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Abstract—In this paper, we study cylindrically symmetric perfect f luid distribution in the presence of cosmo-
logical constant satisfying two cases of polytropic equation of state. The corresponding structure equations
are formulated and solved through numerical technique. The resulting polytropic models turn out to be phys-
ically viable as they satisfy all the energy conditions. Finally, we analyze the stability of polytropes by applying
perturbations on matter variables via polytropic constant as well as polytropic index and construct the force
distribution function. It is found that compact object is stable for feasible choice of perturbed polytropic con-
stant in each case while the perturbation in polytropic index yields stable results only for the first case.
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1. INTRODUCTION

A study of physical behavior as well as different
evolutionary stages of stellar objects is one of the most
intriguing issues in relativistic astrophysics. The fac-
tors like condensation of gaseous material and self-
gravitation play a vital role in the structure formation
and evolution of celestial bodies. The internal consti-
tution of these objects is well described by an equation
of state (EoS). Eddington [1] explored that gas in a star
could be made to obey a polytropic relation between
its pressure and density for a particular choice of tem-
perature distribution. He named those star models as
polytropic stars that provide a crude approximation to
more realistic stellar models. Since then, the modeling
of compact objects via polytropic EoS captivated the
attention of many researchers.

The structure of polytropes is represented by
Lane–Emden equation which is the coupling of non-
linear differential equations (hydrostatic equilibrium
equation and mass conservation equation). Tooper [2]
was the pioneer to study the isotropic relativistic
spherical systems with polytropic EoS and obtained
numerical solution of structure equations. He also dis-
cussed gravitational collapse of massive star as a mech-
anism to produce large amount of energy. Thiruk-
kanesh and Ragel [3] found a class of exact solutions
for static polytropic sphere and checked their physical
features expected in a realistic stellar model. Herrera
and Barreto [4] studied the isotropic as well as aniso-
tropic spherically symmetric relativistic polytropes
and obtained numerical solution of structure equa-
tions describing polytropes. Herrera et al. [5] con-
structed anisotropic conformally f lat polytropes with

spherical symmetry and checked their viability
through energy conditions. Azam et al. [6] explored
polytropic charged sphere with generalized polytropic
EoS and found that stability of models is enhanced as
the compactness parameter is decreased.

Recent observational data in modern cosmology
disclosed that our universe is experiencing an acceler-
ated expansion which is believed due to the mysterious
form of energy known as dark energy. Some theoreti-
cal results revealed that dark energy might be
described by the cosmological constant (also inter-
preted as the vacuum energy density) which is charac-
terized by repulsive pressure. These observations
gained attention to the study of astrophysical objects
with cosmological constant. Zubairi et al. [7] obtained
solutions of the Einstein field equations for spherically
symmetric mass distributions with cosmological con-
stant. They also studied the structure of non-spherical
compact objects and evaluated stellar properties
(mass, radius, pressure and density) for these objects.

Böhmer and Harko [8] examined the instability of
spherically symmetric matter distribution in the pres-
ence of cosmological constant. They concluded that a
large cosmological constant increases the value of crit-
ical adiabatic index. Hossein [9] discussed the forma-
tion of anisotropic compact stars from cosmological
constant and found that the developed model is valid
for any compact star. Stuchlík et al. [10] investigated
the role of cosmological constant on spherically sym-
metric polytropes with perfect f luid and analyzed
physical features of polytropic sphere. They found that
repulsive cosmological constant has a relevant effect1 The article is published in the original.
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on polytropes when the length scale is comparable
with cosmological constant.

The spherically symmetric static solutions of the
Einstein field equations are well-known staples in gen-
eral relativity but the cylindrically symmetric static
solutions are less familiar. A study of non-spherical
self-gravitating systems gained much significance after
cylindrical gravitational wave solution of Einstein field
equations. Since then many authors attempted to find
the cylindrical solutions as well as the physical proper-
ties of stellar models in the context of cylindrical sym-
metry. Scheel et al. [11] examined stability of cylindri-
cal polytropes and concluded that they are stable in
contrast with spherical polytropes. Herrera et al. [12]
examined cylindrically symmetric self-gravitating f lu-
ids and found that matter quantities have significant
influence on the dynamics of cylindrically symmetric
matter distribution. Abbas et al. [13] studied the for-
mation of anisotropic cylindrical compact objects with
cosmological constant and checked their regularity
conditions as well as stability. We formulated the
anisotropic polytropic cylindrical models through
conformal f latness and found an increasing behavior
of model compactness [14]. Azam et al. [15] presented
the general formalism for charged anisotropic cylin-
drical polytrope and found that one of the developed
models is physically acceptable.

This paper explores isotropic cylindrical polytropes
in the presence of cosmological constant. The plan of
the paper is as follows. In the next section, we discuss
matter distribution satisfying two cases of polytropic
EoS for cylindrically symmetric spacetime to con-
struct structure equations which help to study physical
characteristics of polytropes and then investigate the
resulting models numerically. The energy conditions
for the developed models are also investigated. In Sec-
tion 3, we analyze the stability of polytropic models
through cracking. Finally, we conclude our main find-
ings in the last section.

