
ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2018, Vol. 127, No. 3, pp. 437–447. © Pleiades Publishing, Inc., 2018.
Original Russian Text © S.E. Savotchenko, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 154, No. 3, pp. 514–525.

ATOMS, MOLECULES, 
OPTICS
Spatially Periodic Inhomogeneous States
in a Nonlinear Crystal with a Nonlinear Defect

S. E. Savotchenko
Shukhov Belgorod State Technological University, Belgorod, 308012 Russia

e-mail: savotchenkose@mail.ru
Received April 6, 2018

Abstract—Spatially periodic inhomogeneous stationary states are shown to exist near a thin defect layer with
nonlinear properties separating nonlinear Kerr-type crystals. The contacts of nonlinear self-focusing and
defocusing crystals have been analyzed. The spatial field distribution obeys a time-independent nonlinear
Schrödinger equation with a nonlinear (relative to the field) potential modeling the thin defect layer with
nonlinear properties. Both symmetric and asymmetric states relative to the defect plane are shown to exist.
It has been established that new states emerge in a self-focusing crystal, whose existence is attributable to the
defect nonlinearity and which do not emerge in the case of a linear defect. The dispersion relations defining
the energy of spatially periodic inhomogeneous stationary states have been derived. The expressions for the
energies of such states have been derived in an explicit analytical form in special cases. The conditions for the
existence of periodic states and their localization, depending on the defect and medium characteristics, have
been determined.
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1. INTRODUCTION

Studying the nonlinear surface states existing near
the interfaces between dielectric media with different
characteristics seems topical in connection with their
wide application in various electron-optical devices,
including optical data storage systems [1].

At present, there are a lot of theoretical works
devoted to analyzing the field distribution and the dis-
persion relations for waves propagating along the
interfaces between linear and nonlinear media [2, 3],
two nonlinear media [4–7], and multilayered struc-
tures [8–10]. Modifications of the models of inter-
faces between nonlinear crystals were considered in
[11]. The localization of nonlinear waves at the inter-
face between nonlinear media with a spatial dispersion
was analyzed in [12]. The interaction of coupled soli-
ton states referring to different states of a two-level sys-
tem near a defect was considered in [13] for the case of
an interface between nonlinear media and [14] for the
case of an interface between linear and nonlinear
media.

The nonlinear Schrödinger equation (NLSE),
which contains a cubic (with respect to the sought-for
field) term when describing Kerr media, is commonly
used to theoretically study nonlinear waves [15]. The
NLSE is applied for the description of physically dif-
ferent nonlinear surface waves, for instance, elastic
[6], magnetic [16], and electric [17] ones.

The excitations of fields are often considered in the
form of solitons. The solitons in various magnetic sys-
tems were theoretically studied long ago and funda-
mentally [18–21]. In optical systems the solitons were
considered both in simple waveguides and in the pres-
ence of defects and optical superlattices [22, 23].

When the effects related to the interactions of non-
linear excitations with a planar or point defect are
studied, the potential of the field produced by such a
defect is introduced into the NLSE [15]. The one-
dimensional models in which the NLSE contains a
short-range potential in the form

(1)
where δ(x) is Dirac’s delta function and U0 is the
intensity of the interaction between the excitation and
the defect located at the coordinate origin (occasion-
ally this quantity is called the defect “power”), are
most popular. The excitation is repelled from the
defect at U0 > 0 and is attracted to it at U0 < 0.

It should be noted that using a potential in the form
(1) does not allow the interaction due to the physical
properties of the defect with the local perturbations of
the medium parameters forming near it to be analyzed
in full. A potential with a quadratic nonlinearity rela-
tive to the sought-for field was applied to describe the
excitation localization effects in layered structures
with nonlinear properties of the layer interfaces [17,
24–26]. In the presence of a weak coupling between
parallel-plate waveguides, in which the field ampli-
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tude exceeds significantly the average field amplitude
in the entire crystal, the nonlinear terms in the NLSE
were taken into account inside the waveguides them-
selves.

