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Abstract—The linear-sigma model, in which information about confining gluons is included through the
Polyakov-loop potential (PLSM), is considered in order to perform a systematic study for various magnetic
properties of QCD matter under extreme conditions of high temperatures and densities and finite magnetic
field strengths. The introduction of magnetic field to the PLSM Lagrangian requires suitable utilization of
Landau quantization, modification in the dispersion relations, and momentum-space dimension-reduction.
We observed that increasing the magnetic field leads to filling-up lower Landau levels first and decreasing the
number of occupied levels. We conclude that the population of Landau levels is most sensitive to the magnetic
field and to the quark charges. The influences of finite magnetic field on the temperature dependence of chi-
ral and deconfinement order-parameter(s) are studied. We present estimations for the magnetization, the
magnetic susceptibility, the permeability, and the catalytic properties of QCD matter as functions of tempera-
ture. The dependences of the resulting freeze-out parameters, temperatures, and baryon chemical potentials
on the corresponding magnetic field strengths have been analyzed, as well. These calculations are compared
with recent lattice QCD simulations, whenever available. We conclude that the QCD matter seems to have
paramagnetic property at temperatures greater than the critical one. There is an evidence for weak diamag-
netic property at low temperatures. Last but not least, we observe that the magnetic catalysis is inverse,
namely, the critical temperatures decrease with increasing the magnetic field.
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1. INTRODUCTION

The systematic study of strongly interacting QCD
matter under extreme conditions of high temperatures
and densities and finite magnetic fields belongs to the
ultimate goals of the heavy-ion collision (HIC) facili-
ties such as Superproton Synchrotron (SPS) at
CERN, Relativistic Heavy-Ion Collider (RHIC) at
BNL, the Large Hadron Collider (LHC) at CERN,
and the future facilities such as the Nuclotron-based
Ion Collider FAcility (NICA) at JINR and the Facility
for Antiproton and Ion Research (FAIR) at GSI. It is
conjectured that in HIC under such extreme condi-
tions, chiral and deconfinement order-parameters
from hadron to quark-gluon plasma (QGP) likely take
place. The chiral structure of hadrons, the properties
of QGP and the location of the critical endpoint
(CEP) in the phase diagram are examples on signifi-
cant researches performed over the last decades.

In the present work, we address the temperature
dependence of the corresponding order-parameters at
finite magnetic field strengths. We utilize the extended
SU(3) linear-sigma model to study different magnetic
properties such as magnetization, magnetic suscepti-
bility and permeability. Moreover, we estimate the
chiral phase-diagram; temperature vs. baryon chemi-
cal potential in varying magnetic field strengths.

Due to oppositely directed relativistic motion of
charges especially in off-central collisions, a huge
magnetic field can be created in HIC. Because of the
very short lifetime of such a magnetic field, it is
assumed that the generated field has almost no effect
on the detector and on its external magnet but a
remarkable influence on the strongly interacting QCD
matter. The expected magnetic field at LHC, RHIC
and SPS energies ranges from (10–15) ,  down to
0.1 , respectively [1, 2], where , the pion mass
squared, is equivalent to ~ 108 G.1 The article is published in the original.
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SU(3) POLYAKOV LINEAR-SIGMA MODEL 621
The largest effect of such magnetic fields causes
not only catalysis in the chiral symmetry breaking, i.e.
decreasing the critical temperature with increasing
magnetic field [3–5], but also in the chiral phase-
structure of the produced hadrons. It causes modifica-
tions in the nature of the chiral phase-transition, as
well [6–8] and in the energy loss due to the synchro-
tron radiation of the quarks [2, 9]. These effects are
not necessarily limited to the early stages of HIC.
During later stages, the response of QCD matter to
finite magnetic field is assumed to have a large
medium-dependence, which obviously depends on
the diffusion time variation [2, 9] and the electrical
conductivity of the medium [10, 11].

On the other hand, characterizing the magnetic
field effects is closely related to essential properties of
the QCD matter such as the chiral magnetic effect
(CME) and the magnetic catalysis [4–8, 12]. The
early, CME, is strongly related to the electric charge
separation phenomenon which can be measured in
HIC experiments such as ALICE at LHC [13],
PHENIX [14] and STAR [15–17] at RHIC. The lat-
ter, the magnetic catalysis, is conjectured to largely
influences our picture on the QCD phase-diagram.
The way that the critical temperatures change with
varying magnetic fields certainly remaps the boundar-
ies separating hadrons and QGP and the freeze-out
parameters; the temperature and the baryon chemical
potential.

Recently, different theoretical studies proposed
various methods for the numerical calculations of the
experimentally measured magnetic field effects, such
as lattice QCD simulations [18–22], hadron reso-
nance gas (HRG) model [23, 24], two-flavor
Nambu–Jona–Lasinio model (NJL) [25, 26] and
NJL with Ployakov loop fields [27, 28], and PLSM
[29–32]. The QCD phase-diagram in external mag-
netic field [18, 29, 30] and squeezing QCD matter [33]
are examples on lattice simulations for QCD magnetic
properties. Great details on understanding the phase
structure of strongly interacting QCD matter in finite
magnetic fields are reviewed in [12, 34–37]. More-
over, other models reveal interesting features about the
response of finite magnetic field to hot and dense
medium, such as higher-order moments of quark mul-
tiplicity [38], chiral phase structure of meson states
[32] and temperature dependence of some transport
coefficients [39]. Corrections to QCD-like models,
such as LSM and NJL, should be checked for renor-
malization [40]. Dressing a scalar mass up to two-loop
order at finite temperature was discussed in [41].

