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Abstract—Eliashberg–McMillan theory of superconductivity is essentially based on the adiabatic approxi-

mation. Small parameter of perturbation theory is given by λ  ≪ 1, where λ is the dimensionless electron–

phonon coupling constant, Ω0 is characteristic phonon frequency, while EF is Fermi energy of electrons. Here
we present an attempt to describe the electron–phonon interaction within Eliashberg–McMillan approach
in situation, when characteristic phonon frequency Ω0 becomes large enough (comparable to, or exceeding,
the Fermi energy EF). We consider the general definition of electron–phonon pairing coupling constant λ,
taking into account the finite value of phonon frequency. Also, we obtain the simple expression for general-
ized coupling constant  that determines the mass renormalization, with the account of finite width of con-
duction band, which describes the smooth transition from the adiabatic regime to the region of strong nona-

diabaticity. In the case of strong nonadiabaticity, when Ω0 ≫ EF, the new small parameter appears, λ  ~

λ ≪ 1 (D is conduction band half-width), and corrections to electronic spectrum become irrelevant. At

the same time, the temperature of superconducting transition Tc in antiadiabatic limit is still determined by
Eliashberg–McMillan coupling constant λ, while the preexponential factor in the expression for Tc, conserv-
ing the form typical of weak-coupling theory, is determined by the bandwidth (Fermi energy). For the case
of interaction with a single optical phonon, we derive the single expression for Tc, valid both in adiabatic and
antiadiabatic regimes and describing the continuous transition between these two limiting cases. The results
obtained are discussed in the context of superconductivity in FeSe/STO.

DOI: 10.1134/S1063776119020122

1. INTRODUCTION
Eliashberg–McMillan superconductivity theory is

the most successful approach to microscopic descrip-
tion of the properties of conventional superconductors
with electron–phonon mechanism of Cooper pairing
[1–3]. It basic principles can be directly generalized
also for the description of non-phonon pairing mech-
anism in new high-temperature superconductors.
Recently this theory was successfully applied to the
description of record breaking superconductivity in
hydrides at high pressures [4].

It is widely known that Eliashberg–McMillan the-
ory is essentially based on the applicability of adiabatic
approximation and Migdal’s theorem [5], which
allows the neglect of vertex corrections in calculations
of electron–phonon coupling in typical metals. In this

case the correct small parameter of perturbation the-

ory is λ  ≪ 1, where λ is the dimensionless Eliash-

berg–McMillan electron–phonon coupling constant,
Ω0 is characteristic phonon frequency and EF is Fermi
energy of electrons. In particular, this leads to the
common opinion, that vertex corrections in this the-
ory can be neglected even for λ > 1, due to the validity

of inequality  ≪ 1, characteristic for typical metals.

This is certainly correct in continuous approximation,
when we neglect the effects of lattice discreteness on
electron spectrum.

The discreteness of the lattice leads to the breaking
of Migdal’s theorem for λ ~ 1 due to polaronic effects
[6, 7]. At the same time, for the region of λ < 1 we can
safely neglect these effects [7]. In the following we
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Fig. 1. Second-order diagram for self-energy. Dashed
line—phonon Green’s function D(0), continuous line—
electron Green’s function G in Matsubara representation.

Σ(p, iωn)  =
G(p + q, iωn)

D(0)(q, iωn − iωm)
shall consider only the continuous case, limiting our
discussion to not so large values of electron–phonon
coupling λ.

Recently a number of superconductors was discov-
ered, where the adiabatic approximation can not be
considered valid, and characteristic frequencies of
phonons are of the order or even greater than Fermi
energy. We bear in mind mainly superconductors
based on FeSe monolayers, mostly the systems like
single-atomic layer of FeSe on the SrTiO3 substrate
(FeSe/STO) [8]. For these systems this was first noted
by Gor’kov [9, 10], while discussing the idea of possi-
ble Tc enhancement in FeSe/STO due to interaction
with high-energy optical phonons in SrTiO3 [8].