In this paper we suggest a generalization of the
model of a thin defect layer that is characterized by a
Kerr nonlinearity inside and separates crystals with a
Kerr nonlinearity proposed in [24, 25]. We will con-
sider the spatially inhomogeneous distribution of the
field of excitations of such a nonlinear defect. Our
analysis will be performed for Kerr-type nonlinear
media with different signs of the nonlinearity corre-
sponding to self-focusing and defocusing. Our main
goal is to find all types of spatially inhomogeneous sta-
tionary states emerging in the system under consider-
ation and to determine their energy and existence con-
ditions. A peculiarity of this work is that we investigate
the periodic states near an interface with nonlinear
properties between media with different characteris-
tics. Particular attention will be given to revealing the
effects due to the defect nonlinearity, i.e., such that do
not emerge (are negligible) near a simple defect in the
linear approximation. The formation of a special type
of spatially inhomogeneous stationary states that do
not emerge in the case of a defect modeled by a poten-
tial in the form (1), i.e., in the simplest (linear)
approximation for the defect potential, can be
attributed to such effects.

2. MODEL EQUATIONS

Consider the contact of two crystalline media. We
will assume their interface to be thin compared to the
localization distances of the perturbations of medium
characteristics produced by it and to be planar. The
interface may be considered as a planar crystalline
defect, for instance, a twin boundary. Let us choose
the coordinates in such a way that the defect plane
passes through the coordinate origin and is located in
the yz plane perpendicularly to the x axis. The contact-
ing crystals are characterized by an anharmonic inter-
action of elementary excitations and, therefore, below
we will call them nonlinear.

We will consider the excitations uniformly distrib-
uted along the defect plane and inhomogeneous in a
direction perpendicular to it based on a one-dimen-
sional model, when the dynamics is described by the
one-dimensional NLSE

(2)

where m is the effective excitation mass,
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Ω1, 2 are constants. The nonlinearity parameter in the
NLSE will be

where γ1, 2 are constants.

We will describe the nonlinear properties of the
planar defect by a one-dimensional potential in the
form [17, 24, 25]

(3)

where W0 is the defect nonlinearity parameter whose
positive and negative values correspond, respectively,
to defocusing and self-focusing in the thin defect layer.

It should be noted that U0 = 0 was adopted in [24,
25]. The nonlinear equation with a term in the form
(3) with its two parameters U0 and W0 was used in for-
mulating the model of an optical system in which the
periodic modulation of the linear refractive index is
combined with the spatially inhomogeneous nonlin-
earity represented by a periodic Kronig–Penney lat-
tice with a single nonlinear defect, a thin-layer nonlin-
ear waveguide [26]. We analyzed the solitons gener-
ated by such a lattice approximated by a piecewise
constant function in the cases corresponding to the
possible combinations of signs of the defect parame-
ters U0 and W0. In particular, for positive defects local-
ized modes exist already in the linear regime. The
regimes arising in both semi-infinite and the first
finite forbidden gaps generated by bifurcations from
the corresponding linear states are stable in a weakly
nonlinear regime, but are destabilized as their ampli-
tudes increase. In the case of a focusing nonlinearity
and a negative defect, all of the modes with the same
symmetry, along with those that were stable in the lin-
ear regime, become unstable, but a new stable mode
appears in the first finite gap. In the case of a defocus-
ing nonlinearity and a negative defect, unique modes
of this type can exist and be stable in the first finite
gap. Positive defects with a defocusing nonlinearity
generate localized waves emerging through bifurca-
tions from the linear modes in both semi-infinite and
the first finite gaps. The modes that exist above a cer-
tain threshold power needed to change the combined
defect response from focusing to defocusing also
emerge [27].

We will consider a simple model describing only
the stationary states with energy E determined from
the time-independent NLSE derived from (2) after
substituting a wave function in the form ψ(x, t) =
ψ(x)exp(–iEt) into it:

(4)
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Solving the NLSE (4) with potential (3) is equiva-
lent to finding the solution of a contact boundary-
value problem for the NLSE without a potential:

(5)
with two boundary conditions for conjugation at the
point x = 0 through which the defect plane passes. The
continuity of the wave function determines the first
(standard) boundary condition:

(6)
If we integrate both parts of Eq. (5) with potential (3)

over x on a small interval [–ε, ε] and subsequently let
ε approach zero, then, as a result, we can obtain the
second boundary condition [24, 25]:

(7)
Free waves with a quadratic dispersion law can

propagate in a linear crystal without a defect. In the
presence of a simple defect described by the short-
range potential (1), a symmetric state localized on
either side of the defect exists in a linear medium in the
case of an attractive defect. Localized states also exist
in a nonlinear medium both with a simple defect and
with a nonlinear one [4, 17, 24, 25]. Nonlinear waves
described by elliptic functions can exist in a nonlinear
medium without a defect.

