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Abstract—Various methods for determining the Coulomb logarithm in the kinetic theory of transport and var-
ious variants of the choice of the plasma screening constant, taking into account and disregarding the contribu-
tion of the ion component and the boundary value of the electron wavevector are considered. The correlation of
ions is taken into account using the Ornstein–Zernike integral equation in the hypernetted-chain approxima-
tion. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate
plasma, this effect must be taken into account when screening is determined by the electron component alone.
The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values deter-
mined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can
indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb
logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.
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1. INTRODUCTION
In the physics of plasma and astrophysics, the

long-range nature of the Coulomb or gravitational
interaction leads to the emergence of various diverging
integrals. For example, this leads to divergence of the
transport cross sections of collisions of electrons and
ions with charged particles, and this divergence is
observed for small as well as large values of the impact
parameter. In analyzing the kinetic equation for elec-
trons in the case when the Coulomb interaction pre-
vails, Landau [1] introduced constraints on the impact
parameter for eliminating divergences, which led to
the emergence the Coulomb logarithm in the trans-
port cross section of scattering of electrons by ions:

(1)

Here, RD is the highest value of the impact parameter,
which was assumed in [1] to be equal to the Debye
screening radius:

(2)

where r0 is the smallest impact parameter correspond-
ing to scattering of an electron (ion) with a thermal
energy through 90° (in the plasma physics, this quan-

tity is usually referred to as the Landau radius), which,
in the case of scattering of an electron by an ion, is
defined as

(3)

e is the elementary charge; zi is the ion charge number;
Te and Ti are the temperatures of electrons and ions in
energy units, respectively; and ne and ni are the con-
centrations of electrons and ions, respectively.

Spitzer [2] introduced a quantity close to the Cou-
lomb logarithm, which is equal to the ratio of right
angle (π/2) to the scattering angle for an impact
parameter equal to the mean distance between scat-
tered particles interacting in accordance with the law
of universal gravitation. In subsequent publications [3,
4], Spitzer with coauthors used the Landau definition
for the Coulomb logarithm with the full Debye radius
of the plasma, while in monograph [5], he proposed
that only the electron Debye radius be used for deter-
mining the external cutoff radius.

Temko [6] derived the Fokker–Planck equation for
a plasma proceeding from the chain of the Bogoliubov
equations. In this approach, screening was taken into
account in a natural way, and the Landau radius was
used for a cutoff for small impact parameters. The fol-
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COULOMB LOGARITHM IN NONIDEAL AND DEGENERATE PLASMAS 431
lowing expression was obtained in [6] for the Coulomb
logarithm:

(4)

in contract to expression (1), it gives no negative values
for the Coulomb logarithm.

Later, the Coulomb logarithm was studied in many
publications (see, for example, [7–17] and the litera-
ture cited therein), and the theory of scattering in an
ideal plasma was developed to such an extent that
made it possible to refine the value of the numerical
factor (which is different for different transport pro-
cesses) in the argument in the Coulomb logarithm
(see, for example, [7]). Spitzer believed that the accu-
racy of the scattering theory with the Coulomb loga-
rithm is sufficient only for Λ ≳ 10, while in [9, 10] (see
also [11]), it was proved that the accuracy is sufficient
down to Λ ≈ 2. Subsequently, the values of Λ < 1 were
also considered in the literature [11–16]. In [15], the
equalization of the temperatures of electrons and ions
in a dense plasma was analyzed on the basis of the
quantum-mechanical method of T matrices. Since
this method is quite cumbersome, it was proposed that
scattering cross sections based on the Landau–Spitzer
approach be used with the Coulomb logarithm

(5)

Here, bmax is the maximal impact parameter defined
by the relation

parameters a1, a2, and a3 are determined by the condi-
tion of the best approximation of the results of calcu-
lations based on the T-matrix method, and the follow-
ing values of these parameters were obtained in [15]:
a1 = 1.65, a2 = 0.40, a3 = 0.64; RDe =  is the Debye
radius for an electron, Λ0 is the Coulomb logarithm
defined as

(6)

 is the de Broglie wavelength for electrons,

(7)

and me is the electron mass. It was noted in [15] that for

a nondegenerate plasma with ne  < 0.1 (ne is the elec-
tron concentration), expression (5) gives the energy
loss rate with an error of 15% for Λ0 > 2 × 10–2, while,
for Λ0 > 5 × 10–3, the error does not exceed 30%. For
higher values of Λ0, the accuracy was considerably
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higher. It should be noted that for determining the de
Broglie wavelength in a degenerate plasma, it was pro-
posed in [9] (as well as in our work [18]) that the Fermi
energy be used instead of the electron temperature.
Expression (5) gives the values of the Coulomb loga-
rithm close to and slightly smaller than unity (i.e., it
“corrects” small values of Λ0 ≪ 1 in the region of weak
nonideality of the plasma).