2. SELF-ENERGY AND ELECTRON–PHONON 
COUPLING CONSTANT

Consider the second-order (in electron–phonon
coupling) diagram shown in Fig. 1. At first it is suffi-
cient to consider a metal in normal (non supercon-
ducting) state.

We can perform our analysis either in Matsubara
technique (T ≠ 0) or in T = 0 technique. In particular,
making all calculations in finite temperature tech-
nique, after the analytic continuation from Matsubara
to real frequencies iωn → ε ± iδ and in the limit of T =
0, the contribution of diagram Fig. 1 can be written in
the standard form [1, 11]:

(1)

where in notations of Fig. 1 we have p' = p + q. Here,
 is Fröhlich electron–phonon coupling constant,

εp is electronic spectrum with energy zero taken at the

Fermi level,  is phonon spectrum, and fp is the
(step-like) Fermi distribution.

In particular, for the imaginary part of self-energy
at positive frequencies we have:
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(2)

In these expressions index α enumerates the branches
of phonon spectrum. In the following we just drop it
for brevity.

Equation (1) can be identically written as:

(3)

In Eliashberg–McMillan approach we usually get rid
of explicit momentum dependence here by averaging
the matrix element of electron–phonon interaction
over surfaces of constant energies, corresponding to
initial and final momenta p and p', which usually
reduces to the averaging over corresponding Fermi
surfaces, as phonon scattering takes place only within
the narrow energy interval close to the Fermi level,
with effective width of the order of double Debye fre-
quency 2ΩD, and in typical metals we always have
ΩD ≪ EF. This is achieved by the following replace-
ment:

(4)

where in the last expression we have introduced the
definition of Eliashberg function α2(ω) and F(ω) =

(ω – Ωq) is the phonon density of states.

In the case, when phonon energy becomes compa-
rable with or even exceeds the Fermi energy, electron
scattering is effective not in the narrow energy layer
around the Fermi surface, but in a wider energy interval
of the order of Ω0 ~ EF, where Ω0 is a characteristic pho-
non frequency (e.g. of an optical phonon). Then, for the
case of initial |p| ~ pF the averaging over p' in expression
like (4) should be done over the surface of constant
energy, corresponding to EF + Ωp – p', as is shown in
Fig. 2. Then the Eq. (4) is directly generalized as:

(5)

which in the last δ-function simply corresponds to
transition from chemical potential μ to μ + Ωp – p'. We
remind that, as usual, the energy zero is taken at μ = 0.
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Fig. 2. (Color online) (a) Elementary act of electron–pho-
non scattering in the vicinity of the Fermi surface. (b) Sur-
faces of constant energy for initial and final states of an
electron scattered by an optical phonon with energy com-
parable to Fermi energy. Averaging of the matrix element
of interaction in (12) or (14) goes over the intersection
region of these surfaces.
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After the replacement like (4) or (5) the explicit
momentum dependence of the self-energy disappears
and in fact in the following we are dealing with Fermi

surface average Σ(ε) ≡ (εp)Σ(ε, p), which is

now written as:

(6)

This expression forms the basis of Eliashberg–
McMillan theory and determines the structure of
Eliashberg equations for the description of supercon-
ductivity.

3. MASS RENORMALIZATION AND 
ELECTRON–PHONON COUPLING 

CONSTANT
For the case of self-energy dependent only on fre-

quency (and not on momentum) we have the follow-
ing simple expressions, relating mass renormalization
of an electron to the residue a the pole of the Green’s
function [12]:

(7)

(8)

Then from Eq. (6) by direct calculations (all integrals
here are in infinite limits) we obtain:

(9)

so that introducing the dimensionless Eliashberg–
McMillan electron–phonon coupling constant as:

(10)

we immediately obtain the standard expression for
electron mass renormalization due to electron–pho-
non interaction:

(11)
The function α2(ω)F(ω) in the expression for

Eliashberg–McMillan electron–phonon coupling
constant (10) should be calculated according to (4) or
(5) depending on the relation between Fermi energy
EF and characteristic phonon frequency Ω (roughly
estimated by ΩD). As long as Ω ≪ EF we can use the
standard expression (4), while in case of Ω ~ EF we
should use (5). In principle all these facts are known
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for a long time—implicitly these results were men-
tioned e.g. in Allen’s paper [13], but misunderstand-
ings still appear [14]. Using Eq. (5) we can rewrite (10)
in the following form:

(12)

which gives the most general expression to calculate
the electron–phonon constant λ, determining Cooper
pairing in Eliashberg–McMillan theory.

4. ELECTRON INTERACTION WITH OPTICAL 
PHONONS WITH “FORWARD” SCATTERING

The discovery of high-temperature superconduc-
tivity in single—atomic layers of FeSe on SrTiO3
(FeSe/STO) and similar substrates, with record—
breaking, for iron—based superconductors, critical
temperature Tc, nearly an order of magnitude higher
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than in the bulk FeSe (see review in [8]), has sharp-
ened the problem of search of microscopic mechanism
of Tc enhancement. It was followed by the discovery in
ARPES experiments on FeSe/STO of the so called
“replicas” of conduction band [15], which lead to the
idea of Tc enhancement due to interaction of conduc-
tion electrons with optical phonons of SrTiO3, with
rather high energies (frequencies) ~100 meV and
“nearly forward” scattering (i.e. with small transferred
momentum of the phonon) due to the peculiarities of
interaction with optically active Ti–O dipoles at the
interface with STO. The model of such scattering
introduced in [15] has revived the interest to earlier
model of Tc enhancement, proposed by Dolgov and
Kulic, due to “forward” scattering [16, 17], which was
further developed and applied to FeSe/STO in [18,
19]. In fact, this model explains the formation of the
“replicas” of conduction band and the possibility to
achieve high values of Tc, though its basic conclusions
were criticized (from different points of view) in [20–
22] and are still under discussion.

One of the major circumstances, which was not
payed much attention in [15, 18, 19], was the nonadi-
abatic character, as noted by Gor’kov [9, 10], of FeSe
electrons interaction with optical phonons of STO.
The Fermi energy in conduction band of FeSe/STO is
small, of the order of 50–60 meV [8, 15], which by
itself is a serious problem for theoretical explanation
[20, 21]. Correspondingly, the energy of optical pho-
nons (~100 meV) exceeds is nearly twice, leading to
strong enough breaking of adiabaticity. Let us see, first
of all, the consequences of this fact for calculations of
electron–phonon coupling constant in Eliashberg–
McMillan approach.

Consider a particular example of electrons inter-
acting with a single optical (Einstein-like) phonon
mode with high-enough frequency Ω0, which scatters
essentially “forward”. The general qualitative picture
of such scattering is shown in Fig. 2. In this case in
Eq. (12) the density of phonon states is simply F(ω) =
δ(ω – Ω0), and for the momentum dependence of
interaction with optical phonon at FeSe/STO inter-
face we can assume the characteristic dependence,
obtained in [15]:

(13)

where the typical value of q0 ~ 0.1  ≪ pF (where a is

the lattice constant and pF is the Fermi momentum),
leading to nearly “forward” scattering of electrons by
optical phonons.

Then the dimensionless pairing constant of elec-
tron–phonon interaction in Eliashberg theory is writ-
ten as:
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As in FeSe/STO we have in fact Ω0 > EF the finite
value in the second δ-function here should be taken
into account.

For simple estimates let us assume the linearized
form of electronic spectrum (  is Fermi velocity): εp ≈

(|p| – pF), which allows to perform all calculations
analytically. Then, substituting (13) into (14) and con-
sidering two-dimensional case, after calculating all
integrals here we obtain [21]:

(15)

where K1(x) is Bessel function of imaginary argument
(McDonald function). Using the well-known asymp-
totic form of K1(x) and dropping a number of irrele-
vant constants, we have:

(16)

for  ≪ 1, and

(17)

for  ≫ 1.

