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Abstract—The problem of wave breaking during its propagation in the Bose–Einstein condensate to a station-
ary medium is considered for the case when the initial profile at the breaking instant can be approximated by
a power function of the form (–x)1/n. The evolution of the wave is described by the Gross–Pitaevskii equation
so that a dispersive shock wave is formed as a result of breaking; this wave can be represented using the Gurev-
ich–Pitaevskii approach as a modulated periodic solution to the Gross–Pitaevskii equation, and the evolu-
tion of the modulation parameters is described by the Whitham equations obtained by averaging the conser-
vation laws over fast oscillations in the wave. The solution to the Whitham modulation equations is obtained
in closed form for n = 2, 3, and the velocities of the dispersion shock wave edges for asymptotically long evo-
lution times are determined for arbitrary integers n > 1. The problem considered here can be applied for
describing the generation of dispersion shock waves observed in experiments with the Bose–Einstein con-
densate.
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1. INTRODUCTION

It is well known that with the disregard of viscosity
and dispersion effects, nonlinear waves experience
“breaking,” i.e., after a certain critical instant, the for-
mal solution to corresponding evolution equations
becomes multivalued (see, for example, [1]). In classi-
cal gas dynamics, this problem is eliminated by taking
into account weak dissipation effects so that instead of
the multivaluedness domain, a shock wave (i.e., a nar-
row region of transition from the f low with some val-
ues of parameters characterizing the f low to a f low
with other values of parameters) appears in the solu-
tion. The width of this transition region is proportional
to coefficients characterizing dissipative processes; in
real conditions, this width is usually of the order of the
mean free path of molecules in the gas. For this rea-
son, it can be assumed in the macroscopic theory that
this region is a discontinuity in the parameters of the
flow of the medium, and when the medium passes
through the discontinuity, the mass, momentum, and
energy conservation laws must hold. The theory of
shock waves formulated on this basis has been pro-
foundly developed and has found numerous applica-
tions (see, for example, [1, 2]).

In modern physics, however, f lows of the medium
in which dissipation processes can be disregarded in
the first approximation are often considered, and non-
linear wave breaking is eliminated by taking into
account dispersion effects leading to the formation of
a dispersive shock wave (DSW) (i.e., the evolving
region of the nonlinear f low of the medium) instead of
the multivaluedness domain. Such effects were studied
for the first time in the theory of undular bores in a
shallow water f low (see, e.g., [3]), and the general
nature of this phenomenon was realized by Sagdeev
[4], who indicated that wave breaking in dispersing
wave systems leads to the formation of an extended
wave structure connecting different states of the f low
like a transition in a shock wave connects different
states of the medium flow with predominant dissipa-
tion. In typical cases, a dispersive shock wave occupies
a spatial region expanding with time so that this wave
is a sequence of solitons at one of its edge and degen-
erates into a small-amplitude harmonic wave propa-
gating with the corresponding group velocity at the
other edge. The main theoretical approach to the
description of DSWs was proposed in the classical
work by Gurevich and Pitaevskii [5] based on the
Whitham theory of modulation of nonlinear waves [6].
In this approach, a DSW is represented in the form of
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a modulated periodic solution to the corresponding
nonlinear wave equation, and the slow evolution of the
modulation parameters obeys the Whitham equations
obtained by the averaging of the conservation laws over
fast oscillations of physical variables in the wave.
Gurevich and Pitaevskii considered two typical prob-
lems of wave breaking, the evolution of which is
described by the Korteweg–de Vries (KdV) equation.
First, a complete analytic solution of the discontinuity
decay was obtained in the case when the initial distri-
bution at the breaking instant has a sharp jump. Sec-
ond, they found the main characteristics of the DSW
in vicinity of the breaking point when the initial distri-
bution is described by a cubic parabola. Later, Pote-
min [7] obtained a more comprehensive analytic solu-
tion to this problem (see also [8]). The Gurevich and
Pitaevskii approach to the DSW theory was developed
further and was extended to other equations (see, for
example, review [9]).

