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Abstract—Using the linearized version of the time dependent Gross–Pitaevskii equation, we calculate the
dynamic response of a Bose–Einstein condensed gas to periodic density and particle perturbations. The zero
temperature limit of the f luctuation—dissipation theorem is used to evaluate the corresponding quantum
fluctuations induced by the elementary excitations in the ground state. In uniform conditions the predictions
of Bogoliubov theory, including the infrared divergency of the particle distribution function and the quantum
depletion of the condensate, are exactly reproduced by Gross–Pitaevskii theory. Results are also given for the
crossed particle-density response function and the extension of the formalism to nonuniform systems is dis-
cussed. The generalization of the Gross–Pitaevskii equation to include beyond mean field effects is finally
considered and an explicit result for the chemical potential is found, in agreement with the prediction of Lee–
Huang–Yang theory.
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1. INTRODUCTION
Bogoliubov [1] and Gross–Pitaevskii [2, 3] theo-

ries represent basic approaches to the physics of a
weakly interacting Bose gas. While Bogoliubov theory
is based on a quantum description where the particle
operators are transformed into quasi-particle opera-
tors, allowing for an explicit diagonalization of the
quantum Hamiltonian, Gross–Pitaevskii theory con-
sists of an equation for the order parameter, a classical
field associated with the spontaneous breaking of
gauge symmetry.

The main purpose of the present paper is to show
that the quantum fluctuations exhibited by an inter-
acting Bose–Einstein condensate can be properly cal-
culated using the formalism of time dependent
Gross–Pitaevskii theory (TDGP), recovering the
results of Bogoliubov theory and allowing for applica-
tions to nonuniform configurations. In addition to the
density f luctuations an important case considered in
this work concerns the particle f luctuations whose
knowledge gives access to the momentum distribution
and to the quantum depletion of the condensate. We
will also develop a generalization of the Gross–
Pitaevskii equation for the order parameter, account-
ing for beyond mean field effects.

We will make explicit use of the f luctuation dissi-
pation theorem [4], which relates the f luctuations

associated with a given physical operator  to the
imaginary part of the corresponding dynamic polariz-
ability. At zero temperature the theorem takes the form
(see, for example, [5])

(1)

where { , } ≡  +  is the anticommutator
between the two operators. Identity (1) emphasizes the
quantum nature of the f luctuations.2 Equivalently,
one can also write (again at zero temperature)

(2)

The crucial ingredient entering Eqs. (1), (2) is the
dynamic polarizability, defined by the variation

(3)

of the average value of the operator F†, induced by an
external time dependent perturbation of the form

(4)

1 The article is published in the original.

2 At finite temperature the function sgn(ω) should be replaced by
cot(β ω/2).
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with η positive and small, ensuring that at t = –∞ the
system is governed by the unperturbed Hamiltonian.
Perturbation theory yields the following result for the
dynamic polarizability at zero temperature [4]:

(5)

If the operator  does not conserve the total number
of particles it is convenient to use the grand canonical
formalism, adding the term –μ  to the unperturbed
Hamiltonian.

The time dependent Gross–Pitaevskii theory is
well suited to calculate the response function χ(ω) and
consequently provides direct access to the quantum
fluctuations of the operator , through the use of
Eqs. (1), (2). An important example are the density
fluctuations associated with the q-component

of the density operator, where  and  the usual cre-
ation and annihilation particle operators. In this case
Eq. (1) gives access to the density f luctuations and in
particular to the static structure factor

(6)

Another important case that will be discussed in the
paper concerns the f luctuations of the particle opera-
tor , where p is the momentum of the particle. In this
case the left hand side of Eq. (2) allows for the calcu-
lation of the particle distribution

(7)

which, in the presence of Bose–Einstein condensa-
tion, is known to exhibit an infrared divergent behavior
at small momenta [6] and whose integral allows for the
calculation of the quantum depletion of the conden-
sate. At first sight it may look surprising that an appar-
ently classical approach, like Gross–Pitaevskii theory,
accounts for these crucial quantum fluctuations.
Actually the quantum nature of TDGP theory is
implicitly taken into account by the use of the f luctu-
ation dissipation theorem.

2. FLUCTUATIONS IN BOGOLIUBOV THEORY
Bogoliubov theory is usually applied to uniform

configurations employing the Bogoliubov prescription
 =  ≡  where  and  are the particle annihi-

lation and creation operators relative to the single-par-
ticle state p = 0, where Bose–Einstein condensation
takes place and N0 ~ N is the number of atoms in the
condensate. The Bogoliubov prescription corresponds
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= 〈ρ ρ 〉 − 〈ρ 〉
† 21 1ˆ ˆ ˆ( ) | | .S q

N Nq q q

âp
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the assuming the spontaneous breaking of gauge sym-
metry. It is applied to the grand canonical quantum
Hamiltonian

(8)

after writing the field operator  in terms of the parti-
cle annihilation operators,

(9)

and keeping only terms quadratic in , . The inter-
action coupling constant g entering the Hamiltonian
(8) is related to the 3D s-wave scattering length by g =
4π a/m.