Here we introduced the standard dimensionless
electron–phonon coupling constant:

(18)

where N(0) is the density of electronic states at the
Fermi level per single spin projection.

The result (16) is known [18, 19] and by itself is
rather unfavorable for significant Tc enhancement in
model under discussion. Even worse is the situation if
we take into account the large values of Ω0, as pairing

constant becomes exponentially suppressed for  >

1, which is typical for FeSe/STO interface, where Ω0 >
EF ≫ q0 [8]. This makes the enhancement of Tc due
to interaction of FeSe electrons with optical phonons
of STO rather improbable. In fact, similar conclusions
were made from first—principles calculations in [23],
where the dependence of Eliashberg coupling con-
stant on frequency of the optical phonon in STO was
also taken into account. However, the effect of sup-
pression of this constant was much smaller, which was
probably due to unrealistically large values of the
Fermi energy, obtained form LDA calculations of
electronic spectrum of FeSe/STO, which does not
account for the role of correlations [23]. Correspond-
ingly, in [23] they always had Ω0 ≪ EF. The account of
correlations within LDA+DMFT calculations, per-
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formed in [20, 21], allowed to obtain the values of
Fermi energy in conduction band of FeSe/STO in
accordance with ARPES data, which show that in this
system we meet with antiadiabatic situation with
Ω0 > EF.

Certainly, the results obtained above in the asymp-
totic of high frequencies Ω0 depend on the form of
momentum dependence in Eq. (13). For example, if
we choose the Gaussian form of interaction fall with
transferred momentum, we shall obtain more fast
Gaussian suppression with frequency in the limit of
Eq. (17). In general case, for fast enough fall of inter-
action in (13) on the scale of q0 we shall always obtain
rather fast suppression of coupling constant for Ω0 ≫

q0.
For a more realistic case, when the optical phonon

scatters electrons not only in “forward” direction, but
in a wide interval of transferred momenta (as it follows
e.g. from first - principles calculations of [23]), in the
above expression we have simply to use large enough
value of the parameter q0. Choosing e.g. q0 ~ 4πpF and
using the low frequency limit (16) we immediately
obtain λ ≈ λ0, i.e. the standard result. Similarly,
parameter q0 can be taken equal to an inverse lattice
vector 2π/a. Then for q0 ~ 2π/a from (16) we obtain:

(19)

for typical pF ~ 1/2a. In general case there always
remain the dependence on the value of Fermi momen-
tum and cutoff parameter (cf. similar analysis in [12]).

In the limit of (17), assuming q0 ~ pF we immedi-
ately obtain:

(20)

which simply signifies the effective interaction cutoff
for Ω0 > EF in antiadiabatic limit. This fact was
stressed by Gor’kov in [9, 10].

5. EFFECTS OF FINITE BANDWIDTH
AND ANTIADIABATIC LIMIT

As was already noted above, the usual Migdal–
Eliashberg approach is totally justified in adiabatic
approximation, related for usual electron–phonon
systems (metals) with the presence of a small parame-
ter ΩD/EF ≪ 1 (or Ω0/EF ≪ 1 for the case of a single
optical phonon with frequency Ω0). The true parame-
ter of perturbation theory in this case is given by
λ(Ω0/EF), which is small even for λ ~ 1. The presence
of this small parameter allows us to limit ourselves to
calculations of a simple diagram of the second order
over electron–phonon interaction considered above,
and neglect all vertex corrections (Migdal’s theorem)
[5]. These conditions are broken in FeSe/STO system,
where Ω0 ~ 2EF.
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Our discussion up to now implicitly assumed the
conduction band of an infinite width. It is clear that in
case of large enough characteristic phonon frequency
it may be comparable not only with Fermi energy, but
also with conduction band width. Below we shall show
that in the limit of strong nonadiabaticity, when Ω0 ≫
EF ~ D (where D is the conduction band half-width),
in fact, we are dealing with the situation, when a new
small parameter of perturbation theory λD/Ω0 ~
λEF/Ω0 appears in the theory.