3. THE TYPES OF PERIODIC STATES
For convenience, let us introduce the notation for

the wave functions to the left and the right of the inter-
face between the crystals:

3.1. Periodic States of the First Type
in a Self-Focusing Crystal

In the case of a self-focusing crystal, which corre-
sponds to a positive nonlinearity (γ > 0) in Eq. (5),
when the excitation energy lies in the range E <
min{Ω1, Ω2}, the NLSE (5) has a spatially periodic
solution in the form

(8)

where k is the modulus of the elliptic function cn (1 >
k2 > 1/2). Here and below, the indices j = 1 and j = 2
correspond to the quantities referring to the crystal
characteristics to the left and the right of the defect
plane at x < 0 and x > 0, respectively.

Substituting the solution (8) into Eq. (5) gives
expressions for the wave numbers and amplitudes in
the form

(9)
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(10)

Substituting the solution (8) into the continuity
condition (6) leads to the expression

(11)
where η = (γ2/γ1)1/2.

Substituting the solution (8) into the nonlinear
boundary condition (7) leads to the expression

(12)

where

K(k) is the complete elliptic integral of the first kind.
Below we will call the pair of relations (11) and (12)

the dispersion ones. For instance, from (11) we can
determine, for example, xc2 and substitute it into (12),
thereby eliminating it. Then, from (12) we find the
energy as a function of the system’s parameters: E =
E(m, U0, W0, γ1, 2, Ω1, 2, xc1, k). As a result, once E has
been found, from (11) we determine xc2 as a function of
the system’s parameters: xc2 = xc2(m, U0, W0, γ1, 2, Ω1, 2,
xc1, k). Therefore, (8) is a two-parameter solution of
the NLSE with two free parameters, k and xc1.

3.2. Periodic States of the Second Type
in a Self-Focusing Crystal

In the case where the excitation energy lies in the
range E < min{Ω1, Ω2}, the NLSE (5) has a different
spatially periodic solution:

(13)
which is expressed via the elliptic function dn.

Substituting the solution (13) into Eq. (5) gives
expressions for the wave numbers and amplitudes in
the form

(14)

(15)

Substituting the solution (13) into the continuity
condition (6) leads to the expression

(16)
Substituting the solution (13) into the nonlinear

boundary condition (7) leads to the expression

(17)
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where

We will call relations (16) and (17) the dispersion
ones. From (16) we can express, for example, xd2 and
substitute it into (17), thereby eliminating it. Then,
from (17) we find the energy as a function of the sys-
tem’s parameters: E = E(m, U0, W0, γ1, 2, Ω1, 2, xd1, k).
As a result, once E has been found, from (16) we deter-
mine xd2 as a function of the system’s parameters: xd2 =
xd2(m, U0, W0, γ1, 2, Ω1, 2, xd1, k). The function (13) will
then be a two-parameter solution of the NLSE with
two free parameters, k and xd1.

The states in a self-focusing crystal described by
the functions (8) and (13) were considered in [28].

3.3. Periodic States in a Defocusing Crystal

In the case of a defocusing crystal, which corre-
sponds to a negative nonlinearity (γ < 0) in (5), where
the excitation energy lies in the range E > max{Ω1, Ω2},
the NLSE (5) has a spatially periodic solution

(18)

expressed via the elliptic sine sn with a modulus 0 <
k < 1.

Substituting the solution (18) into Eq. (5) gives
expressions for the wave numbers and amplitudes in
the form

(19)

(20)

where, for convenience, we designated the nonlinear
parameters of the defocusing medium: gj = –γj > 0.