In [18], in determining the electrical conductivity
of a dense hydrogen plasma, we also used the
approach based on the Coulomb logarithm; its values
in the region of strong ionization of the plasma turned
out to be much smaller than unity, which casts a shade
of doubt concerning the applicability of the approach
used for describing the electron transport in this range
of parameters. For this reason, the present study is
devoted to a more detailed analysis of this problem. It
should be noted that the approximate approach based
on the Coulomb logarithm was chosen because exact
calculations of the scattering cross section require very
long time (as in the above remark concerning the
T-matrix method).

At high pressures, the so-called pressure ionization
occurs [19], and any substance becomes in the general
case a nonideal and degenerate plasma. The determi-
nation of the transport properties of electrons in a
nonideal plasma remains one of unsolved problems in
the kinetic theory. For solving this problem, approxi-
mate methods are used, including one of the most
widely used approaches based on the Born approxima-
tion with subsequent correction of results by introduc-
ing the Coulomb logarithm. It should be noted that
scattering in a nonideal plasma is a multiparticle pro-
cess, and the accuracy of modern experiments does
not permit the determination of even exact order of
magnitude of the Coulomb logarithm. Therefore,
meticulous analysis of theoretical methods for deter-
mining the Coulomb logarithm is of considerable
interest.

2. TRANSPORT CROSS SECTION
OF ELECTRON SCATTERING BY IONS

Ziman [20–24] introduced and actively used the
concept of an “atom” (ion with a screening electron
cloud) for describing the transport properties of elec-
trons in metals. Scattering of an electron from such an
atom occurs with a pseudopotential equal to the
screened Debye potential, and the interaction of
atoms with one another is described by the same
potential. It was assumed in [20–24] that only elec-
trons participate in screening; randomness or orderli-
ness in the arrangement of such “atoms” (henceforth
referred to just as ions) is taken into account by the
static structure factor. This theory was quite successful
in the description of transport properties of electrons
in various metals and their alloys; for this reason, we
will also use this approach in this study.
YSICS  Vol. 126  No. 3  2018
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Fig. 1. Dependences of the basic parameters of the plasma,
which have the dimension of the reciprocal length and
determine the boundary value of wavevector qm, on the
electron concentration at T = 300 K, zi = 1. Curve 1 is the
reciprocal Landau radius (3); (2) reciprocal Landau radius
with the Fermi energy instead of temperature; (3–6) qm =
2/  (3), 2kF (4), kDe (5), and kDi (6); (7) reciprocal Lan-
dau radius with mean kinetic energy 〈εe〉, (n) qm = qmS
(27); (s) qm = qmZ (28).
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In the general case, screening by electrons in a
plasma is described by the expression [25, 26]

(8)

where T is the electron temperature, ηe = μe/T, μe
being the chemical potential of the electron gas;

(ηe) is the Fermi–Dirac integral, which is
defined by the relation [27]

(9)

Γ(x) being the gamma function. The electron concen-
tration is given by

(10)

Combining expressions (8) and (10), we obtain

(11)

where kDe,0 is the electron screening constant in the
nondegenerate case:

(12)

It should be noted that at room temperature and ne ≲
1018 cm–3, the electron screening constant almost
coincides with expression (12) (see Fig. 1), while in the
strongly degenerate case, we have

(13)

In our calculations, we determined the value of
reduced chemical potential ηe using expression (10)
from the preset electron concentration ne, and then
screening constant kDe was found from formula (8) or
(11). The Fermi–Dirac integrals were calculated in
accordance with [27]. We can also write the expression
for the mean kinetic energy of electrons:

(14)

In a nondegenerate plasma, we have 〈εe〉 = (3/2)T,
while in a strongly degenerate plasma, 〈εe〉 = (3/5)εF,
where εF is the Fermi energy:

(15)
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The transport cross section of electron scattering by
ions taking into account the ion–ion correlation is
defined as [28]

(16)

where εe is the electron energy, Λei is the Coulomb log-
arithm,

(17)

Si(k) is the static structure factor describing the cor-
relation of ions with the interaction potential

(18)

R is the spacing between ions, ks is the screening con-
stant, and qm is the maximal value of the wavevector
(which is determined by the maximal value of the elec-
tron momentum transferred to an ion during the colli-
sion). It was assumed in [20] that qm = 2kF (the maxi-
mal value of the transferred momentum for an elec-
tron on the Fermi surface is 2 kF = 2 ), where
kF is the wavelength of an electron on the Fermi sur-
face:

(19)
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It was assumed in [18] that

(20)
where ET was assumed to be equal to temperature (in
energy units) in the nondegenerate case and to the
Fermi energy in the degenerate case; the de Broglie
wavelength in these cases was also determined using
the temperature or the Fermi energy.

In a rarefied plasma for which the ion–ion correla-
tion can be disregarded, we have Si ≈ 1. In this case, we
obtain from expression (17) (see [26, 29])

(21)

where χi = (qm/ks)2. Using the static structure factor
for ions in the Debye approximation (zini = ne) [30],

(22)

we obtain from expression (17) [18]

(23)

In this study, we determined the static structure
factor for ions by solving numerically the Ornstein–
Zernike (OZ) equation [31–33],

(24)

where g(r) = 1 + h(r) is the pair static structure func-
tion, C(r) is the direct correlation function, and ni is
the ion concentration. For closing the OZ equation,
we used the hypernetted-chain (HNC) approximation
[34]:

(25)

where Uii(r) is the interaction potential for the particles
under investigation and γ(r) = h(r) – C(r). In our case,
we used Debye potential (18) for describing the ion–
ion interaction. The hypernetted-chain approxima-
tion is found to be sufficiently accurate for describing
Coulomb systems and systems of particles, the inter-
action of which is described by the Debye potential
(see, for example, [35]).

The static structure factor is connected with the
two-particle correlation function by the Fourier trans-
form [32]:
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The OZ equation was solved by iterations [36, 37];
for the initial solution, the values of the static structure
factor in the Debye approximation (22) were speci-
fied. For accelerating the convergence, we used the
procedure proposed in [38].

3. NUMERICAL CALCULATIONS
AND DISCUSSION OF RESULTS

In this study, we consider two variants of determin-
ing the Debye screening constant taking into account
(ks = kD) and disregarding (ks = kDe) the contribution
of the ion component. The value of boundary
wavevector qm was defined either in [18],

(27)
or as the reciprocal Landau radius in a nondegenerate
plasma with a transition to 2kF in a degenerate plasma
(as in [20]):

(28)
Here, kE is the wavenumber determined from the
mean electron kinetic energy (14):

(29)

which is transformed to the wavenumber of an elec-
tron with the Fermi energy in a strongly degenerate
case. In this study, we performed calculations for four
variants of the choice of the maximal value of the wav-
enumber and screening constant: (i) ks = kDe, qm = qmZ;
(ii) ks = kD, qm = qmZ; (iii) ks = kDe, qm = qmS; and (iv)
ks = kD, qm = qmS.

Analysis of various variants of the choice of the
screening constant and the boundary value of the
wavevector is dictated by the following circumstances.
As noted above, the electron screening constant is
used as the screening constant in a number of publica-
tions. Such a choice is justified in the case of metals,
because ions are at the crystal lattice sites; however, in
the case of a plasma with not very high values of the
nonideality parameter (see Fig. 2, in which an increase
of ordering in the ion distribution upon an increase in
Γ is observed), the ion component also participates in
the screening of the electric field of ions. The choice of
the boundary value of the wavevector equal to 2kF in
the case of metal is obvious, because the transport is
mainly executed by electrons with energies close to the
Fermi surface; however, such a choice in the case of a
plasma is questionable.