One of important applications of the DSW theory
is the dynamics of the Bose–Einstein condensate,
which is described by the Gross–Pitaevskii equation
[10, 11]; for simplicity, we write here this equation in
the standard dimensionless variables for a 1D flow of
the condensate:

(1)

where ψ is the “wavefunction” of the condensate
flowing along the x coordinate; we assume that the
interaction between atoms is repulsive, which ensures
the stability of its homogeneous state. The theory of
Eq. (1) was considered in a huge number of publica-
tions. In particular, its solution in the form of a dark
soliton was obtained in [12], and periodic solutions
were obtained, for example, in [13]. The integrability
of Eq. (1) by the method of inverse scattering problem
was established in [14], and this approach was used in
[15, 16] for deriving the modulation equations.
Finally, the problem of the initial discontinuity decay
was analyzed in [13, 17], and typical wave breaking was
studied in [18]. The apparatus developed in these
works was applied to the description of the DSW
dynamics in the Bose–Einstein condensate.

The DSWs in the condensate were observed exper-
imentally for the first time in [19, 20], where a shock
wave was formed under the action of laser radiation
repelling the condensate. The interpretation of the
observations reported in [19] as a manifestation of the
DSW dynamics was proposed in [21], and this experi-
ment was described in [20] using the theory formu-
lated in [13, 17], where it was assumed that a DSW is
formed as a result of emergence of a discontinuity.
Although such a discontinuity can be formed when the
flow of the condensate is induced by a piston moving
at a constant velocity [22], such a case is nevertheless
quite specific, and the wave propagating to the bulk of
a stationary medium in typical situations breaks from
a profile with a certain root singularity rather than a

ψ + ψ − ψ ψ =21 | | 0,
2t xxi
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sharp discontinuity. For instance, a singularity in the
form of a square root appears in the case of the uni-
formly accelerated motion of the piston [23], and it is
clear even from this example that the actual f low of the
condensate may have a quite arbitrary singularity at
the instant of wave breaking. Here, we consider the
DSW formation during wave breaking with an initial
singularity of the type (–x)1/n. A detailed theory will be
developed for n = 2 and n = 3, and important DSW
characteristics (such as the laws of motion of its edges)
will be obtained for an arbitrary integer n > 1. The the-
ory developed here forms the basis for describing quite
general forms of condensate f low with wave breaking.

2. THE GUREVICH–PITAEVSKII METHOD
Let us first write the basic relations of the Gurev-

ich–Pitaevskii method in the DSW theory as applied
to the dynamics of the Bose–Einstein condensate,
which obeys the Gross–Pitaevskii equation (1). It is
convenient to represent the periodic solutions to this
equation in terms of more visual physical variables by
performing the substitution

(2)

so that after the separation of the real and imaginary
parts, we obtain the system

(3)

Here, ρ(x, t) = |ψ(x, t)|2 is the condensate density and
u(x, t) is the condensate f low velocity. The periodic
solution in these variables can be written in the form

(4)

(5)

where

(6)

This solution depends on four parameters λ1 ≤ λ2 ≤
λ3 ≤ λ4, in terms of which the main characteristics of
the wave can be expressed. In particular, the wave-
length is given by
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(7)

where K(m) is the complete elliptic integral of the first
kind. In the limit λ3 → λ2, when m → 1 and L → ∞,
the periodic wave is transformed into the soliton solu-
tion

(8)

where background density ρ0 along which the dark
soliton propagates, its amplitude as, and velocity Vs are
given by

(9)

In the opposite limit λ3 → λ4, when m → 0, the wave
amplitude tends to zero, and it is transformed into a
linear harmonic wave propagating over the back-
ground with constant density ρ0.