Let us consider the case of conduction band of the
finite width 2D with constant density of states (which
formally corresponds formally to two-dimensional
case). The Fermi level as above is considered as an ori-
gin of energy scale and we assume the typical case of
half-filled band. Then (6) reduces to:

(21)

For the model of a single optical phonon F(ω) =
δ(ω ‒ Ω0) and we immediately obtain:

(22)

Correspondingly, form (21) we get:

(23)

and we can define the generalized coupling constant as:

(24)

which for D → ∞ reduces to the usual Eliashberg–
McMillan constant (10), while for D → 0 is gives the
“antiadiabatic” coupling constant:
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Equation (24) describes the smooth transition
between the limits of wide and narrow conduction
bands. Mass renormalization in general case is deter-
mined by :

(26)
In strong antiadiabatic limit of D ≪ Ω0, after elemen-
tary calculations we obtain from (21):

(27)

and from (22)

(28)

For the model of a single optical phonon with fre-
quency Ω0 we have:

(29)

where Eliashberg–McMillan constant is:

(30)

and λD reduces to:

(31)

where in the last expression we have introduced the
new small parameter D/Ω0 ≪ 1, appearing in strong
antiadiabatic limit. Correspondingly, in this limit we
always have:
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so that for reasonable values of λ (even up to a strong
coupling region of λ ~ 1) “antiadiabatic” coupling
constant remains small. Obviously, all vertex correc-
tions are also small in this limit, as was shown by direct
calculations in [24], which went rather unnoticed.
Thus we come to an unexpected conclusion—in the
limit of strong nonadiabaticity the electron–phonon
coupling becomes weak!

For imaginary part of self-energy in strong antiadi-
abatic limit we easily obtain:

(33)

which in a single phonon model reduces to:
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From these expressions it is clear that this imaginary
part is not particularly important in this limit (being
non zero only for ε = Ω0), and equation for the real
part of electronic dispersion:

(35)
is now:

(36)

Correspondingly, for ε ~ εp we can write:

(37)

which for εp → 0 gives a small correction to the spec-
trum:

(38)

obviously reducing to a small (λD ≪ 1) renormaliza-
tion of the effective mass (26).

Physically, the weakness of electron–phonon cou-
pling in strong nonadiabatic limit is pretty clear—
when ions move much faster than electrons, these
have no time to “fit” the rapidly changing configura-
tion of ions and, in these sense, only weakly react on
their movement.

6. ELIASHBERG EQUATIONS
AND THE TEMPERATURE

OF SUPERCONDUCTING TRANSITION
All analysis above was performed for the normal

state of a metal. The problem arises, to which extent
the results obtained can be generalized for the case of
a metal in superconducting state? In particular, what
coupling constant (λ, , or λD) determines the tem-
perature of superconducting transition Tc an antiadia-
batic limit? Let us analyze the situation within appro-
priate generalization of Eliashberg equations.

Taking into account that in antiadiabatic approxi-
mation vertex corrections are irrelevant and neglecting
the direct Coulomb interaction, Eliashberg equations
can be derived by calculating the diagram of Fig. 1,
where electronic Green’s function in superconducting
state is taken in Nambu’s matrix representation. For
real frequencies this is written in the following stan-
dard form [2]:

(39)

which corresponds to the matrix of self-energy:
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where τi are standard Pauli matrices, while functions
of mass renormalization Z(ε) and energy gap Δ(ε) are
determined from solution of integral Eliashberg equa-
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tions, which in representation of real frequencies are
written as [2]:

(41)

(42)

where integral equation kernel has the following form:

(43)

The only difference here from the similar equations of
[2] is the appearance of the finite integration limits,
determined by the bandwidth, as well as the absence of
the contribution of direct Coulomb repulsion, which
will not be discussed here. In fact, Eqs. (41) and (42)
are the direct analog of Eqs. (6) and (21) for normal
metal and replace them after the transition into super-
conducting phase.

