/ S0 (dot-and-
dash curve). Parameter w = 1.5 × 10–4; other parameters
are the same as in Fig. 2.
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where Vres = RS0Lres is the effective volume of the res-
onant interaction region and ξ = n0/  – 1. As
expected, the absorption power increases in propor-
tion to the increase in the volume of the region of
interaction and is the higher the lower the resonant
density at the trap center; the dependence on the col-
lision frequency is linear. The values of  and 
obtained in accordance with formulas (28) and (32)
are marked by horizontal and vertical lines in Fig. 7.
We can see that our results are in satisfactory agree-
ment with the results of simulation.

The effect of expansion of the resonant interaction
region due to tuning of the plasma density to the reso-
nant value may turn out to be significant in experi-
ments aimed at attaining high multiplicity of ioniza-
tion in microwave discharges. For example, when a
plasma is sustained by radiation at frequency 37.5 GHz
for plasma densities close to experimental values [28]
and for an analogous magnetic configuration, the
expected absorption power may differ from its value
obtained disregarding nonlinear effects by more than
10% even for w > 0.003. The electron temperature in
such experiments is estimated as 10–50 eV. If we
assume that absorption is collisional, the rf field
amplitude in range 2–5 kV/cm is sufficient for the
manifestation of nonlinear effects. Fields of such

e res*n

2*w abs*P
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strength can be reached in contemporary microwave
generators and are realized in plasma experiments.

9. CONCLUSIONS
Based on the theory developed in this study, we can

conclude that resonant heating of a small-diameter
plasma flow occurs at geometrical resonance  =
2ω(ω ± ωB) or, in the Stix terminology, for ε± = –1.
The efficiency of this heating is mainly determined by
the volume of the resonant interaction region, which
increases with the field amplitude due to tuning of the
plasma density to the resonant value as a result of
action of the averaged ponderomotive force.

We have considered the simplest qualitative prob-
lem of the plasma flow with a fixed (single) degree of
ionization disregarding radiation losses. However, the
“electrodynamic” part of the problem is independent
of these peculiarities. Therefore, our formalism per-
mits direct generalization to the case of a plasma flow
with a more complicated (varying) ion composition
and line radiation losses, which is topical in the con-
text of optimization of contemporary experiments.
Analysis of the effect of pressure on the balance of ion-
ization and excitation of ions by electron impact in a
nonequilibrium multicharged plasma flow, which is
based on the theory developed by the authors [15, 16],
requires separate consideration.
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