DSW parameters λi become slow functions of x and
t, which change insignificantly over wavelength L;
therefore, we can average the conservation laws for
Eq. (1) over fast oscillations in the wave and obtain as
a result the Whitham evolution equations for modula-
tion parameters λi. These equations can be written in
the form

(10)

where the velocity characteristics are given by

(11)

The substitution of expressions (6) and (7) into these
formulas gives the following expressions for velocities:

(12)

where E = E(m) is the elliptic integral of the second
kind. Variables λi are known as Riemann invariants of
the system of the Whitham modulation equations. We
will also need the limiting expressions for these veloc-
ities at the DSW edges. At the soliton edge, where λ3 =
λ2 and m = 1, we have
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(13)

while at the small-amplitude edge for λ3 = λ4 and
m = 0, we have

(14)

(we will not need the expressions for the analogous
limit λ1 = λ2).

In the generalized hodograph method [24], the
solutions to Eqs. (10) are sought in the form

(15)

where (λ) are velocities (12) and wi(λ) are the sought
functions. If these functions have been determined,
x = x(λ) and t = t(λ) turn out to be defined implicitly
by functions of parameters λi. Since these functions
must be inverted and the modulation parameters must
become functions λi = λi(x, t), the functions wi cannot
be independent of one another. Differentiating
Eq. (15) with respect to λi, j ≠ i, and eliminating t from
all pair combinations of the resultant relations, we
arrive at the system of the Tsarev equations

(16)

In view of their symmetry in  and wj, it is natural to
seek their solution in the form analogous to (11) (see
[25–27]):

(17)

Then Eqs. (16) are transformed into the system of
Euler–Poisson equations (i ≠ j)

(18)

For our purposes, it is sufficient to know the set of
solutions obtained from the generating function
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function (19) in inverse powers of λ gives
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906 KAMCHATNOV
where W(k) = W(k)(λ1, λ2, λ3, λ4) are the required par-
ticular solutions to system (18). As a result, using
expression (17), we obtain the set of functions 
which give the solutions to Whitham equations (10):

(21)

so that  = 1 and  = . The Euler–Poisson equa-
tion is linear in W like expressions (21) that are linear
in W(k); therefore, any of their linear combinations also
gives the solution

(22)

where the number of terms is n, and constant coeffi-
cients Ak are chosen in accordance with the conditions
of the problem.

Let us now prove that the above expression of the
DSW theory in the Gurevich and Pitaevskii approach
make it possible to solve the problem of the DSW for-
mation during wave breaking in the Bose–Einstein
condensate.

3. NONDISPERSIVE LIMIT
Until the instant of breaking, the distributions of

density ρ(x, t) and flow velocity u(x, t) are smooth
functions of spatial coordinate x. Moreover, even after
breaking, the DSW occupies a finite spatial region and
its edges at the matching points with the smooth dis-
tributions must be determined as a part of the solution
of the wave breaking problem. In the case of quite
smooth functions ρ and u, the terms with a large num-
ber of derivatives in system (3) can be omitted, which
means the disregard of the dispersion effects; there-
fore, the evolution of smooth distributions can be
described by the nondispersive limit equations

(23)

These equations coincide with the “shallow water”
equations (see [1]) equivalent to the gasdynamic equa-
tions with adiabatic exponent γ = 2. Therefore, their
solutions can be obtained using well-known classical
methods.

Equations (23) can be transformed to diagonal
form by introducing the Riemann invariants
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so that
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(26)

here, ρ and u can be expressed in terms of λ± by the
formulas

(27)

Generally, both Riemann invariants λ± are func-
tions of x and t. We are interested, however, in the
problem in which a wave propagates to the bulk of the
condensate at rest with constant density ρ0. It is known
[1] that only a f low in the form of a simple wave, in
which one of the Riemann invariants is constant, can
border on such a state of the gas. Assuming for defi-
niteness that the wave propagates to the right, we can
conclude that Riemann invariant λ– must be constant
and, hence, must have the same value as in the station-
ary medium bordering the wave:

(28)

Then the second equation in (25) is satisfied automat-
ically, while the first equation is transformed into the
Hopf equation

(29)

with the well-known general solution

If function w(λ+) is known, this solution is defined by
the dependence λ+ = λ+(x, t), and this function must
be joined at the boundary with the stationary conden-
sate with value λ+ =  in this spatial region.

