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Abstract—We study compact stars for f( ) gravity model using modified Tolman–Oppenheimer–Volkoff
equation. Firstly, the hydrostatic equilibrium equations have been developed in the context of f( ) gravity.
Secondly, the profiles of energy density, pressure and mass of stars are investigated through two different
equations of state models, p = ωρ5/3 and p = a(ρ – 4b), ρ being the energy density, ω, a and b are the specific
constants. For f( ) = α  model with α being an arbitrary constant, the physical attributes of the compact
objects have been discussed for the different values of model parameter α. It is concluded that in the frame-
work of f( ) gravity, neutron and strange stars follow physically accepted patterns and the results agree with
those already available in literature.
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1. INTRODUCTION

According to recent research, the phenomenon of
accelerated expansion of the universe has been consid-
ered more significant and interesting subject in the
modern generation of cosmology and astrophysics [1,
2]. Cosmological constant has been introduced [3, 4]
in order to understand this concept. This interesting
expansion phenomenon is governed by the Einstein
theory of relativity and classical dynamics of solar
objects. However, the relativity theory shows some
constraints, since within the theoretical framework
some significant issues are not addressed properly like
dark energy, dark matter, initial singularity, late-time
cosmic acceleration and flatness problems. The theory
of relativity describes the cosmological behavior and
ideas in weak reign, while a few modifications are
needed to show the strong fields in the frame of cosmic
expansion of universe. As an alternative to general rel-
ativity, different gravitational modified theories have
been presented in the recent decades. Some alternative
models of gravity are proposed which are believed to
be a real cause of this accelerating expansion of the
universe. Capozziello [5] explained that modified the-
ories of gravity are assumed as an extensive tool to
present the mysterious behavior of dark energy and
late time cosmic issues. One of the simplest and well
known modifications of general theory of relativity is
f(R) theory of gravity proposed by Buchdahl [6] by
changing Ricci scalar R term with an arbitrary func-

tion f(R). The role of modified gravitational theories
has important significance in exploring the evolution-
ary aspects of the universe [7]. These theories of grav-
ity are considered as an alternative to resolve the enig-
matic nature of the universe which is the main cause of
the accelerated expansion of universe [8, 9].

Another theory which has attained prominence in
the recent years is modified Gauss–Bonnet gravity,
also recognized as f( ) gravity [10–12]. The recon-
struction techniques for f( ) gravity have been devel-
oped by Nojiri and Odintsov [13] and also it was illus-
trated that how the cosmological sequence of matter
dominance, deceleration-acceleration transition and
acceleration era may emerge by using such theory of
modified gravity. Felice and Tsujikawa [14] studied
the solar system constraints on cosmologically viable
f( ) gravity models and also observed that these
models were responsible for late-time cosmic accel-
eration. The phase space analysis for viable v models
and the conditions on their cosmological viability
have been explored by Zhou et al. [15]. The role of
Gauss–Bonnet term in the late time accelerated
phases of the universe was discussed by Sharif and
Fatima [16].

In astrophysics, the compact stars generally origi-
nate due to the gravitational collapse of the massive
stars. The resulting outcome of this gravitational col-
lapse depends upon the mass of the star. Compact
stars include white dwarfs, neutron stars and black
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holes. The physical features of stars comprises the
relation between the interior pressure and gravitational
force which results into an equilibrium state, known as
hydrostatic equilibrium structures. This phenomenon
has great significance in studying the interior structure
of the stars. The solutions for isotropic stars in general
relativity are described by Tolman–Oppenheimer–
Volkoff (TOV) equations [17–19]. Neutron star model
based on a stringy inspired Gauss–Bonnet gravity has
been explored using TOV equations by Momeni and
Myrzakulov [20]. Several authors [21–29] have
employed the TOV approach to examine the interior
structure of the compact objects. TOV equations rep-
resent the relationship between the pressure, mass and
energy density of a particular star. These TOV equa-
tions show that how the pressure and energy density
are affected with respect to mass of the compact star.
For compact stars particularly for the neutron stars,
the interior pressure equivalent to the gravitational
pressure is actually the pressure that is being evinced
from degeneracy of fermions. The relativistic
approach in general relativity by considering the set of
TOV equations for the nonrotating spherically sym-
metric hydrostatic equilibrium, is given as

(1)

where p, ρ being the radial pressure and energy density
respectively and m represents the stellar mass of the
star, these all are dependent on the radial coordinate r.
For the compact star at the boundary r = R, the total
stellar mass of the star is computed as

(2)

In order to solve above coupled equations, a suitable
choice of equations of state (EoS) plays an important
role which exhibits the connection between pressure
and energy density. The equilibrium configurations of
neutron as well as quark stars have been studied by
Moraes et al. [30] with different forms of EoS and it
has been observed that the maximum mass could cross
the observational limits. The possible existence of
neutron stars with high central densities and larger
masses than general relativity has been pointed out in
the context of modified theories of gravity [31–33].