By introducing the Bogoliubov transformations

(10)

which transform particle ( , ) into quasi-particle

( , ) operators, the many-body Hamiltonian (8)
can be recast in the diagonal form

(11)

where

(12)

is the most famous Bogoliubov spectrum of the ele-
mentary excitations fixed by the interaction coupling
constant g, with n the density of the system, while E0 is
the ground state energy, whose evaluation requires a
proper renormalization of the coupling constant in
order to avoid the occurrence of ultraviolet divergen-
cies [7, 8]. The excitation spectrum (p) exhibits the
typical phononic dispersion (p) = cp at small
momenta, with the sound velocity given by c =

, and the single particle dispersion p2/2m at
high momenta. The values of the Bogoliubov ampli-
tudes which diagonalize the Hamiltonian, are given by

(13)

and satisfy the normalization condition |up|2 – | |2 =
1. In the Bogoliubov approach the elementary exci-
tation carrying momentum p is created by the operator

 applied to the ground state, which is defined as the
vacuum of quasi-particles:
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for any p ≠ 0. As a consequence, the density and par-
ticle f luctuations in the ground state are straightfor-
wardly calculated by using the Bogoliubov transfor-
mations (10) and the commutation rule [ , ] = 1.
For example, using the Bogoliubov prescription and
approximating N0 with N we can write the density
operator in the form

with p = q, yielding the result

(15)

for the density f luctuations in uniform conditions.
Choosing  = , with p ≠ 0, one instead finds the
result

(16)

for the particle distribution function. Notice that np
identically vanishes in the absence of interactions (g =
0). It gives rise to the infrared divergent behavior [8, 9]
np → mc/2p as p → 0 and yields the result

for the quantum depletion of the condensate. The
quantum depletion has been recently measured in a
uniform 3D Bose–Einstein condensed gas [10], con-
firming the prediction of Bogoliubov theory.

3. EQUATION FOR THE FIELD OPERATOR
As already mentioned in the introduction, time

dependent Gross–Pitaevskii theory is well suited to
study the dynamic response of the system to space and
time dependent external fields. In order to formulate
the problem in the general context it is useful to derive
the Gross–Pitaevskii theory starting from the Heisen-
berg equation

(17)

for the time evolution of the field operator, where 
is the perturbative term (4).

The commutator involving the unperturbed Ham-
iltonian (8) gives the result

(18)

where, for sake of generality, we have included an
external trapping potential.

In order to include the effect of the perturbation it
is convenient to write  in terms of the field opera-
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tor. In the case of the coupling with the q-component
of the density operator one writes

and the relevant commutator takes the form

(19)

In the case of the coupling with the p-component of
the field operator one chooses

and the relevant commutator instead becomes

(20)

We are now ready to study the response function in
the framework of Gross–Pitaevskii theory, where the
field operator is replaced by a classical field.

4. DENSITY RESPONSE IN GROSS–
PITAEVSKII THEORY

By replacing the field operator (r) with the clas-
sical field Ψ(r) in Eqs. (17), (18), (19) one obtains the
time dependent Gross–Pitaevskii equation

(21)

in the presence of the density perturbation, where, in
the last term of the equation, we have taken the unper-
turbed value Ψ(r, t) = , consistent with the rules
of perturbation theory.

In uniform conditions the ansatz

(22)

solves the time dependent Gross–Pitaevskii equation
both in the absence and in the presence of the external
density perturbation. In the above equation Ψ0 is the
order parameter calculated at equilibrium. In the
absence of the external perturbation one finds the well
known oscillating solutions with frequency

(23)

This result is fully consistent with the dispersion rela-
tion (12) predicted by Bogoliubov theory, after adopt-
ing the de Broglie quantization rules (p) = ω(q) and
p = q. In the presence of the periodic density pertur-
bation, Eq. (21) can be also solved analytically, yield-
ing the following result for the amplitudes u and :
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(24)

where (p) is the Bogoliubov dispersion law (12) and
we set μ = gn, with n = N/V the density of the system.
Evaluating the variation

induced by the perturbation and using definition (3),
we finally obtain the result

(25)

for the density–density response function of the uni-
form gas (p = q). By taking the imaginary part of the
response function and using the f luctuation-dissipa-
tion theorem (1) one immediately recovers the Bogoli-
ubov result (15) for the density fluctuations. Result (25)
keeps the same form in the canonical and in the grand
canonical formalism since the excitation operator 
commutes with . In the canonical case the ansatz for
the order parameter satisfying the time-dependent
Gross–Pitaevskii equation is simply obtained by multi-
plying Eq. (22) by the factor exp(–iμt).