To summarize, the present work utilizes the Polya-
kov linear-sigma model in order to analyze the mag-
netic properties of QCD matter in thermal medium.
We present the temperature dependence of magneti-
zation, magnetic susceptibility, permeability and mag-
netic catalysis on finite magnetic field strength. Fur-
thermore, we study the influence of finite magnetic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
field on the QCD phase-diagram and the interrela-
tions between (T vs. eB), (μ vs. eB) and (T vs. μ) QCD
phase-diagrams. Following aspects belong to the main
targets of this paper:

(1) characterizing the influences of finite magnetic
field and Landau level quantization on the chiral
phase transitions and quark-hadron phase transitions;

(2) investigating the effects of finite magnetic field
on the QCD phase diagram;

(3) describing the magnetic catalysis in the QCD
matter, especially that we have obtained opposite
results in a previous work [32], which is compared with
the present calculations, for instance middle panel of
Fig. 3b;

(4) whenever possible, confronting our calcula-
tions to recent ab initio lattice QCD simulations;

(5) proposing possible signatures reflecting various
magnetic properties of the QCD matter in thermal
medium.

The present paper is organized as follows. Short
details about PLSM and its mean field approximation
are introduced in Section 2. An entire description on
PLSM can be found in [32, 38, 39, 42, 43]. In presence
of finite magnetic field, great details about Landau
quantization and the possible modifications on the
PLSM partition function shall be discussed in
Section 3. The various order parameters of chiral
quark-condensates and deconfinement order parame-
ters in a wide range of temperatures at different values
of the magnetic field strengths are calculated in Sec-
tion 4.1. In Section 4.2, some magnetic properties such
as magnetization, magnetic susceptibility and perme-
ability are compared with recent lattice QCD simula-
tions. In Section 4.3, we present the magnetic-field
dependence of the critical temperature (Tc) and the
baryon chemical potential (μc) characterizing the chi-
ral phase-transition. Also, we present the QCD phase
diagram in finite magnetic field. This section shall be
followed by the conclusions in Section 5.

2. A SHORT REMINDER TO SU(3)
POLYAKOV LINEAR-SIGMA MODEL

The LSM Lagrangian with Nf = 3 coupled to Nc =
3 is given as  =  +  – (φ, φ*, Т).

The first term defines the quark contributions,
where quarks couple to mesons by f lavor-blind
Yukawa coupling g [40, 44],

(1)

where μ, Dμ, and γμ are an additional Lorentz index,
covariant derivative, and gamma matrices, respec-
tively.

The second term stands to the meson contribu-
tions.

+ q+ m+ 8

μ
μ= γ − σ + γ π∑ 5( ( )) ,q f a a a f

f

q i D gT i q+
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Table 1. Summary of PLSM’s parameters. A detailed description is given in [46]

mσ [MeV] c [MeV] hl [MeV3] hs [MeV3] m2 [MeV2] λ1 λ2

800 4807.84 (120.73)3 (336.41)3 –(306.26)2 13.49 46.48
(2)

where Φ is (3 × 3) matrix includes the nonet meson
states as

(3)

The number of generators (Ta) is defined according to
the number of quark f lavors (Nf). In U(3) algebra, Ta

is determined by Gell-Mann matrices  [45]; Ta =
/2 with a = 0, …, 8. Table 1 summarizes the values

of the parameters, m2, hl, hs, λ1, λ2, and с. These six
values are estimated at sigma mass mσ = 800 MeV [46].

The third term, the potential (φ, φ*, Т), gives
Polyakov-loop potential, which introduces the
dynamics of gluons and the quark interactions. The
Polyakov-loop variables are motivated by the underly-
ing QCD symmetries in the pure gauge theory [40].
This potential can be adjusted from recent lattice
QCD simulations and likely has Z(3) center-symmetry
[47–50]. Through the thermal expectation value of a
color-traced Wilson-loop in the temporal direction,
the dynamics of color charges and gluons are taken
into consideration

(4)

There are various proposals for the Polyakov-loop
potentials. In the present work, we utilize the polyno-
mial form for Polyakov variables (φ and φ*) [47–50],

(5)

where b2(T) = a0 + a1(Т0/Т) + a2(Т0/Т)2 + a3(Т0/Т)3.
For a good agreement with the lattice QCD results,
the deconfinement temperature of pure gauge T0 =
270 MeV and a0 = 6.75, a1 = –1.95, a2 = 2.625, a3 =
‒7.44, b3 = 0.75, b4 = 7.5 are used [47].

In thermal equilibrium, the grand-canonical parti-
tion function ( ) at finite T and μf, where the sub-
script f refers to quark f lavors, can be constructed.
At finite volume (V), the free energy is given as  =
(‒T/V)log[ ] or

(6)
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where the last two terms represent the quark–anti-
quark contributions at finite and vanishing magnetic
field, respectively. δ0, eB switches between both terms.
Practically, only one of them shall be taken into
account, separately.

Assuming that the nonstrange (light) and strange
quark condensates are given as σl and σs, respectively,
the purely mesonic potential reads

(7)

In nonzero magnetic field (eB ≠ 0) and at finite T
and μf, the concepts of Landau quantization and mag-
netic catalysis, where the magnetic field is assumed to
be oriented along z-direction, should be implemented,
properly. The Landau-level structure is conjectured to
have effect on the phase space [12]:

(8)

where ν gives the Landau quantization levels, Section 3.
The quark and antiquark contributions to the potential
are given as

(9)

where EB, f is the dispersion relation of f-th quark f la-
vor in finite magnetic field, Eq. (12). Other modifica-
tions shall be discussed in Section 3.