The development of TOV equations for different
modified gravity models have great contribution for
better understanding and examining the nature of
compact stars structures and matter at high densities
[34–37]. In particular, the study of TOV equations in
modified f(R) gravity have very interesting conse-
quences [38–41]. Artyom and collaborators [35]
investigated quark star models with realistic EoS in
non-perturbative f(R) gravity and found the mass-
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radius relationship. The structure of neutron star have
been studied by Deliduman et al. [42] in f(R) = R +
βRμνRμν gravity with perturbative approach and the
mass-radius relations are observed for the six different
EoS parameters. In fact, the study of compact stars
has gained most attention in modified theories of
gravity and a reasonable amount of work related to
neutron stars have been a strong subject of discussion
[43–45]. Astashenok et al. [34] investigated modified
TOV equations and the possible existence of neutron
stars with strong magnetic fields in the context of the
extended theories of gravity. For this purpose the
authors considered generalized form of the Einstein
theory consisting of the Gauss-Bonnet invariant term
and further they compared the results with f(R) gravity.
Recently the charged compact structures in modified
Gauss–Bonnet gravity have been discussed by Ilyas
[46].

In this paper, we aim to investigate the TOV equa-
tions in the frame of f( ) gravity. For this purpose, we
derive the full system of equations of motion for a
spherically symmetric static spacetime with perfect
fluid. In particular, the hydrostatic equilibrium equa-
tions have been developed and the profiles of energy
density, pressure and mass of stars are investigated
through two different equations of state models.
Moreover, the physical attributes of the compact
objects have been discussed in detail for the different
values of model parameter. The paper is organized as
follows: A brief discussion of the modified theory f( )
gravity with its field equations and fundamental for-
mulation has been presented in Section 2. In
Section 3, we investigate the physical features of the
neutron and quark strange stars by using two different
EoS. Last section, is based on the conclusive remarks
of the results.

2. MODIFIED FIELD EQUATIONS
OF f( ) GRAVITY

The most general action for modified Gauss–Bon-
net gravity is [47]

(3)

where R is Ricci scalar, κ2 = 8πG is coupling constant
and Sm is the matter Lagrangian. Varying the action
(3) with respect to metric tensor, the modified field
equations

(4)

where subscript  in  represents derivative of f( )
with respect to  while Rμν and Rμρνσ are the Ricci and
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Riemann tensors, respectively. The Gauss–Bonnet
term  is defined as

(5)

We take the signature for the Riemannian metric as
(+, –, –, –). Covariant derivative and Riemann tensor
are denoted by ∇μVν = ∂μVν – Vλ and  = ∂ν –

∂ρ  +  –  respectively. Let us consider
the spherically symmetric metric

(6)

where ν and λ being some arbitrary function of r. For
the spacetime (6), the components of Einstein tensor
Gαβ read

(7)

(8)

where “ ' ” denotes the radial derivative. Using Eqs. (4)
and (7), (8), tt and rr components of the field equa-
tions are

(9)

(10)

The Gauss–Bonnet invariant and the conservation
equation for the spherically symmetric space time (6)
turn out to be

(11)

(12)

The gravitational mass m of a spherical star with inner
radius r may be related by the equation e–λ = (1 –

2m/r). Thus writing Eqs. (9) and (10) in terms of ,

, ρ and after some manipulations, we obtain the

corresponding TOV equations
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(14)

We will use these equations to further analyze the neu-
tron and quark stars. Now we consider f( ) = α ,
where f( ) being an analytic function of the Gauss–
Bonnet invariant term  [12]. Here we particulary
choose n = 2 for the sake of simplicity and two dimen-
sional graphical analysis. Now manipulating Eqs. (13)
and (14) together

(15)

2.1. Boundary Conditions

We are interested to integrate the differential
Eq. (15) to find the physical characteristics of the
hydrostatic equilibrium of the compact stars. We
define some specific boundary conditions starting at
the center of the star:

(16)

The solutions at the surface of the compact stars
(r = R) are computed with the specific condition
p(R) = 0 such that the interior spacetime of star is
matched smoothly with Schwarzschild solution. The
metric potentials of interior and exterior spacetime are
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connected through eν(R) =  = 1 – , with M

represents the stellar mass of the compact star.