5. PARTICLE RESPONSE IN GROSS–
PITAEVSKII THEORY

By replacing the field operator (r) with the clas-
sical field Ψ(r, t) in Eqs. (17), (18), (20) one instead
obtains the time dependent Gross–Pitaevskii equa-
tion

(26)

accounting for the coupling with the p-component
= (p) of field operator. We can still use the ansatz

(22) to solve the GP equation and in this case we
obtain the following result for the amplitudes u and :

(27)

The response function is then determined by evaluat-
ing the f luctuations induced in the p-component of
the classical field
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In uniform conditions it is convenient to write the p-
component (p) of the field operator in terms of the
particle annihilation operator as

(28)

so that the response function χfield(p, ω) relative to field
operator  = (p) in momentum space can be
expressed in terms of the response function χparticle(p, ω)
relative to the particle operator  =  as

(29)

Using results (27) for u and  one finally finds the
following result for the particle response function:

(30)

yielding the expression

(31)

for the spectral function, corresponding to the imagi-
nary part of χ. Result (30) shows that in the grand
canonical formalism, the particle response function
shares the same poles of the density response function
(25). Equations (30), (31) can be easily recast in the
canonical form, by simply replacing the frequency w
with ω + μ/ . This reflects the fact that the operator

( ) add (remove) a particle, in addition to creating
or annihilating an elementary mode in the system. In
the canonical formalism the solution for the order
parameter would actually take the form

(32)

For large values of ω the response function
approaches the value 1/( ω) in agreement with the
general result
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holding for the dynamic polarizability in the large ω
limit [5], involving the commutator between  and 
(see Eq. (5)).
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liubov theory for the particle distribution function,
characterized by the infrared divergence np → mc/p at
small p and accounting for the quantum depletion of
the condensate.

Analogously, one can also derive the expression for
the mixed particle-density response function, provid-
ing the f luctuations induced in the average of the par-
ticle operator  by the presence of an external pertur-
bation coupled to the density operator  with q = p/ .
Such a perturbation modifies the wave function of the
condensate according to Eqs. (22), (24). One finally
finds

(34)

Result (34) is consistent with the large ω result

derivable from sum rule arguments [11]. In the canon-
ical formalism the physical meaning of Eq. (34) would
correspond to replacing the operator  with the num-

ber conserving operator / .

In the static limit the result

can be used to investigate the effect of a static periodic
perturbation of the form

on the momentum distribution of the system, which
turns out to be characterized by the occurrence of the
macroscopic occupation

of the single particle state with momentum p (and
analogously for –p). The effect should be observable
experimentally also for relatively small values of the
coupling λ in systems exhibiting a pronounced roton
minimum as happens, under proper conditions, in the
case of long-range dipolar interactions [12–14]. The
coupling between density and particle excitations
accounted for by Eq. (34) reflects a peculiar property
of a Bose–Einstein condensate and disappears in the
absence of coherence, as proven experimentally for
large intensities of the external density coupling when
the system enters the insulator phase [15].
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6. RESPONSE FUNCTION IN NON UNIFORM 
SYSTEMS

The above results can be straightforwardly general-
ized to the case of a non uniform trapped Bose–Ein-
stein condensed gas, where the Hamiltonian contains
an external static potential Vext. In this case the density
response function takes the form

(35)

while the response to the field operator F = (p) in
momentum space reads

(36)

In both Eqs. (35) and (36), un, , and  are provided
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size of the condensate, Eq. (38) accounts for the quan-
tum fluctuations caused by the elementary excitations
of the system and provides the leading contribution at
larger values of p. The experimental determination of
n(p) for large values of p has been the object of a recent
time-of-flight investigation [16]. The presence of
interactions during the expansion does not however
allow, in this experiment, for a safe identification of
the in-situ momentum distribution [17].