2. FLUID DISTRIBUTION 
AND STRUCTURE EQUATIONS

We formulate general relativistic equations govern-
ing the equilibrium state of cylindrically symmetric
matter distribution satisfying polytropic EoS. The line
element representing static cylindrical symmetry is
given as [16]

(1)

The fluid inside this configuration is assumed to be
perfect f luid bounded by hypersurface Σ so that rΣ =

= − + + φ +2 2 2 2 2 2 2 2( ) ( ) ( ) .ds A r dt B r dr C r d dz
JOURNAL OF EXPERIMENTAL AN
const. The energy-momentum tensor for such matter
distribution is given as

(2)

where ρ, P, and Vα are the energy density, isotropic
pressure, and four-velocity, respectively. In comoving
coordinates, the four-velocity is defined as

The corresponding field equations (Rαβ – Rgαβ +

Λgαβ = 8πTαβ) turn out to be

where prime denotes differentiation with respect to r
while Λ is the cosmological constant. We take C(r) = r
as our Schwarzschild coordinate. Consequently, the
field equations reduce to the following form

(3)

(4)

(5)

(6)

Thorne [17] defined C-energy for cylindrical
spacetimes as

with

here , l, and  are the circumference radius, specific

length and areal radius, respectively, and ζ(1) = ,

ζ(2) =  are Killing vectors for cylindrical system. The

C-energy for our line element takes the form
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Using Eqs.(4) and (7), we obtain

where

(9)

representing the total mass inside the cylindrical com-
pact object. Consequently, Eq. (8) becomes

(10)

The matter distribution is found to be realistic if it sat-
isfies certain conditions known as energy conditions.
For isotropic f luid configuration, these conditions are

(11)

Next, we consider that stellar object satisfying two
cases of polytropic EoS and formulate the structure
equations.

2.1. Case 1
In this case, we consider

(12)
here γ, k, and n indicate polytropic exponent, constant
and index, respectively, while ρ0 is the baryonic den-
sity. We introduce some new variables

(13)

Here, ρ0c, ρc, and Pc indicate the central values of
baryonic as well as total energy density and pressure,
respectively, and ρvac denotes the vacuum energy den-
sity. The terms ξ, λ, Φ0(ξ), (ξ) are dimensionless
radial coordinate, cosmological constant, density and
mass parameters, respectively, while  is constant
with dimensions of length–1. The value of Λ is mea-
sured to be 1.3 × 10–56 cm–2 and the related vacuum
energy density is 10–29 g/cm3 [10]. Using Eq. (13) in
(10) and (9), we have

(14)

(15)

where x = ξ/ ,  = rΣ . The above equation rep-
resents the internal structure of cylindrical compact
object. Differentiating Eq. (14) with respect to x and
then using (15), we obtain

(16)

This equation is termed as Lane–Emden equation describing polytrope in hydrostatic equilibrium. The energy
conditions in this case yield

(17)

We note that Eqs. (14) and (15) represent a system of
two differential equations in two unknowns (Φ0 and

). We solve these equations numerically with the ini-
tial conditions

(18)

Figure 1 shows the solution of Eqs. (14) and (15) for
zero as well as nonzero cosmological constant. The left
graph indicates the viable behavior of Φ0, i.e., it must
be positive inside the object and decreases as one
moves away from the center of star. Moreover, Φ0
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Fig. 1. (Color online) Plots for Φ0 (a) and  (b) versus x for λ = 0 (1), λ = 0.3 (2), and λ = 0.7 (3) with n = 1.5, α = 0.2.
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Fig. 2. (Color online) Plots for energy conditions versus x for λ = 0 (1), λ = 0.3 (2), and λ = 0.7 (3) with n = 1.5, α = 0.2.
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falls off more quickly for λ = 0. The right plot
demonstrates the behavior of dimensionless mass
function . We observe that  has larger values for
larger λ indicating that the increase in λ yields more
compact models. The energy conditions are plotted
in Fig. 2 for zero as well as non-zero cosmological
constant showing that all the energy bounds are sat-
isfied for different values of λ.

v v
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Fig. 3. (Color online) Plots for Φ (a) and  (b) versus x for λ = 0 (1), λ = 0.3 (2), and λ = 0.7 (3) with n = 1.5, α = 0.2.
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Fig. 4. (Color online) Plots for energy conditions in case 2 versus x for λ = 0 (1), λ = 0.3 (2), and λ = 0.7 (3) with n = 1.5, α = 0.2.
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The energy bounds for this case are

(23)

In this case, we solve Eqs. (20) and (21) and obtain Φ as
well as  as shown in Fig. 3. It is found that the behavior
of both Φ and  is same as obtained in case 1. Also, the
energy conditions are satisfied in this case (Fig. 4).