At zero magnetic field (eB = 0) and finite tempera-
ture (T) and chemical potential (μf)

(10)
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where E =  is the dispersion relation of
valence quark and antiquark and mf is the f-th mass of
quark f lavor.

As discussed in [38], the temperature dependence
of the LSM mesonic potential becomes considerable
at low temperatures. At higher temperatures, this
weakens, exponentially. Accordingly, the correspond-
ing term in Eq. (6) can be excluded as given in [32, 38].
The presence of the LSM mesonic potential is neces-
sary in order to introduce the chiral symmetry break-
ing and the mesonic f luctuations. The Polyakov loops
can be added to the model through gluonic potential,

(φ, φ*, Т). By doing that, the dynamics of gluons shall
be taken into consideration. When confronting our cal-
culations to recent lattice simulations, Section 4, we
observe that both are in a good agreement. This would
be explained because our PLSM is so configured that
it integrates degrees of freedom, symmetries, and
dynamics, etc. that enable PLSM to fit well with ab
initio lattice simulations. Nevertheless, PLSM
remains an effective model to QCD.

In order to evaluate the expectation values of chiral
quark-condensates, σl and σs, and deconfinement
order parameters φ and φ*, one can minimize the free
energy  at finite volume, Eq. (6),

(11)

In finite chemical potential μ ≠ 0, the PLSM free
energy at finite volume, Eq. (6), becomes complex.
Therefore, the analysis of PLSM order-parameters is
given by minimizing the real part of free energy, i.e.
Re . Solutions for PLSM order parameters can be
evaluated by minimizing the real part of  at the sad-
dle point. At finite magnetic field, the temperature
and dense dependences can be estimated. Concretely,
the order parameters σl = , σs = , φ =  and φ* =

* and their dependences on T, μ, and eB can be eval-
uated. To assure minimal , one can illustrate this
graphically and/or evaluate its second derivative. We
have conducted both (not shown here).

It is worthwhile highlighting that the adjustment of
the pure gauge potential to Polyakov-loop potential
improves the chiral model towards best agreement
with recent lattice QCD simulations. Nevertheless,
the construction of PLSM allows to describe the
quark-hadron phase structure, where the valence and
sea quarks are implemented, Eq. (6). The mechanism
of the magnetic catalysis relies on a competition
between the contributions of valance and sea quarks
[3, 51]. In light of this, the influence of finite magnetic
field implies a suppression on the quark condensates
(sea quarks) leading to a net inverse magnetic cataly-
sis. Furthermore, the valence quark potential has a
very small effect on the free energy, especially at high
temperature, Eq. (6). This makes the contributions of

+2 2
fmP
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the sea quarks more dominant than that of the valence
quarks. The contributions of sea quarks can be consid-
ered as a backreaction of the quarks in pure gauge
fields [52]. If this backreaction is incorporated in the
model, one shall be able to find good agreements with
lattice QCD simulations. Nevertheless, the agreement
reported in the present paper, apparently means that
the PLSM assumes – among others – correct degrees
of freedom in both hadronic and partonic phases.

3. LANDAU QUANTIZATION
As discussed, Landau quantization is an essential

consequence of applying finite magnetic field to
PLSM. Accordingly, we have to analysis how the dif-
ferent Landau levels are populated. Such a conse-
quence appears in the dispersion relation, which
should be modified at finite magnetic field,

(12)

with n, a quantization number, is known as the Lan-
dau quantum number and σ is related to the spin
quantum number, σ = ±S/2 and to the masses of
quark-flavor, where f = l, s with l runs over u and d
quarks and the other subscript (s) stands for s-quarks.
Furthermore, Landau quantization enters the sum-
mation in Eq. (9). Accordingly, we highlight the cru-
cial importance of the so-called zero-level, which
considerably differs from  at eB = 0 and greatly
responsible whether or not the QCD matter possesses
direct or indirect magnetic catalysis. The quark masses
are directly coupled to the corresponding sigma fields

(13)

The quantity 2n + 1 – σ can be replaced by a sum over
the Landau Levels; 0 ≤ ν ≤ . The lower bound, in
this inequality, is the Lowest Landau Level, while the
higher one stands for the Maximum Landau Level
( ). For the sake of completeness, we mention that
2 – δ0ν represents degenerate Landau Levels. 
contributes to the maximum quantization number
(  → ∞). Thus, a considerable influence of the
baryon chemical potential, the temperature and the
magnetic fields on the number of Landau levels has
been proposed [53].

(14)

where the brackets represent f loor of the enclosed
quantity. The parameter τf is conjectured to be related
to the baryon chemical potentials of fth quark f lavor
[53].

A systematic study for the Landau levels occupied
by the quarks is now in order. This differs from a quark
flavor to another and apparently varies with the mag-
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Fig. 1. (Color online) (a) The chiral quark-condensates
normalized to the corresponding vacuum values are given
as functions of temperature at vanishing baryon chemical
potential and eB = 0 (solid curves), 0.1 (dashed curves),
0.2 (dotted curves) and 0.4 GeV2 (dot-dashed curves) and
at vanishing baryon chemical potential. (b) The same as in
(a) but for expectation values of Polyakov-loop fields
(φ and φ*).
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netic field and the baryon chemical potential. Accord-
ing to Eq. (14), the maximum occupation number of
the Landau level depends on the quark charges, the
magnetic fields, the temperatures, and the baryon
chemical potentials. Maximum Landau levels (MLL)
for quarks should have different occupations accord-
ing to the large change in the quark charges. For exam-
ple, at eB = , the maximum Landau levels (MLL)
depend on the baryon chemical potential as follows:

at μ = 0 and 100 MeV, the up-quarks have up to
62 levels, while the down- and the strange-quarks
occupy 124 levels each;

at μ = 200 MeV, the up-quarks can fill up 59 levels,
while the down- and the strange-quarks each is
allowed to accommodate 118 Landau levels.