2.2. Equation of State Models

The structure and the formation of a neutron star
totally depends on the EoS parameter which forms the
connection between pressure and energy density
inside the star [48]. After defining the EoS, the differ-
ential Eq. (15) can be computed for unknown func-
tions m, p, and ρ. Moreover, EoS will be useful to
reduce one unknown and help in integrating process.
The two well known EoS (Polytropic and MIT bag
model) have been considered to observe the equilib-
rium structures of compact stars in f( ) theory of
gravity. The work by Tooper [49] may be a valuable
example where he used polytropic EoS to study neu-
tron stars. Thus to study using polytropic EoS p =
ωρ5/3, Eq. (15) takes the form

(17)

Here we assume ω = 1.4745 × 10–3 (fm3/MeV)2/3 [50,
51]. The choice of MIT bag model p = a(ρ – 4b) is
considered to be more appropriate, while studying the
strange quark matter [52]. For massive quark stars, we
may choose parameter a = 0.28, with ms = 250 MeV
[53]. The parameter b is called bag constant and for
this work we consider b = 60 MeV/fm3.
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3. NEUTRON AND STRANGE STARS
IN f( ) GRAVITY

Equations (17) and (18) are highly nonlinear differ-
ential equations and it seems difficult to find a solution
through analytical method. Here we prefer the
Runge–Kutta 4th order method and use the boundary
conditions for different values of α to investigate the
three important physical aspects of the compact stars
i.e. energy density ρ, pressure p and the normalized
stellar mass m/ . The graphical behavior of energy
density and pressure for the neutron and strange quark
stars is shown in Figs. 1 and 2. It cab be easily observed
from these graphs that as r → 0 then energy density
attains the maximum value. The graphs in Fig. 2
depicts that as r increases, the radial pressure for the
neutron and strange quark stars decreases. Moreover,
pressure approaches to zero on the boundary. Obser-
vations from both density and pressure profiles indi-
cates the high compactness of the stars for power law
f( ) gravity model. The graph in Fig. 3 shows a
directly proportional relation between mass and radial
coordinate which is exactly according to usual patterns
of mass-radius relationship for compact stars. It is
observed that the stellar mass of the neutron and quark
stars almost shows opposite behavior with the increas-
ing values of α.

4. CONCLUDING REMARKS

The main focus of this work is to investigate the
physical aspects of the compact structures in f( )
gravity. For this purpose, we have considered general-
ized TOV equation in f( ). Moreover, the polytropic
EoS (p = ωρ5/3) for neutron stars and the MIT bag
model EoS (p = a(ρ – 4b)) for strange quark stars are
used to investigate the generalized TOV equation. Due
to the highly nonlinear and difficult nature of corre-
sponding differential equations, we prefer numerical
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Fig. 1. (Color online) The energy density profiles for neutron and strange quark stars for some different values of parameter α are
shown in (a) and (b), respectively. The value of the central energy density has been assumed as 900 MeV/fm3.
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Fig. 2. (Color online) The pressure profiles against the radial coordinate for neutron and strange quark stars are presented in (a)
and (b), respectively for some different parametric values of α.
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methods and use suitable boundary conditions for dif-
ferent values of α. The physical and geometrical
aspects of these EoS for different parametric values of
a have been examined. The model parameter α plays
an important role in evolution of compact structures
in f( ). For f( ) = α  gravity model, the behavior of
energy density ρ, pressure p and the normalized stellar
mass m/  has been shown in Figs. 1–3. It is clear
from the graphs as the radial coordinate r → 0, the
value of energy density attains the maximum value,
which shows the compactness of the star. Also, the
radial pressure for the neutron and strange quark stars
decreases as r increases and approaches to zero on the
boundary. Moreover, it is also observed that the stellar
mass of the neutron and quark stars almost shows
opposite behavior with the increasing values of α. The
increasing behavior of the stellar mass of the compact
subjects is due to the model parameter α, which plays
an important role in this frame of reference. In gen-
eral, we can say that the effect caused by the model
parameter term is very analogous to that caused by the
pressure or an extra electric charge in the configura-
tions of neutron and strange stars in general relativity
[50–55]. However, it is important to point out that the
mass-radius relation shows a directly proportional
relation which represents the physical attributes of the
compact structures. The findings of this work are
same as already available in literature [30, 56]. Fur-
thermore, the mass-radius relation illustrate that by
adopting the cubic f(R) gravity corrections, the maxi-
mal mass of neutron stars can be achieved [34]. In
principle, the possibility of massive neutron stars M >
4  having radius 12–15 km in modified gravity is
possible. Thus in our case, existence of the stable stars
with high central densities seems realistic by consider-
ing the quadratic f( ) gravity corrections.
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