We are interested in the situation when the smooth
solution for λ+ at the breaking instant tends to its
boundary value  as a root function of x. Choosing
the coordinate system and its origin so that breaking of
Riemann invariant λ+ occurs at instant t = 0 at the ori-
gin x = 0, we obtain the dependence

(30)

where, to simplify calculations, the units of measure-
ments of length and time are chosen so that the coef-
ficient on the right-hand side be equal to unity. There-
fore, the dependence of λ+ on x for t < 0 has no singu-
larities, while, at t = 0, the root singularity appears,

(31)

and the dependence of λ+ on x for t > 0 becomes mul-
tivalued (Fig. 1).
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Fig. 1. Riemann invariant λ+ as a function of coordinate x
at fixed instants t.

t = 0t < 0 t > 0
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Fig. 2. Riemann invariants λi in a dispersion shock wave as
a function of coordinate x at fixed instants t.
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4. DISPERSIVE SHOCK WAVE
At instant t, the DSW occupies the spatial region

(32)
joining with smooth solution (30) at its boundary
points. Comparison of velocity  in expression (26)
with limiting expression (13) shows that the DSW is
transformed into expression (30) for λ4 = λ+ at bound-
ary x = x–(t); coefficients Ak in this case must be cho-
sen so that the right-hand side of relation (22) with i =
4 be equal to the right-hand side of relation (30). Fur-
ther, the solution to the Whitham equations is trans-
formed into a harmonic wave at the small-amplitude
edge x = x+(t) if λ2 = λ+ =  along the entire DSW,
and we have λ3 = λ4 at point x+(t). Since λ– = –  at
both edges of the SDW, the condition of joining of λ1
with λ– at the DSW edges can be satisfied by setting
λ1 = –  along the DSW. Therefore, Whitham equa-
tions (10) with i = 1, 2 are satisfied by constant solu-
tions

(33)

and only two Riemann invariants λ3 and λ4, which sat-
isfy the boundary conditions

(34)

and

(35)

vary along the DSW. These conditions define the solu-
tion completely. As a result, the dependence of the
Riemann invariants on coordinate x for a fixed value of
t has the form shown in Fig. 2. It should be noted that
waves with two variable Riemann invariants were
called quasi-simple and were studied for the first time
in [28] in the theory of the KdV equation. Taking rela-
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tions (33) into account, we can find the first three
coefficients in Eq. (20) in the form

(36)

the knowledge of these coefficients is sufficient for
analyzing typical cases with n = 2 and n = 3.

4.1. The Case with n = 2

Since formulas (36) are polynomial, quadratic
function –(λ4 – λ2)2 can be written in the form of a
linear combination of the first three expressions (36)
with coefficients

(37)

Then formulas (22) with i = 3, 4 and with these values
of the coefficients define implicitly the dependences
of λ3 and λ4 on x and t, which solves in principle the
problem in this particular case. At the soliton edge,
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Fig. 3. Motion of DSW edges for n = 2 (solid curves) and
n = 3 (dashed curves). Phonon density is ρ0 = 1.
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Substituting the resultant value of λ4 into any relation
from (38), we obtain the law of motion of the soliton
edge:

(40)

At the small-amplitude edge for λ3 = λ4, both formulas
(22) with i = 3, 4 are transformed into the same rela-
tion

(41)

This edge moves with the group velocity correspond-

ing to wavenumber k = 2π/L with L = 2 ,
which gives for the Bogoliubov dispersion law ω =

k  the expression dω/dk = 2  – /λ4.
Therefore, the differentiation of expression (41) with
respect to t with allowance for dx+/dt = dω/dk deter-
mines the dependence of t on the value of λ4 at this
boundary. Introducing parameter y = λ4/λ2 instead of
λ4, we can write this dependence in the form