In such way, the MLL at eB = 10  can be counted
as follows:

at μ = 0 and 100 MeV and for up-quarks, MLL = 3,
while and for each down- and strange-quarks MLL = 6;

at μ = 200 MeV, for up-quarks MLL becomes 2,
while for each down- and strange-quarks, MLL can be
as much as 4.

We conclude that increasing the magnetic field
leads to filling-up the lower Landau levels first and
decreasing the number of occupied levels. In other
words, increasing the magnetic field allows lower Lan-
dau level to accommodate more quarks.

Furthermore, in Eq. (14), one can replace the
chemical potential (μf) by the temperature (T). We
found that the population of MLL depends on the
temperature, the quark charge, and the magnetic field
strength. As given in Eq. (14), this can be scaled by
ΛQCD. The main difference between MLL occupation
of up- and down-quark is that |qd| = 2|qu|.

 At T = 50 MeV and eB = , the up-quark has
31 MLL, while each down- and strange quark has
62 MLL.

 At T = 100 MeV and eB = 15 , MLL for up-
quark is 2 and 4 for each of down- and strange-quark.

To summarize, we can conclude that the popula-
tion of the Landau levels is most sensitive to the mag-
netic field and to the quark charges. Also, MLL is
strongly controlled by the QCD scale (ΛQCD). We
assure that our calculations assume maximum popula-
tion of the Landau levels, except the order parameters
in Fig. 2. They are estimated at varying occupations of
the Landau levels.

4. THE RESULTS
The chiral quark-condensates and deconfinement

order-parameters shall be analyzed in a wide range of
temperatures, baryon chemical potentials, magnetic
fields, and at different populations of the quantized
Landau levels. The temperature and density depen-

π
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π
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dence of some magnetic properties such as magnetiza-
tion, magnetic susceptibility, and permeability shall be
determined in finite magnetic fields. Furthermore, the
magnetic phase diagram, i.e. the variation of the criti-
cal temperatures (Tc) and the corresponding (critical)
baryon chemical potential (μc) and finite magnetic
fields shall be studied. Concretely, the QCD phase
diagram (T vs. μ) at different magnetic field strengths
shall be mapped out. The variation of temperature,
baryon chemical potential and magnetic field from
ordinary chemical freeze-out conditions such as con-
stant normalized entropy density, s/T3 = 7, shall be
presented.
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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Fig. 2. (Color online) The normalized chiral quark-con-
densates are given as functions of temperature at finite
magnetic field eB = 0.2 GeV2 and for different values of
MLL = 14 (solid curves), 51 (dotted curves) and ∞
(dashed curves).
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Fig. 3. (Color online) At eB = 0.2 GeV2 and vanishing
baryon chemical potential, the temperature dependence of
magnetization  (a), magnetic susceptibility χB (b) and
relative magnetic permeability μr (c) is depicted. The
results are compared with different lattice simulations
(symbols) [22]. The dashed curve represents our old calcu-
lations as reported in [32].
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First, we introduce the chiral quark condensates,
the deconfinement order parameters and magnetic
catalysis in thermal medium in the section that fol-
lows.

4.1. Chiral Quark Condensates, Deconfinement 
Order Parameters and Magnetic Catalysis

The chiral quark condensates (σl and σs) and the
deconfinement order parameters (φ and φ*) in dense
and thermal medium are estimated through the so-
called global minimization of the free energy, Eq. (11).
In the present work, the parameters of PLSM are esti-
mated at sigma-meson mass mσ = 800 MeV, the vac-
uum mass, where the measured (vacuum) light and
strange chiral condensates are assumed as  =
92.5 MeV and  = 94.2 MeV, respectively. These
parameters are partly responsible for the excellent
agreement with ab initio lattice simulations, about
which we shall report in forthcoming sections.

Figure 1 shows the temperature dependence of
normalized chiral quark condensates (a) and decon-
finement order parameters (b) at different magnetic
field strengths; eB = 0 (solid curves). 0.1 (dashed
curves), 0.2 (dotted curves) and 0.4 GeV2 (dot-dashed
curves) and at vanishing baryon chemical potential, i.e.
φ = φ*. In panel (a), we notice that the chiral critical
temperature decreases with increasing the magnetic
field. This means that the phase transition known as
crossover becomes sharper with increasing the mag-
netic field. This can be interpreted due to the maximum
occupation of the Landau levels (  → ∞). So far,
we conclude that the phase transition seems to be of

σ
0l

σ
0s

νmax f
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first order whenever the chiral condensate passes
through a metastable phase, in which light quarks
become massless and move freely.

In panel (b), the temperature dependence of the
deconfinement order-parameters is depicted at a van-
ishing baryon chemical potential, i.e. φ = φ* but differ-
ent values magnetic field strengths; eB = 0 (solid
curves), 0.1 (dashed curves), 0.2 (dotted curves) and
0.4 GeV2 (dot-dashed curves). It is obvious that the
deconfinement critical-temperature (Тφ) very slightly
decreases as the magnetic field increases.