Substituting the solution (18) into the continuity
condition (6) leads to the expression

(21)

Substituting the solution (18) into the nonlinear
boundary condition (7) leads to the expression

(22)

where

 = 1 – k2 is the additional modulus of the elliptic
functions.
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We will call relations (21) and (22) the dispersion
ones. From (21) we can express, for example, xs2 and
substitute it into (22), thereby eliminating it. Then,
from (22) we find the energy as a function of the sys-
tem’s parameters: E = E(m, U0, W0, γ1, 2, Ω1, 2, xs1, k).
As a result, once E has been found, from (21) we deter-
mine xs2 as a function of the system’s parameters: xs2 =
xs2(m, U0, W0, γ1, 2, Ω1, 2, xs1, k). The function (18) will
then be a two-parameter solution of the NLSE with
two free parameters, k and xs1.

3.4. Periodic States of the First Type at the Contact
of Self-Focusing and Defocusing Crystals

Consider now the contact of two semi-bounded
crystals with opposite signs of the nonlinearity. Let the
half-space to the left of the interface (planar defect) at
x < 0 be occupied by a self-focusing crystal (where γ1 >
0) and the half-space to the right of the interface at x >
0 be occupied by a defocusing crystal (where γ2 < 0).

In that case, when the excitation energy lies in the
range Ω2 < E < Ω1, the NLSE (5) has a spatially peri-
odic solution described by functions in the form (8) for
j = 1 and (18) for j = 2:

(23)

The expressions for the wave numbers and ampli-
tudes of these solutions are specified by Eqs. (9) and
(10) for j = 1 and (19) and (20) for j = 2, respectively.

Substituting the functions (23) into the continuity
condition (6) leads to the expression

(24)
where  = (g2/γ1)1/2.

Substituting the functions (23) into the nonlinear
boundary condition (7) leads to the expression

(25)

We will call relations (24) and (25) the dispersion
ones. From (24) we can express, for example, xs2 and
substitute it into (25), thereby eliminating it. Then,
from (25) we find the energy as a function of the sys-
tem’s parameters: E = E(m, U0, W0, γ1, 2, Ω1, 2, xc1, k).
As a result, once E has been found, from (25) we deter-
mine xs2 as a function of the system’s parameters: xs2 =
xs2(m, U0, W0, γ1, 2, Ω1, xc1, k). Then, (23) will define a
two-parameter solution of the NLSE with two free
parameters, k and xc1.

3.5. Periodic States of the Second Type at the Interface 
between Self-Focusing and Defocusing Crystals

In the case of a contact between self-focusing (at
x < 0) and defocusing (at x > 0) crystals, when the
excitation energy lies in the range Ω2 < E < Ω1, the
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NLSE (5) has a different spatially periodic solution
described by functions in the form (13) for j = 1 and
(28) for j = 2:

(26)

The expressions for the wave numbers and ampli-
tudes of these solutions are specified by Eqs. (14) and
(15) for j = 1 and (19) and (20) for j = 2, respectively.

Substituting the functions (26) into the continuity
condition (6) leads to the expression

(27)

Substituting the functions (26) into the nonlinear
boundary condition (7) leads to the expression

(28)

We will call relations (27) and (28) the dispersion
ones. From (27) we can express, for example, xs2 and
substitute it into (28), thereby eliminating it. Then,
from (28) we find the energy as a function of the sys-
tem’s parameters: E = E(m, U0, W0, γ1, 2, Ω1, 2, xd1, k).
As a result, once E has been found, from (27) we deter-
mine xs2 as a function of the system’s parameters: xs2 =
xs2(m, U0, W0, γ1, 2, Ω1, 2, xd1, k). Then, (26) will be a
two-parameter solution of the NLSE with two free
parameters, k and xd1.

4. THE ENERGIES OF PERIODIC STATES

4.1. The Energy of a Periodic State
of the First Type in a Self-Focusing Crystal

Consider the case where the excitation energy lies
in the range E < min{Ω1, Ω2}, the periodic state is
described by Eq. (8), and its energy is found from the
dispersion relations (11) and (12). Their analysis can
be performed in an explicit analytical form in various
special cases.

The energy of a state for which xc2 = xc1 = 0 can be
determined in an exact form. Then, the relations qc2 =

ηqc1 and  = –γ1mU0/W0k2 follow from (11) and (12),
respectively. Hence it follows that such a state is possi-
ble only when the signs of the defect parameters are
opposite. Given (9), from these expressions we derive
the energy

(29)

and the modulus of the elliptic function that is defined
via the crystal and defect parameters:

(30)
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States of this type with energy (29) are possible only
when a planar defect separates crystals with nonlinear-
ity characteristics different in magnitude (but not in
sign) (γ1 ≠ γ2). Moreover, their existence is attributable
exclusively to the fact that the defect possess nonlinear
properties, because they do not emerge at W0 = 0.