Another instructive example concerns the calcula-
tion of the f luctuations of the field operator  = (r)
in coordinate space. In this case one finds the result

(39)

which provides a natural decomposition of the density
into the Gross–Pitaevskii value |Ψ0(r)|2 and the con-
tribution arising from the f luctuations of the conden-
sate. In uniform configurations the values of  are
fixed by Eq. (24) and the decomposition corresponds

to writing N = N0 + δN0 with δN0 =  =

N(8/3 )(na3)1/2. In non uniform configurations the
use of Eq. (39) requires more careful considerations.
In fact while the f luctuations of the field operator are
proportional to the perturbation parameter that scales
as a3/2, the order parameter calculated in GP theory,
ignores corrections of the same order arising from the
renormalization of the coupling constant, as predicted
by the theory of Lee–Huang–Yang [7, 8]. By evaluat-
ing the order parameter Ψ0 using the Gross–Pitaevskii
theory in the Thomas–Fermi (LDA) approximation,
one can in fact easily show that the prediction of (39)
differs from the total density derivable by including the
LHY correction in the equation of state [18] (see also
[5], Section 11.5). It is worth noticing that both the
LHY and the f luctuation correction affect the density
profile in the same physical region where r < RTF and
the density significantly differs from zero. This differs
from the case of the momentum distribution where, as
already pointed out, the f luctuations of the conden-
sate modify the momentum distribution in the region
p > /RTF where the value of Ψ0(p) is negligible.

7. CHEMICAL POTENTIAL AND BEYOND 
MEAN FIELD EFFECTS

The Gross–Pitaevskii equation for the order
parameter (see Eqs. (21) and (26)) has been derived
replacing the field operator  with the classical field
Ψ in the equation for the field operator (17). This pro-
cedure, when applied to the average of Eq. (17),
ignores the presence of f luctuations in the quantity
〈 (r, t) (r, t) (r, t)〉, which can be conveniently
written in the form

F̂ Ψ̂

= 〈Ψ Ψ 〉 = Ψ +∑ v
† 2 2

0
ˆ ˆ( ) ( ) ( ) | ( )| | ( )| ,n

n

n r r r r r

vp

∑ v
2| |pp

π

�

Ψ̂

Ψ†ˆ Ψ̂ Ψ̂
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(40)

with  = , δ  =  – 〈 〉, and δ  =  – 〈 〉. The
first term in the RHS of the above equation coincides
with the quantity n(r, t)Ψ(r, t) and, neglecting quan-
tum depletion effects in the density, i.e. setting
n(r, t) = Ψ*(r, t)Ψ(r, t), provides the usual interaction
term entering the Gross–Pitaevskii equation. The sec-
ond term is instead associated with the density–parti-
cle f luctuations discussed in the previous part of the
paper (see Eq. (34)) and is ignored in the derivation of
the Gross–Pitaevskii equation. By explicitly account-
ing for these f luctuations one can improve the equa-
tion for the order parameter in a perturbative way
accounting for beyond mean field effects.3

A first important result is obtained by identifying
the stationary solution in uniform matter and in the
absence of external perturbations. By writing

and

and noticing that in uniform matter only the terms
p = – q give non vanishing contributions, the equa-
tion for the order parameter Ψ0 takes the form

(41)

where, consistently with the beyond mean field proce-
dure, we have taken into account the renormalization

of the coupling constant, avoiding the occurrence of
ultraviolet divergences. Using the identity

and Eq. (34) for the particle-density response func-
tion, one easily finds the result

where (p) is the Bogoliubov expression (12) for the
energy of the elementary excitations carrying momen-
tum p. By further replacing the quantity  with

3 Corrections to the Gross–Pitaevskii equation accounting for
beyond mean field effects were also discussed in [19].
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the order parameter Ψ0 in the last term of Eq. (41), one
finally obtains the relevant result

(42)

for the chemical potential, which includes the first
correction to the mean field value μ = gn. Result (42)
coincides with the value derivable from the Lee–
Huang–Yang expression

(43)

for the ground state energy as can be explicitly checked
using the thermodynamic relation μ = ∂E0/∂N. The
Lee–Huang–Yang energy is usually calculated
through a proper diagonalization of the Bogoliubov
Hamiltonian (see derivation of Eq. (11)), as well as
taking into account the renormalization of the interac-
tion coupling constant, so that the present derivation
provides a further insightful link between the Bogoli-
ubov formalism and the one based on the equation for
the order parameter.

8. CONCLUSIONS
In conclusion we have shown that the use of the

T = 0 limit of the f luctuation dissipation theorem
allows for the calculation of the quantum fluctuations
of both the density and particle operators of a Bose–
Einstein condensed gas, employing the time depen-
dent Gross–Pitaevskii equation for the wave function
of the condensate, a classical field describing the order
parameter of the system. This approach enlightens the
deep equivalence between the Bogoliubov and Gross–
Pitaevskii approaches, despite their different theoreti-
cal formulation. The suitability of the GP approach to
describe non uniform configurations might offer novel
possibilities for investigating the nature of the f luctua-
tions in the presence of quantum defects, like solitons
and quantized vortices. We have also shown that the
calculation of the density-particle f luctuations per-
mits to generalize the equation for the order parame-

ter, allowing for the determination of the chemical
potential beyond the mean field picture, in agreement
with the predictions of Lee–Huang–Yang theory.
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