As discussed in Section 2, PLSM is well suited to
study the chiral limit. The inclusion of magnetic field
in PLSM can be partly achieved by changing the dis-
persion relation for quarks and antiquarks, Eq. (12). In
doing this, the dimension of the momentum-space
should be reduced (from three to one) and scaled via
quark charge and magnetic field. This process is
known as dimension reduction or magnetic catalysis
effect [12]. Furthermore, the introduction of the mag-
netic field requires suitable implementation of the
Landau quantization.

Figure 2 shows – for the first time – the effects of
the occupation of the Landau levels on the tempera-
ture dependence of the chiral quark-condensates
(σl and σs) at a finite magnetic field eB = 0.2 GeV and
a vanishing baryon chemical potential. We observe
that the change in the Landau levels is only relatively
significant within the phase transition and seems to
disappear otherwise. At MLL = 14 (solid curves),
51 (dotted curves) and ∞ (dashed curves), the nor-
malized chiral condensates for light and strange
quarks are analyzed as functions of temperature at a
finite magnetic fields and a vanishing baryon chemical
potential. We conclude that increasing the Landau
levels very slightly sharpens the phase transition and
decreases the critical temperature Tχ. The latter char-
acterizes an inverse magnetic catalysis.

Some fundamental properties of strongly interact-
ing QCD matter in thermal medium and at finite mag-
netic field such as magnetization, magnetic suscepti-
bility and permeability shall be estimated in the fol-
lowing section.

4.2. QCD Magnetization,
Magnetic Susceptibility and Permeability

The magnetic susceptibility with proper renormal-
ization has been introduced in [54]. The quantity esti-
mates the ability of the QCD matter to generate the
magnetic field. In another words, it measures the abil-
ity to store magnetic potential energy, which is defined
as a proportionally constant for the magnetic f lux. The
magnetic f lux is formed or produced from the influ-
ence of the magnetic field. The magnetic permeability
is calculated along the magnetic field that aligns on the
transverse direction to the momentum space pz. The
JOURNAL OF EXPERIMENTAL AN
strong magnetic field likely results in isotropic QCD
matter.

The response of the QCD matter to an external
magnetic field can be estimated from the free energy
density  = –T/V ⋅ ln . In thermal, dense and mag-
netic medium, the partition function ln  gets modifi-
cations, from which the magnetization can be deduced

(15)

where e ≠ 0 is the elementary electric charge. In natu-
ral units, the magnetization is given in GeV2. The sign
of magnetization determines an important magnetic
property; whether QCD matter is para- or dia-mag-
netic, i.e.  > 0 (para-), or  < 0 (dia-), respectively.
As in solid-state physics,

(i) if the QCD matter is in state of dia-magnetiza-
tion, the color charges align oppositely to the direction
of the magnetic field and produce an induced current,
which spreads as small loops attempting to cancel out
the effects of the applied magnetic field, and

(ii) if the QCD matter is in state of para-magneti-
zation, the most color charges align towards the direc-
tion of the magnetic field.

Let us first recall the classical electromagnetism! It
is known that the magnetization diminishes with
increasing temperature. Accordingly, the magnetic
susceptibility (χ = c/T, where с is the Curie’s constant)
depends on the magnetic permeability (μB) [55]. This
means that – in classical theory – the temperature has
an inverse effect on the magnetization. Thus, as per
classical theory, the magnetization vanishes at very
high temperature. This temperature limit in the strong
interactions is likely at relativistic energies or at van-
ishing baryon chemical potential. In this regard, we
have to distinguish between the various magnetic
properties of the strongly interacting QCD matter in
thermal medium not only by determining the magne-
tization. What we observed points out to an opposite
temperature dependence of QCD-magnetization. The
magnetic susceptibility and permeability play an
essential role. In other words, the response of the
QCD matter to finite magnetic field can be deter-
mined by the slope of magnetization ( ) with respect
to the magnetic field.

The second derivative of free energy density with
respect to finite magnetic field results in the magnetic
susceptibility

(16)

The magnetic susceptibility is a dimensionless propor-
tionality parameter indicating the degree of magneti-
zation of the QCD matter.
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Furthermore, the relative magnetic permeability
(μr) relative to the vacuum one μ0 can be translated as
the magnetic effect in thermal QCD medium. This
can be determined by different methods such as direct
relation with the magnetic susceptibility

(17)
This general formula is very common in solid-state
materials. As shall be introduced in the following sec-
tions, this relation agrees well with the lattice QCD
simulations, in which the magnetic permeability is
expressed in terms of the magnetic susceptibility

(18)

where αm = e2/4π is the fine structure constant. This
expression distinguishes between external Bext and the
induced magnetic field Bind. Both quantities are
dimensionless proportionality constants. One remark
on Eq. (18) is now in order. The higher-order perme-
ability seems to be limited by the magnetic susceptibil-
ity, which is given by the reciprocal of the square of
elementary charge e, i.e. χB  1/e2.

As mentioned earlier, the calculations from PLSM
are in a good agreement with recent lattice QCD sim-
ulations. It is believed that such a comparison might
lead to developing an intuitive understanding about
the QCD matter in magnetic and thermal medium. In
Fig. 3, the magnetic properties of the QCD matter
such as magnetization (Fig. 3a), magnetic susceptibil-
ity (Fig. 3b) and permeability (Fig. 3c) are given as
functions of temperature at nonvanishing magnetic
field strength but a vanishing baryon chemical poten-
tial. The PLSM results (curves) are compared with
various lattice QCD calculations (symbols). There is a
good agreement over a wide range of temperatures.