We will now assume that the characteristics of the
crystals on either side of the defect plane are identical,
i.e., Ω1 = Ω2 = Ω and γ1 = γ2 = γ. It then follows from
(9) and (10) that qc1 = qc2 = qc and the defect oscilla-
tion amplitude Ac1 = Ac2 = ψc0, respectively.

First consider a state for which xc2 = –xc1 = xc0. The
states under such conditions are characterized by two
free parameters, k and xc0. In this case, Eq. (11) is sat-
isfied automatically. The energy can be found in an
explicit analytical form in the “long-wavelength”
approximation at qcxc0 ≪ 1. It should be noted that the
condition of the long-wavelength approximation
qcxc0 ≪ 1 implies that the excitation energy is close to the
edge of the spectrum when the requirement |Ω – E| ≪
(2k2 – 1)/2m  is met. In this approximation the energy
is found from (12):

(31)

The defect oscillation amplitude is determined
from (10):

(32)

States of this type with energy (31) can exist when
one of the pairs of conditions is satisfied: (1) U0 > 0
and W0 < γxc0/k2, (2) U0 < 0 and W0 > γxc0/k2. In other
words, a state of the type under consideration with
energy (31) can exist both for an attractive thin defect
layer with nonlinear properties and for a repulsive one.
An additional constraint arises for the position of the
maximum of the perturbation amplitude: xc0 ≠
W0k2/γ.

Now consider an asymmetric state for which xc2 ≠
xc1. As before, we will assume that Ω1 = Ω2 = Ω and the
nonlinearity characteristics of the crystals on either
side of the defect plane are different, i.e., γ1 ≠ γ2.
Then, from (12) the energy can be represented in the
long-wavelength approximation at qcxcj ≪ 1 as

(33)

In that case, given (33), from (11) we can express
the parameter
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where

To simplify the subsequent analysis, we will con-
sider a state with xc1 = 0. Equation (34) is simplified in
this case:

(35)

where

Then, given (35), from (33) we can completely define
the energy via the crystal and defect parameters:

where

The condition U0 < γ1(1 – η)/8mW0k2 must be satis-
fied for the existence of such a local state.

4.2. The Energy of a Periodic State
of the Second Type in a Self-Focusing Crystal

Consider the case where the excitation energy lies
in the range E < min{Ω1, Ω2}, the periodic state is
described by Eq. (13), and its energy is found from the
dispersion relations (16) and (17).

The energy of a state for which xd2 = xd1 = 0 can be
determined in an exact form. Then, the relations qd2 =

ηqd1 and  = –γ1mU0/W0 follow from (16) and (17),
respectively. Hence it follows that, as for the states of
the first type, such a state is possible only when the
signs of the defect parameters are opposite. Given
(14), from these expressions we derive the energy

(36)

and the modulus of the elliptic function
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States of this type, just as those of the first type, are
possible only when a planar defect separates crystals
with different nonlinearity characteristics; such a
defect must necessarily possess nonlinear properties
(W0 ≠ 0).
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We will now assume that the characteristics of the
crystals on either side of the defect plane are identical,
i.e., Ω1 = Ω2 = Ω and γ1 = γ2 = γ. Then, it follows from
(14) and (15) that qd1 = qd2 = qd and the defect oscilla-
tion amplitude Ad1 = Ad2 = ψd0, respectively.

First consider a state for which xd2 = –xd1 = xd0. The
states under such conditions are characterized by two
free parameters, k and xd0. In this case, Eq. (16) is sat-
isfied automatically. The energy can be found in an
explicit analytical form in the long-wavelength
approximation at qdxd0 ≪ 1. It should be noted that the
condition of the long-wavelength approximation
qdxd0 ≪ 1 implies that the excitation energy is close to the
edge of the spectrum when the requirement |Ω – E| ≪
(2 – k2)/2m  is met. In this approximation the
energy is found from (17):

(38)

The defect oscillation amplitude is determined
from (15):

(39)

States of this type with energy (38) can exist when
one of the pairs of conditions is satisfied: (1) U0 > 0
and W0 < γxd0k2, (2) U0 < 0 and W0 > γxd0k2. Conse-
quently, states of the type under consideration with
energy (38) can exist both for an attractive thin defect
layer with nonlinear properties and for a repulsive one.