(42)

and its substitution into relation (41) gives
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Formulas (42) and (43) define parametrically the law
of motion x+ = x+(t) of the small-amplitude edge. For

t ~ λ0y ≫  = ρ0, this law of motion asymptotically
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It should be noted that analogous expressions
obtained by solving the problem of motion of the con-
densate under the action of a uniformly accelerated
piston [23] can be transformed to the expression
obtained above after the transfer of the breaking point
to the origin and subtracting the breaking time from t.

4.2. The Case with n = 3
In this case, the calculations are performed analo-

gously. The right-hand sides of formulas (22) with i =
3, 4 now contain function W3, and condition (34) gives
the values of the coefficients

(45)

At the soliton edge, solution (22) is transformed into

(46)

which gives

(47)

The substitution of this relation into (46) gives the law
of motion of the soliton edge:
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At the small-amplitude edge, formulas (22) with i = 3,
4 are transformed into
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The matching condition for the law of motion with the
group velocity of a linear wave gives
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and the substitution into expression (49) gives
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For asymptotically long times t ~ y2 ≫  = , we
obtain

(52)

The law of motion of the DSW edges as a function of
time for n = 2, 3 is shown in Fig. 3. For short times, the
motion with the velocity of sound  prevails, while,
for long times, a transition to asymptotic laws occurs.
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Fig. 4. Condensate density profile in a dispersion shock
wave during wave breaking with n = 2, ρ0 = 1. The evolu-
tion time is t = 6.
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General formulas (22) together with the specific
expressions for functions  obtained above with the
help of formulas (21) and (36) and coefficients (37)
(n = 2) and (45) (n = 3) make it possible to calculate
λ3 and λ4 as functions of x and t so that their substitu-
tion into expressions (4) and (5) gives the density and
velocity distribution profiles in a DSW (Fig. 4). The
envelopes of the condensate density in the DSW are
calculated by the formulas

Although the formulas are complicated with
increasing exponent n, important DSW characteristics
such as the laws of motion of the edges can be deter-
mined without detailed analysis of the complete solu-
tion (at least, in the asymptotic limit t ≫ ). In the
next sections, we will consider this problem.

5. LAW OF MOTION
OF THE DSW SOLITON EDGE

Combining relations (34) with the limiting expres-
sion of formula (21), we can write the boundary con-
dition at the soliton edge in the form of a differential
equation for function W = (–λ2, λ2, λ2, λ4), which
depends only on λ4:

(53)

the solution to this equation is

(54)

where the integration constant is chosen so that time t
in subsequent formulas tends to zero for λ4 → λ2. Since
w3 = W at this boundary, formulas (22) give

(55)

which is in conformity with relations (38) (n = 2) and
(46) (n = 3). This gives

(56)

and

(57)

These expressions generalize the formulas obtained
above to arbitrary integer values of n > 1.

It should be noted that, in fact, we can find the law
of motion of the soliton edge for an arbitrary mono-
tonic dependence of the initial distribution of Rie-
mann invariant λ+ of the form w = w(λ+ – ) by
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resorting to the considerations used in [28] for deriving
the law of motion of the small-amplitude edge for
wave breaking in the theory of the KdV equation.
Indeed, Whitham equations (10) with i = 3, 4 in the
classical hodograph method are transformed into lin-
ear differential equations for functions x = x(λ3, λ4)
and t = t(λ3, λ4), one of which for λ3 → λ2 becomes

(58)

On the other hand, the solution at this boundary must
be joined with the smooth solution, which gives

The differentiation of this relation with respect to λ4
leads to one more differential equation

(59)

Eliminating ∂x/∂λ4 from Eqs. (58) and (59), we obtain
the differential equation for t, the integration of which
gives (z = λ4 – λ2)

(60)

and, hence,

(61)

These formulas specify the parametric dependence
x‒ = x–(t).