In Fig. 3a, the magnetization of the QCD matter in
units of GeV2 due to effects of nonvanishing magnetic
field eB = 0.2 GeV2 and μ = 0 is studied as a function
of temperature and compared with recent lattice cal-
culations (open triangles with errorbars) [22]. The
positive slope (or increasing magnetization with
increasing temperature) refers to positive magnetiza-
tion,  > 0, which indicates that the paramagnetic
contribution of the QCD matter becomes dominant.
Within the temperature range characterizing the had-
ron phase (below critical temperature), the curve
seems to resemble the lattice calculations in an excel-
lent way. At temperatures characterizing QGP (above
critical temperature), the PLSM curve becomes larger
than the lattice results, especially at very high tem-
peratures. In this range of temperatures, the hadrons
are conjectured to deconfine into color charges,
quarks and gluons degrees of freedom. It is apparent
that such degrees of freedom are not sufficient enough
to achieve a good agreement at very high temperature.
Furthermore, the applicability of PLSM. which is

μ = + χ1 .r B

μ ≡ =
− πα χ

ind

ext
1 ,

1 4B
m B

B
B

μ→∞⎯⎯⎯⎯→

}
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mainly determined by the dominance (validity) of σl,
σs, φ and φ* order parameters at temperature, baryon
chemical potential and magnetic field, Section 4.1,
seems to reach an end at very high temperature. Some
details about the lattice QCD simulations [22] are now
in order. The results on the magnetization at eB ≈
0.2 GeV2 are obtained by using half-half method for
three lattice spacings employed at Nτ = 6, and 8 and
continuum estimates. This is a partial explanation for
the given results.

Figure 3b shows the magnetic susceptibility as a
function of temperature. The results from PLSM are
compared with various lattice simulations (symbols)
using different calculation methods and with the
HRG calculations. The dashed curve stands for the
old calculations reported in [32]. These are greatly dis-
tinguishable from the new calculations. The reason is
the exclusion of zero Landau levels and the mesonic
contributions, when performing the old calculations
[32], the absence of this term leads to ignoring the
mesonic f luctuations [56]. In the present work, we
include such fluctuations, Eqs. (6) and (10). Further-
more, The implementation of both conditions, i.e. the
lowest Landau level and the mesonic potential) – in
the present calculations – makes the model agreeing
well with the recent lattice QCD simulations, espe-
cially regarding the inverse magnetic catalysis and the
weak evidence of diamagnetic property of thermal
QCD matter.

There is qualitative and quantitative agreement
between our PLSM calculations and lattice QCD. The
lattice QCD calculations among themselves have large
differences. Thus, some features on PLSM and lattice
QCD results can be summarized as follows.

(1) The magnetic susceptibility obtained from the
HRG model [32] (dashed curve in Fig. 3b) confirms
the nature of the QCD matter as diamagnetic at low
temperature. Here, the free energy density is consid-
ered as the sum over contributions from hadrons and
their resonances with masses lighter than one GeV
tends to contribute the hadronic interaction in order to
assure negative magnetic susceptibility [22].

(2) In PLSM, the free energy density, Eq. (6), is
divided into three terms. The first one is the pure
mesonic potential which is obtained from the
Lagrangian for pure gauge. The second one gives
quarks and antiquarks contributions, which appar-
ently have mesonic f luctuations from both quarks and
antiquark f lavors. The third term represents the inter-
actions of color charges and gluons. This obviously
means that two terms contribute to the hadronic f luc-
tuations, while one term contributes to the gluon
interactions.

(3) At very low temperatures, the slope of magnetic
susceptibility [χ(T)] is apparently negative (inside-box
in Fig. 3b). This is a signature about QCD matter as
dia-magnetic and apparently confirms different lattice
QCD simulations. The negative magnetic susceptibil-
YSICS  Vol. 126  No. 5  2018
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ity has been obtained within the Parton-Hadron-
String Dynamics approach, as well [57]. Switching to
high temperature regime, i.e. restoring the broken chi-
ral symmetry, we observe a transition between dia-
and para-magnetic properties. QCD matter as para-
magnetism is very likely at high temperature. The non-
interacting MIT bag model [58] confirms a phase
transition from dia- to para-magnetism. Other QCD-
like models can study free quarks coupled to Polyakov
loop and give results consistent with the lattice simu-
lations, especially at high temperatures [59].

(4) The recent lattice QCD simulations [22] (open
circle) are estimated by using half–half method in
243 × 32 lattice (closed triangle) and by using integral
method in 283 × 10 lattice (open triangle). By employ-
ing Nf = 2 + 1 degrees of freedom and by using
HISQ/tree action with quark masses ml/ms = 0.05 and
temporal dimension Nτ = 8, the lattice results are rep-
resented by diamonds [19]. The closed circles stand for
simulations in isotropic lattice [33].

(5) The PLSM results seem to confirm that the
strongly interacting QCD matter has paramagnetic
properties, and its magnetic susceptibility steeply
increases towards the deconfinement phase transition.
These conclusions are confirmed in a wide range of
temperatures 100 MeV ≤ T ≤ 250 MeV [60, 61].

Figure 3c gives the relative permeability with
respect to that of the vacuum compared to recent lat-
tice QCD calculations (open triangles) [22] in a wide
range of temperatures, at eB = 0.2 GeV2 and μ = 0.
There is an obvious quantitative and qualitative
agreement between our PLSM calculations and lat-
tice QCD simulations. From Eq. (18), one easily
realize that μr is very similar to χB. The agreement
with lattice QCD simulations is thus not surprising.

The third part of this work deals with the influences
of finite magnetic field on the QCD phase diagram.
This shall be elaborated in Section 4.3.