Now consider an asymmetric state for which xd2 ≠
xd1. As before, we will now assume that Ω1 = Ω2 = Ω
and the nonlinearity characteristics of the crystals on
either sides of the defect plane are different, i.e., γ1 ≠
γ2. Then, from (17) the energy can be represented in
the long-wavelength approximation at qdxdj ≪ 1 as

(40)

In that case, given (40), from (16) we can express
the parameter

(41)

where

2
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To simplify the subsequent analysis, we will consider a
state with xd1 = 0. Equation (34) is simplified in that
case:

(42)

where

Then, given (42), from (40) we can completely define
the energy via the crystal and defect parameters:

(43)
where

The condition U0 < γ1k2(1 – η)/8mW0 must be met for
the existence of such a local state with energy (43).

4.3. The Energy of a Periodic State
in a Defocusing Crystal

Consider the case where the excitation energy lies
in the range E > max{Ω1, Ω2}, the periodic state is
described by (18), and its energy is found from the dis-
persion relations (21) and (22).

We will now assume that the characteristics of the
crystals on either side of the defect plane are identical,
i.e., Ω1 = Ω2 = Ω and g1 = g2 = g. Then, it follows from
(19) and (20) that qs1 = qs2 = qs and the defect oscilla-
tion amplitude As1 = As2 = ψs0, respectively.

First consider a state for which xs2 = –xs1 = xs0. The
states under such conditions are characterized by two
free parameters, k and xs0. The energy can be found in
an explicit analytical form in the long-wavelength
approximation at qsxs0 ≪ 1. It should be noted that the
condition of the long-wavelength approximation
qsxs0 ≪ 1 implies that the excitation energy is close to the
edge of the spectrum when the requirement |E – Ω| ≪
(1 + k2)/2m  is met. In this approximation the
energy is found from (22):

(44)

The defect oscillation amplitude is determined
from (20)

(45)

States of this type with energy (44) can exist when
one of the sets of conditions is satisfied: (1) U0 >
‒1/mxs0 and W0xs0 < 0, (2) U0 < –1/mxs0, W0xs0 > 0.
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Consequently, states of the type under consideration
with energy (44) can exist both for an attractive thin
defect layer with nonlinear properties and for a repul-
sive one; the signs of both defect parameters must be
the same.

Now consider an asymmetric state for which xs2 ≠
xs1. As before, we will assume that Ω1 = Ω2 = Ω and the
nonlinear characteristics of the crystals on either side
of the defect plane are different, i.e., γ1 ≠ γ2. Then, in
the long-wavelength approximation at qsxsj ≪ 1 it fol-
lows from (21) that xs2 = ηxs1, while the energy can be
found from (22):

(46)

States of this type with energy (46) can exist when
one of the sets of conditions is satisfied: (1) U0 > (η –
1)/2mηxs1 and W0xs1 < 0, (2) U0 < (η – 1)/2mηxs1 and
W0xs1 > 0. As in the case described above, states of the
type under consideration with energy (46) can exist
both for an attractive thin defect layer with nonlinear
properties and for a repulsive one.

Finally, consider an asymmetric state for which
xs2 ≠ xs1 and the characteristics of the crystals on either
side of the defect plane are different, i.e., Ω1 ≠ Ω2 and
γ1 ≠ γ2. Then, in the long-wavelength approximation
at qsxsj ≪ 1 the energy can be found from (22):

(47)

where

Given (47), from (21) we can derive the expression

(48)

It follows from (48) that xs2 > 0. States of this type
with energy (47) can exist when the following condi-
tion is satisfied:

The signs of the defect parameters can be opposite.
The fundamental difference of defocusing crystals

from self-focusing crystals is that for spatially inhomo-
geneous periodic states both parameters xsj character-
izing the distributions of the maxima of the perturba-
tion amplitudes in space cannot be zero in them.
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5. THE LOCALIZATION
OF STATIONARY STATES

It is well known that the elliptic functions pass into
the hyperbolic ones in the limit k → 1. Apart from the
spatially periodic states, this also allows the localized
states near the interface between media to be described
in terms of the proposed model.