To determine the temperature of superconducting
transition it is sufficient, as usual, to analyze the lin-
earized Eliashberg equations, which are written as:

(44)

(45)

For us it is sufficient to consider in these equations the
limit of ε → 0 and look for the solutions Z(0) = Z and
Δ(0) = Δ. Then from (44) we obtain:

(46)

or

(47)
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where the constant  was defined above in Eq. (24).
Thus, precisely this effective constant determines
mass renormalization both in normal and supercon-
ducting phases. As was shown above, in the limit of
strong antiadiabaticity this renormalization is very
small and determined by the limiting value of λD (31).

Situation is different in Eq. (45). In the limit of ε →
0, using (47) we immediately obtain from (45) the fol-
lowing equation for Tc

(48)

In antiadiabatic limit, when characteristic frequencies
of phonons exceed the width of the conduction band,
we can neglect ε' as compared to ω in the denominator
of the integrand in (48), so that the equation for Tc is
rewritten as:

(49)

where λ is Eliashberg–McMillan coupling constant as
defined above in Eq. (10). From here we immediately
obtain the BCS-type result:

(50)

We have seen above, that in antiadiabatic limit we
always have  → λD ≪ λ, so that in the exponent in
(50) we can neglect it, so that the expression for Tc is
reduced simply to BCS weak coupling formula, with
preexponential factor determined by the half-width of
the band (Fermi energy), while the pairing coupling
constant in the exponential is determined the general
Eliashberg–McMillan expression (taking account the
discussion above).

In the model with single optical phonon of fre-
quency Ω0 Eq. (49) has the form:

(51)

Equation (51) is easily solved (the integral here can be
taken, as usual, by partial integration) and we obtain:

(52)
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where for λ is naturally defined by Eq. (30). We see,

that in antiadiabatic regime, for  ≪ 1 this expres-

sion reduces to (50), while in adiabatic limit  ≫ 1

we obtain the usual expression for Tc of Eliashberg the-
ory for the case of intermediate coupling:

(53)

Thus, Eq. (51) gives the unified expression for Tc,
which is valid both in adiabatic and antiadiabatic lim-
its, smoothly interpolating between these two limits.

Finally, we come to rather unexpected conclu-
sions—in the limit of strong nonadiabaticity Tc is
determined by an expression like BCS weak coupling
theory, with preexponential determined not by a char-
acteristic phonon frequency, but by Fermi energy (the
same conclusion was reached in a recent paper by
Gor’kov [10]), while the pairing coupling constant
conserves the standard form of Eliashberg–McMillan
theory. The effective coupling constant , tending in
antiadiabatic limit to λD, determines the mass renor-
malization, but not the temperature of superconduct-
ing transition.

7. CONCLUSIONS

In this work we have considered the electron–pho-
non coupling in Eliashberg–McMillan theory outside
the limits of the standard adiabatic approximation. We
have obtained some simple expressions for interaction
parameters of electrons and phonons in the situation,
when the characteristic frequency of phonons Ω0
becomes large enough (comparable or even exceeding
the Fermi energy EF). In particular, we have analyzed
the general definition of the pairing constant λ, taking
into account the finite value of phonon frequency. It
was shown, that in a popular model with dominating
“forward” scattering it leads to exponential suppres-
sion of the coupling constant for the frequencies Ω0 ≫

q0, where q0 defines the characteristic size of the
region of transferred momenta, where electrons inter-
act with phonons. Similar situation appears also in the
usual case, when q0 is of the order of inverse lattice
vector, and phonon frequency exceeds the Fermi
energy EF.