4.3. Influences of Finite Magnetic Field
on QCD Phase Diagram

Here, we introduce other consequences of finite
magnetic fields, namely their influences on the QCD
phase diagram. In other words, we analyze how the
critical temperature, even the one corresponding the
chemical freeze-out, varies with the magnetic field
strengths. Two different mechanisms are assumed to
play a role. The first one is that the magnetic field
improves the phase transition due to its contributions
to produce Landau quantizations or levels. With
improvement, we mean that the critical temperature at
finite magnetic fields becomes smaller relative to that
at vanishing magnetic field. Secondly, the magnetic
field contributes to the suppression in the chiral con-
densates relevant to the restoration of the chiral sym-
metry breaking. This suppression (and improving) is
(are) known as inverse magnetic catalysis and is (are)
JOURNAL OF EXPERIMENTAL AN
manifested though CME and magnetic catalysis anal-
ysis.

In determining the critical temperature and after-
wards mapping out the QCD phase diagram, we
implement different methods such as higher-order
moments of the quark multiplicity, order parameters,
etc. The critical temperature (or baryon chemical
potential) can be determined through the intersection
of the order parameters, which characterizing the
quark–hadron phase transition, the Polyakov-loop
fields (φ and φ*), with the chiral condensates of light-
and strange-quarks, σl and σs, respectively. The latter
is related to the restoration of the broken chiral sym-
metry. The critical temperature corresponding to chi-
ral restoration of light-quark, , can be determined
from the intersection between φ and σl, while the crit-
ical temperature corresponding to the chiral resto-
ration of strange-quark, , can be defined from the
intersection between φ* and σs.

Alternatively, we might implement the normalized
second-order moments of quark multiplicity (χ/T2) in
order to estimate the critical temperature (or μ). In
doing this, we analyze the T- (or μ-) dependence of
χ/T2 of the system of interest. A peak is conjecture to
be located where the critical T (or μ) is reached.

In Fig. 4, the QCD phase-diagram in presence of
finite magnetic field is computed from the depen-
dence of chiral and/or deconfinement critical tem-
peratures on finite magnetic field. The possible split-
ting of QCD phase-diagram into deconfinement and
chiral transitions was introduced and worked out in
[29, 63–65]. The lattice results are given as circles with
errorbars [22]. The vertical bands refer to the magnetic
field strength expected at RHIC (orders per percent
GeV2 or ~ ) and LHC energies (orders per ten GeV2

or ~(10–15) ). A small suppression appears in the
chiral quark-condensates due to the influence of finite
magnetic field. This phenomena is know as inverse
magnetic catalysis.

In Fig. 4a, the solid curve gives the critical tem-
perature estimated from the peaks of the second-order
moments of quark multiplicity, the normalized quark
susceptibility (χ/T2). We find that T decreases with
increasing the magnetic field strengths (referring to
inverse magnetic catalysis). An excellent agreement is
apparently achieved when confronting the dotted
curve, which was obtained from the intersection of σl
with φ, to the lattice QCD calculations, especially at
low magnetic field; 0 ≤ eB [GeV2] ≤ 0.2. The solid
curve matches well with the lattice results at a wider
range of magnetic fields 0.13 ≤ eB [GeV2] ≤ 0.55. The
χ/T2-method apparently overestimates the lattice cal-
culations at low temperature, while the σl-method
slightly underestimates these at high temperature. We
conclude that the magnetic field seems to improve the
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χs
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π
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π
2m
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Fig. 4. (Color online) The chiral phase diagram relates the
critical temperature (a) to eB through a method utilizing
quark susceptibility χ/T2 (solid curve) and another one
implementing σl (dashed curve), the critical baryon chem-
ical potential (b) to eB at T = 50 (solid) and T = 100 MeV
(dashed curve) and the critical temperature (c) to μ at eB =

 (solid), eB = 10  (dashed), and eB = 20  (dotted
curve). The vertical bands refer to magnetic field strength
estimated at RHIC and LHC energies.
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chiral quark-condensates. This depends on the type of
contributions to the Landau levels which are intro-
duced to the system.

Figure 4b draws the dependence of resulting μ on
the magnetic field at finite temperatures; T = 50
(solid) and 100 MeV (dashed curve). We notice that at
constant magnetic field strength as that at RHIC or
LHC energy, large μ can be reached at low tempera-
ture, i.e. μ obviously decreases with increasing eB.
There is no lattice simulations demonstrating the
change in μ with the magnetic field to compare with.

Figure 4c gives Т–μ phase diagram at eB = 
(solid), 10  (dashed), and 20  (dotted curve).
Increasing magnetic field seems to improve, i.e.
reduces the critical temperature, the chiral phase dia-
gram as result of the superstition on the chiral conden-
sates, i.e. the chiral phase transition takes place earlier
(at lower temperatures) than the one at eB = 0.

In a future work, we plan to re-analysis Т–μ phase
diagram at finite magnetic field. So far, there are vari-
ous experimental results on chemical and thermal
freeze-out [62]. The estimation of freeze-out parame-
ters; T and μ, in dependence on heavy-ion centralities
or impact parameters would allow us to analysis the
influence of the magnetic field, experimentally [2].