5.1. The Localization of States
in a Self-Focusing Crystal

In the case of γ > 0 and E < min{Ω1, Ω2}, the peri-
odic state described by the solution (8) at k = 1 passes
into a localized state described by a solution that
decreases as we recede from the interface to infinity:

(49)

Here, in the limit k → 1 it follows from (9) and (10)
that  →  = 2m(Ωj – E) and  →  = /(mγj),
respectively. Relation (11) will take the form

(50)

while the dispersion relation (12) will be

(51)

For the case where the characteristics of the crys-
tals on either side of the defect plane are identical
(Ω1 = Ω2 = Ω and γ1 = γ2 = γ), q1 = q2 = q, and A1 =
A2, at x2 = x1 = x0 from (51) we derive the dispersion
relation defining the energy of such localized states:

(52)

For localized states in the long-wavelength approx-
imation at qx0 ≪ 1 from (52) we derive the expression
q2 = –γmU0/W0, which gives the localization energy

(53)

We see that, in agreement with the results of Sec-
tion 4.1, a localized state of the type under consider-
ation exists only when the signs of the defect parame-
ters are opposite. It should be noted that Eq. (53) is
also derived from (31) at k = 1 and xc0 = 0.

Now consider a symmetric localized state for which
x2 = –x1 = x0. The dispersion relation defining the
energy of such localized states is then derived from
(51):
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In the long-wavelength approximation at qx0 ≪ 1
from (54) we derive the expression q2 = γmU0/(γx0 –
W0), which allows the localization energy to be written
as

(55)

Localized states of this type with energy (55) can
exist when one of the pairs of conditions is satisfied:
(1) U0 > 0 and W0 < γx0, (2) U0 < 0 and W0 > γx0, in
agreement with the results of Section 4.1.

In the case where the characteristics of the crystals
on either side of the defect plane differ (Ω1 ≠ Ω2 and
γ1 ≠ γ2), the existence of a state for which x2 = x1 = 0 is
pointed out in Section 4.1. Then, q2 = ηq1 follows from

(50), while  = –γ1mU0/W0 is found from (51). A
localized state of this type can exist only for a certain
relation between the crystal and defect parameters that
follows from (30) at k = 1 and defines the localization
condition: U0/W0 = 2(Ω1 – Ω2)/(γ1 – γ2).

The periodic state of the second type in a self-
focusing crystal described by the function (13) passes
into the same localized state described by the function
(49) in the limit k → 1, because dnx → 1/cosh z and it
follows from (14) and (15) that  →  and  → ,
respectively. Thus, two periodic states degenerate into
one localized state in the limit k → 1.

5.2. The Localization of States in a Defocusing Crystal

In the case of γ < 0 and E > max{Ω1, Ω2}, the peri-
odic state described by the solution (18) at k = 1 passes
into a localized state described by a kink-type solution
of the NLSE:

(56)

Here, in the limit k → 1  →  = m(Ωj – E) and

→  = /(mgj) follow from (19) and (20), respec-
tively. Relation (21) will take the form

(57)

while the dispersion relation (22) will be

(58)

For the case where all parameters of the media to
the left and the right of the interface are identical
(Ω1 = Ω2 = Ω, g1 = g2 = g), qt1 = qt2 = qt, and At1 = At2,
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at x2 = x1 = x0 from (58) we obtain the dispersion rela-
tion

(59)
For localized states in the long-wavelength approx-

imation at qtx0 ≪ 1 we derive the expression qt =

(‒mgU0/W0 )1/4 from (59), which gives the localiza-
tion energy

(60)

At identical parameters of the crystals on either
side of the defect plane and at At1 = –At2 and x2 = x1 =
x0 the dispersion relation is derived from (58):

(61)

In the long-wavelength approximation at qtx0 ≪ 1
from (61) we derive the expression qt = {g(1 +

mU0xs0/W0 }1/4, which allows the localization energy
to be written as

(62)

It should be noted that (62) is derived directly from
(44) at k = 1. Accordingly, the satisfaction of the same
conditions as those for the existence of a periodic state
with energy (44) is required for the existence of such a
localized state with energy (62).