We have obtained a simple expression for elec-
tron–phonon coupling constant, , determining the
mass renormalization in Eliashberg–McMillan the-
ory, taking into account the finite width of conduction
band, which describes the smooth transition from adi-
abatic regime to the region of strong nonadiabaticity.
It was shown, that under the conditions of strong non-
adiabaticity, when Ω0 ≫ EF, a new small parameter

Ω0

D

Ω0

D

( )+ λΩ −
λ0

1~ exp .cT

λ�

Fv

λ�
JOURNAL OF EXPERIMENTAL AN
λ  ~ λ  ≪ 1 (D is the half-width of conduction

band) appears in the theory, and corrections to elec-
tron spectrum become, in fact, irrelevant, as well as all
vertex corrections. In fact, this allows us to apply the
general Eliashberg equations outside the limits of adi-
abatic approximation in strong antiadiabatic limit.
Our results show, that outside the limits of adiabatic
approximation, in the limit of strong nonadiabaticity,
for superconductivity we have a weak coupling regime.
Mass renormalization is small and determined by
effective coupling constant λD, while the strength of
the pairing interaction is determined by the standard
Eliashberg–McMillan coupling constant λ ≫ λD,
appropriately generalized with the account of finite-
ness of phonon frequency (comparable or exceeding
the Fermi energy). The cutoff of pairing interaction in
Cooper channel in antiadiabatic limit, as we have seen
above (cf. also Gor’kov’s paper [10]), takes place at the
energies ~EF, in weak approximation (supported by
our estimates) possible vertex corrections are irrele-
vant and for Tc we can use the usual expression of BCS
theory (50), which was also stressed in [10]. The small
value of EF in FeSe/STO system leads to the conclu-
sion, that the only interaction with antiadiabatic pho-
nons of STO is insufficient to explain the experimen-
tally observed values of Tc, as far as we limit ourselves
to weak coupling approximation ant the value of λ dies
not exceed 0.25. In this case it is necessary to take into
account two pairing mechanisms, those responsible
for the formation of initial Tc0 in the bulk FeSe (pho-
nons or spin f luctuations in FeSe) and those enhanc-
ing the pairing due interaction with optical phonons of
STO. Appropriate estimates of Tc, performed in [8, 10]
are in reasonable agreement with experiments on
FeSe/STO, with no use of the ideas on pairing mech-
anisms with “forward” scattering. At the same time,
our analysis show, that the expression for Tc like
Eq. (50), which formally has the form of weak cou-
pling approximation of BCS theory, in reality “works”
(in the limit of strong nonadiabaticity) also for large
enough values of λ, at least up to λ ~ 1, when polaronic
effects become relevant. Correspondingly, to explain
the experimentally observed values of Tc in FeSe/STO
it may be sufficient to deal only with electron interac-
tions with optical phonons of STO, as far as the values
of λ ~ 0.5 can be realized in this system. However, the
realization of such large values of coupling constant
here seems rather doubtful in the light of our discus-
sion above (cf. also the results of first—principles cal-
culations of λ in [23]).

The separate question, which remained outside our
discussion, is the account of direst Coulomb repul-
sion. In standard Eliashberg–McMillan theory, in
adiabatic approximation, when the frequency of pho-
nons is orders of magnitude smaller, than Fermi
energy, this repulsion enters via Coulomb pseudopo-

Ω0

FE
Ω0

D
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tential  which is significantly suppressed by Tol-
machev logarithm [2]. In antiadiabatic situation this
mechanism of suppression does not operate, which
creates additional difficulties for realization of super-
conductivity. In general, the problem of the possible
role of Coulomb repulsion in antiadiabatic regime of
electron–phonon coupling deserves serious further
studies.

This work was partially supported by RFBR grant
no. 17-02-00015 and the Program of Fundamental
Research of the Presidium of the Russian Academy of
Sciences no. 12 “Fundamental problems of high-tem-
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