In Fig. 5, the chemical freeze-out condition s(T,
eB, μ)/T3 = 7 is implemented [62]. The entropy den-
sity is calculated at different temperatures, baryon
chemical potentials and magnetic fields. When the
entropy density normalized to T3 reaches the value 7,
the values of the freeze-out temperature (T), the
related baryon chemical potential (μ), and the corre-
sponding magnetic field (eB) are registered. They are
three quantities characterizing the chemical freeze-
out of the system of interest, Fig. 5. For the first time,
such a multi-dimensional chemical freeze-out bound-
ary illustrating the dependence the ordinary freeze-
out diagram (T – μ), which can be directly related to
the one analyzed from the measurements of various
particle ratios [62], for instance, on finite magnetic
field, is presented. It is obvious that, at small μ, the
effect of magnetic field is almost negligible. At higher
temperatures, the decrease in Tc around the chiral
phase-transition moves to lower temperatures with
increasing eB. Again, this phenomena is known as
inverse magnetic catalysis. At very high temperatures,
there is a slight increase in T with increasing eB. We
conclude that increasing eB has the effect that the chi-
ral phase transition takes place earlier (at lower tem-
peratures). It is noteworthy noticing that the shape of
T–μ, phase diagram looks different from the one at
vanishing eВ [62]. This shall be analysis in a future
work.

π
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π
2m π
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Fig. 5. (Color online) The chiral phase diagram for the
chemical freeze-out parameters; T vs. eB vs. μ in GeV units
calculated when the freeze-out condition s/T3 = 7 is ful-
filled [62].
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5. CONCLUSION
The ultimate goal of the present study is a system-

atic investigation for temperature and density depen-
dences of the strongly interacting QCD matter from
the SU(3) Polyakov linear-sigma model in presence of
finite magnetic field. The introduction of magnetic
effects to this model is accompanied by some modifi-
cations such as dimensional reduction (changing the
phase space as shown in Eq. (8). When the magnetic
field is directed along z-direction, we can apply the
magnetic catalysis property [12], where the dimen-
sions are reduced, D → D – 2, i.e. integral over three-
momentum shall be transformed into an integral over
one-momentum, e.g. along the direction of the mag-
netic field, i.e., z-direction). Also, the dispersion rela-
tion shall be modified and the Landau quantization
shall be implemented. For the latter, we use Landau
theory for quantized cyclotron orbits of charged parti-
cles in external magnetic-field. Consequently, some
restrictions are added to the color/electric charges of
the quarks.

By using mean field approximation, we have con-
structed the PLSM partition function. Then, we have
estimated the temperature dependence of the decon-
finement order-parameters (φ and φ*) and chiral
quark-condensates (σl and σs) in presence of finite
magnetic field. We conclude that, the magnetic field
plays an essential role on the QCD phase transition.
The strong magnetic field which is likely generated in
heavy-ion collisions, leads to sharp and fast QCD
phase transition.

The distribution of Landau levels has been studied
in order to show how they are occupied at finite mag-
netic field, temperature and baryon chemical poten-
tial. The Landau level occupation, Eq. (14), varies
with the quark electric charge besides T and μ and is
characterized by QCD energy scale.

We have shown that the PLSM in presence of finite
magnetic field is in a good agreement with various
recent QCD lattice calculations for different magnetic
properties such as magnetization, magnetic suscepti-
bility and permeability. The magnetic susceptibility,
which can be deduced from the second derivative of
PLSM free-energy at finite volume with respect to the
magnetic field, is able to highlight the magnetic f luc-
tuations of the strongly interacting QCD matter. It is
expected that, at low temperature, the QCD matter
creates an induced magnetic field (diamagnetic mate-
rial). This has been confirmed by recent lattice simu-
lations. With increasing temperature, the magnetic
nature of the QCD matter changes (becomes para-
magnetic at high temperatures).

In addition to the pure mesonic LSM potential
which contributes the valence quarks, the Polyakov
loops are responsible for integrating the gluon dynam-
ics to the model. The physical mechanism of the mag-
netic catalysis result from a competition between the
valance and sea quarks. When the valence quarks
JOURNAL OF EXPERIMENTAL AN
potential has an inefficient effect at high temperature
[38], the contribution of sea quarks will be more than
that of the valance quarks. When the magnetic field is
switched on, the temperature dependence of the chiral
quark-condensates is remarkable affected, while that
of the Polyakov loops fields remains almost
unchanged. This implies a suppression of the chiral
quark-condensates. To explain this, there are two dif-
ferent mechanisms to propose. The first one suggests
that, the magnetic field improves the phase transition
as a result of its contributions to the Landau quantiza-
tions. The second one deals with the magnetic field
contributes to a suppression in the chiral quark-con-
densates, which signatures the restoration of the chiral
symmetry breaking. This suppression is known as
“inverse magnetic catalysis” and defines that, the
increase in the magnetic field results in a decrease in
the corresponding critical temperature. In other
words, the magnetic field accelerates the phase transi-
tion, i.e. reduces the corresponding critical tempera-
ture. Furthermore, we find that the critical tempera-
tures should not be necessarily a universal value. They
seem to be depending on quark favors and the mag-
netic field, as well, which in turn is related to the cen-
trality of the heavy-ion collisions (the impact param-
eter).

In two different methods, we have calculated the
QCD phase diagram (Tc vs. eB). First from normalized
susceptibility and second from the intersection
between deconfinement order-parameters and light-
quark condensates. The results confirm recent lattice
simulations. Furthermore, the dependence of the crit-
ical baryon chemical potential on the magnetic field
has been determined, as well. We find that increasing
magnetic field decreases the critical baryon chemical
potential. This is a known feature of the various QCD-
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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like models that, at low temperatures and up to a cer-
tain value of eB, the critical baryon chemical potential
decreases as eB increases [4, 5]. Accordingly, we are
able to map out μс vs. eB chiral phase diagram. So far,
no lattice calculations are available to compare with.
The ordinary QCD phase diagram; T vs. μ, is depicted
at different magnetic fields. Similar to temperatures,
we notice that, increasing magnetic field allows the
chiral phase transitions to take place at lower μ.
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