6. LAW OF MOTION
OF THE SMALL-AMPLITUDE EDGE

Formulas (41) (n = 2) and (49) (n = 3) have a sim-
ple structure leading to the assumption that for m → 0
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(λ3 → λ4) and integer n, functions w3 and w4 must pass
to the right-hand side of the relation

(62)

Let us prove this formula in the asymptotic limit
t → ∞ (λ4 → ∞) when the terms with λ2/λ4 can be
neglected. We note that in the limit λ2 → 0, generating
function (19) can be reduced to the generating func-
tion of the Legendre polynomials (see, for example,
[29])

i.e.,

(63)

Using the recurrent formula for the derivative of the
Legendre polynomial (see [29]), we can easily prove
that

(64)

in this approximation. To evaluate function  in the
limit m → 0, we will prove that the following relation
holds for λ3 → λ4:

For this purpose, we note that the argument of the
Legendre polynomial in expression (63), which is the
ratio of the arithmetic mean to the geometric mean,
attains its maximal value for λ3 = λ4 and, hence, is
quadratic in the small difference λ4 – λ3 = ε so that

Pn(1) = 1; i.e., Wn(λ4, λ4) = . Consequently, in the
first order in ε, we obtain

In addition, we note that for λ2 → 0, only the highest
term with k = n is left in the sum in expression (22)
since coefficients Ak for k < n contain powers of λ2 as
factors. Therefore, with account of relation 2(V – ) ≈
–2λ4, we obtain

(65)
For determining w4 completely for m = 0, it remains
for us to find An, which can easily be done using the
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expansion of the higher term in the Legendre polyno-
mial into a series for λ3 → λ2 = 0 (see [29]):

(66)

Then the condition of joining with the smooth solu-
tion gives

i.e.,

(67)

Differentiating the expression

(68)

with respect to λ4 provided that ∂x/∂λ4 = 0 for a fixed
t, which is equivalent to the matching condition with
the group velocity at the small-amplitude edge, we
obtain

(69)

Substituting λ4 obtained from this expression into
(68), we obtain the law of motion of the small-ampli-
tude edge in the asymptotic regime:

(70)

This formula naturally reproduces the above asymp-
totic laws (44) for n = 2 and (52) for n = 3.

Expression (68) confirms the validity of formula
(62) in the limit λ2 → 0. Assuming that this formula
also holds for a finite λ2, we obtain the law of motion
of the small-amplitude boundary in parametric form:
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It should be noted that in contrast to the theory of
the KdV equations, the self-similar regime of motion
of the boundaries is realized only asymptotically for
long times t ≫ , when the velocity of motion is
much higher than the velocity of sound in the back-
ground distribution. However, the limiting transition
to ρ0 → 0 is impossible in the expressions describing
the wave profile since the magnitude of m in elliptic
functions vanishes for λ2 = –λ1 → 0.
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7. CONCLUSIONS
Thus, the approach developed by Gurevich and

Pitaevskii makes it possible to analyze in detail the
process of DSW formation during wave breaking in the
Bose–Einstein condensate, the dynamics of which
obeys the Gross–Pitaevskii equation. The developed
theory is applicable to the initial stage of the process,
in which the smooth part of the profile can be treated
as a monotonic function of the coordinate. It should
be noted, however, that the theory of quasi-simple
waves must also describe the asymptotic stage of the
evolution of a finite-duration pulse since, analogously
to the simple wave theory, the initial pulse splits with
time into two pulses, in each of which two of four Rie-
mann invariants again remain constant. Therefore, the
Gurevich–Pitaevskii approach supplemented with the
generalized hodograph method and modern method
for deriving the Whitham modulation equations
remains a powerful tool for investigating dispersion
shock waves, which are of considerable interest for
modern nonlinear physics.
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