For crystals with different nonlinearities on either
side of the defect plane (γ1 ≠ γ2), but at Ω1 = Ω2 = Ω
for different x2 ≠ x1 in the long-wavelength approxi-
mation at qtxj ≪ 1 it follows from (57) that x2 = ηx1,
while from (58) we derive the expression

which gives the localization energy

(63)

It should be noted that Eq. (63) is derived directly
from (46) at k = 1.

The local states described by the functions (49) and
(56) for a defect with U0 = 0 were considered in [29].

5.3. The Localization of States at the Interface between 
Self-Focusing and Defocusing Crystals

If a planar defect separates self-focusing (at x < 0)
and defocusing (at x > 0) crystals, then at Ω2 < E < Ω1
the periodic state described by (26) at k = 1 passes into
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a localized state described by functions of the form
(49) for j = 1 and (56) for j = 2:

(64)

In the limit k → 1 relation (27) will take the form

(65)
while the dispersion relation (28) will be

(66)

Here we can note a state for which x0 = 0 and x2 ≠ 0.
In this case, by combining (65) and (66), we obtain a
cubic equation for q1:

(67)
where

The positivity of the coefficient c guarantees the exis-
tence of at least one real root of Eq. (67). Substituting
the roots of Eq. (67) into the expression

(68)
allows the localization energy for states of this type to
be determined.

The energy of localized states can be obtained in an
explicit form from Eq. (67) in some limiting cases.

(1) If the energy band of the existence of localized
states in the spectrum is very narrow, when Ω1 is close
to Ω2, then we obtain the expression

(69)

(2) If the excitation–defect interaction is assumed,
in addition to the previous condition, to be very weak,
then from (67) we obtain the quantity

(3) If the energy band of the existence of localized
states in the spectrum is finite, the intensity of the
excitation–defect interaction is finite, and the defect
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nonlinearity is very small, then from (67) we obtain
the quantity

(70)

(4) If the energy band of the existence of localized
states in the spectrum is finite, but both defect param-
eters are small (which corresponds to the continuity of
the normal derivative of the field when passing
through the interface between the media), then from
(67) we obtain the quantity

which defines the localization energy of the state that
does not interact with the defect.

Substituting the above expressions for q1 into (68)
allows the energy of the localized state in the corre-
sponding case to be determined.

6. CONCLUSIONS
We showed that spatially inhomogeneous station-

ary states of several types could exist near a thin planar
defect with nonlinear properties separating nonlinear
crystals. Such states are produced by various types of
periodic NLSE solutions.

The model of a planar defect with nonlinear prop-
erties included a potential with a quadratic term with
respect to the sought-for field [24, 25]. Finding the
solutions of the NLSE with a nonlinear potential is
reduced to solving a contact boundary-value problem
for the NLSE without a potential with nonlinear
boundary conditions. As a result of solving such a
boundary-value problem, we established that an inter-
face with nonlinear properties between nonlinear
crystals could produce various types of spatially inho-
mogeneous stationary periodic states describing the
excitations of media asymmetric relative to the defect
plane. For each type of such states we obtained the
spatial distributions of the fields whose amplitude and
shape are determined by the sign of the medium non-
linearity and the range of possible excitation energies.

An analysis of the model of a thin defect layer with
nonlinear properties described by potential (3) intro-
duces new structural features in the spectrum of spa-
tially inhomogeneous periodic states, in contrast to
the model of a simple defect described by potential
(1). The main difference lies in the dispersion relations
and, as a consequence, in the energy levels and the
domains of existence of states. Furthermore, we man-
aged to detect new types of spatially inhomogeneous
periodic states whose existence is attributable exclu-
sively to the nonlinear properties of the defect. The
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revealed new states emerge in the case of a combina-
tion of defocusing defect nonlinearity with defect
attraction or in the case of a combination of self-focus-
ing defect nonlinearity with defect repulsion.

The results obtained in this paper can serve as an
extension of the studies of nonlinear excitations in
media with nonlinear defects performed in [12–14, 17,
24–29] to the case of spatially inhomogeneous peri-
odic perturbations of media. In view of the wide appli-
cation of layered structures containing parallel-plate
waveguides in nonlinear optics, studying the propaga-
tion of nonlinear surface waves in systems with such
properties is of great importance.
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