3. CRACKING IN POLYTROPES

A relativistic stellar model is worthless if it is not
stable against f luctuations in its matter variables, e.g.,
pressure and energy density. This small disturbance
destroys the equilibrium state of these heavenly bodies
leading to different fascinating phenomena such as
collapse, expansion, cracking and overturning. Crack-
ing and overturning of self-gravitating objects corre-
spond to the appearance of radial forces with different
signs within matter distribution [19]. When the radial
force is directed inward in the interior of compact
object and reverses its sign at some point (cracking
point), cracking occurs while overturning is produced
for reverse situation. This idea does not refer to the
collapse or expansion of matter configuration but its
tendency to split at a particular point within the f luid.
We analyze the stability of cylindrical polytropes mod-
els through cracking. For this purpose, the force distri-
bution function is defined as

(24)

We take out the system from equilibrium state by per-
turbing energy density as well as pressure via poly-
tropic parameters in each case.

3.1. Case 1

Firstly, we perturb the polytropic constant, i.e.,
k →  = k + δk, consequently, the energy density and
pressure are perturbed as

(25)

where h =  and tilde indicates the perturbed quantity.

Inserting these perturbed parameters in Eq. (24), we have
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Fig. 5. (Color online) Plots for δ  (a) and δ  (b) versus x for λ = 0 (1), λ = 0.3 (2), and λ = 0.7 (3) with n = 1.5, α = 0.2.
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Using the variable ξ = x , the above equation yields

(31)

In order to observe cracking, we plot this force distri-
bution function by fixing polytropic index, the param-
eter α and varying cosmological constant as shown in
left plot (Fig. 5). It is found that cylindrical polytropes
remain stable for all choices of parameters n, α, and λ.

Secondly, we introduce the perturbations in poly-
tropes via polytropic index (n →  = n + δn) yielding

(32)

where f2(x) = ΦnlnΦ0d . This force function is
plotted for different values of cosmological constant as
shown in right plot (Fig. 5). It is observed that the
compact object remains stable for all choices of
parameters when n is perturbed.

3.2. Case 2

Firstly, we perturb the polytropic constant, i.e.,
k →  = k + δk, consequently, the energy density and
pressure are perturbed as

(33)
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Fig. 6. (Color online) Plots for δ  (a, c) and δ  (b, d) versus x for λ = 0 (1), λ = 0.3 (2), and λ = 0.7 (3) with n = 1.5, α = 0.2.
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representing the disturbed state of the system. Using

the dimensionless variable  = , the above

equation turns out to be

Using Taylor’s expansion, we obtain

(34)

where f3(x) = Φn + 1d . In order to observe crack-
ing, we plot this force distribution function by fixing
polytropic index, the parameter a and varying cosmo-
logical constant as shown in first plot (Fig. 6). It is
found that cylindrical polytropes remain stable for all
choices of parameters n, α, and λ.

Secondly, we introduce the perturbations in polytropes via polytropic index (n →  = n + δn) yielding
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where f4(x) = ΦnlnΦd . This force function is
plotted for different values of cosmological constant as
shown in right plot of first row as well as second row of
Fig. 6. It is observed that the polytropic model experi-
ences cracking as we increase the value of λ, i.e., the
presence of cosmological constant leads to unstable
models when n is perturbed.

4. FINAL REMARKS

Self-gravitating compact objects belong to an
important class of those astronomical bodies whose
study become vital in recent era. In this paper, we have
studied the general relativistic polytropic compact
object with isotropic matter distribution for cylindri-
cally symmetric spacetime in the presence of cosmo-
logical constant. We have taken Schwarzschild radial
coordinate for our geometry and explored the field
equations. Two non-linear ordinary differential equa-
tions describing the internal structure of compact
object are formulated for two cases of polytropic EoS.
Similar to the polytropic sphere, the polytropic cylin-
der is characterized by three dimensionless parame-
ters, i.e., the polytropic index (n), the relativistic
parameter (α) reflecting the role of relativistic effects
in its structure and the cosmological constant mani-
festing the role of vacuum energy density. We have
solved the structure equations numerically and found
that mass function is monotonically increasing. In the
presence of cosmological constant, it grows faster as
compared to that in the absence of λ. The physical via-
bility of resulting models is investigated through
energy conditions and found that the developed mod-
els meet all the energy bounds for both zero and non-
zero values of cosmological constant.

The stability analysis of stellar models is very
important to check their physical viability. We have
used the idea of cracking and take out system from
equilibrium state through perturbations. We have per-
turbed the energy density and pressure of the system in
two ways. We have perturbed polytropic constant as
well as polytropic index and constructed the force dis-
tribution functions δ  and δ  describing total radial
forces in case 1, respectively. We have found that the
resulting models are stable towards perturbations for
all choices of n, α, and λ while the models in case 2 are
stable only for perturbed polytropic constant. For
anisotropic spherical polytropes, cracking and over-
turning occur when the energy density as well as local

anisotropy of the system are perturbed through poly-
tropic constant and index [20] whereas the isotropic
cylindrically symmetric f luid configuration with cos-
mological constant leads to stable models with per-
turbed polytropic constant in both cases.
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