Figure 1 shows that the value of qmS, which coin-
cides with the reciprocal Landau radius for low elec-
tron concentrations, tends to the value equal to the
reciprocal Landau radius determined when the Fermi
energy is taken as temperature for an electron concen-
tration on the order of 1019 cm–3; as the concentration
increases further to about 1025 cm–3, the value of qmS
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Fig. 2. (Color online) (a) Two-particle correlation function and (b) static structure factor for ions at T = 300 K, zi = 1 for different
values of the nonideality parameter Γ = 4.2 × 10–3 (1), 0.416 (2), 89.7 (3), 193 (4), 416 (5), and 897 (6).
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tends to 2kF. It should be noted that the behavior of
qmS is very close to the behavior of the reciprocal Lan-
dau radius with mean kinetic energy 〈εe〉 instead of
temperature (see curve 7 in Fig. 1). For low concentra-
tions, the value of qmZ coincides with  and tends to
2kF upon an increase in the concentration.

It can also be seen from Fig. 1 that the electron
Debye radius for ne > 1018 cm–3 becomes sensitive to
degeneracy at room temperature, and the electron
screening constant becomes noticeably smaller than
the ion screening constant.

Figure 2 shows the dependence of the two-particle
correlation function and the static structure factor for
ions with multiplicity of ionization zi = 1 at T = 300 K
on r/a and ka for different values of nonideality
parameter Γ, which is defined as

(30)

Using analogous dependences of the static structure
factor, we calculated Coulomb logarithm (17). The
inequality kmax > qm usually held, but if it was violated,
we set Si = 1 in the range of kmax < k ≤ qm, were kmax is
the maximal value of the wavevector in calculations of
the static structure factor.

3.1. Calculations for ks = kDe and qm = qmZ (Variant 1)
Figure 3 shows the dependences of the Coulomb

logarithm on the electron concentration for variant 1.
It can be seen that with increasing ne, Λei decreases and
passes through a minimum at ne ~ 1019 cm–3. Curve 2
calculated for Si = 1 behaves analogously; therefore,
we can conclude that the emergence of the minimum
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is not associated with variations of the static structure
factor upon a change in the ion concentration. Com-
paring curves 1 and 2, we can conclude that the inclu-
sion of the ion–ion correlation contributes to the
Coulomb logarithm even for ne ~ 1012 cm–3, but this
contribution becomes especially noticeable for ne >
1020 cm–3, when correlations must be taken into
account and lead to a substantial decrease in the elec-
tron scattering cross section.

It can be seen from Fig. 3 that the calculations with
the static structure factor in the Debye approximation
(22) are in good agreement with the calculations in
which the static structure factor is determined from
the OZ equation up to electron concentrations on the
order of 1015 cm–3; for higher concentrations, the dis-
crepancy becomes noticeable. It should be noted that
the approximation with Si ≈ 1 proves to be more exact
in this range.

Figure 3 also shows the values of the Coulomb log-
arithm calculated using the classical formulas for a
nondegenerate plasma (curve 4). It can be seen that
curve 4 for low ne is close to the dependence
ln(qmZ/kDe), which is the asymptotic form of the
dependences (21) and (23) for ne → 0 (see [18]).

Figure 4 shows the corrections to the classical elec-
tron screening radius at different temperatures. It can
be seen that at T = 300 K, the degeneracy effects for
the electron component of the plasma become notice-
able for ne ~ 1018 cm–3; with increasing ne, the screen-
ing properties of the electron gas become noticeably
weaker. With increasing electron temperature, the
screening effects are reduced, and the deviation of the
correction from unity are observed for large values of
ne. For this reason, the minima of the Coulomb loga-
rithm are also shifted towards higher electron concen-
D THEORETICAL PHYSICS  Vol. 126  No. 3  2018
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Fig. 3. Coulomb logarithm as a function of the electron
concentration at T = 300 K, zi = 1 with the boundary value
of the wavevector qm = qmZ disregarding the contribution
of ions to screening, ks = kDe. Curve 1 corresponds to
numerical integration of relation (17), (2) (21), (3) (23),
(4) (4) for the classical case, (5) Λei = ln(qmZ/kDe).

100

101

10−1

10−2

10−3

1010 1012 1014 1016 1018

ne, cm−3

Λei

10221020108

5
54 3

2 1

Fig. 4. (Color online) Degeneracy correction to the classi-
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trations upon an increase in temperature, which can
clearly be seen in Fig. 5.

It can be seen from Fig. 5 that the values of the
Coulomb logarithm in a nondegenerate plasma
increase with temperature, which is associated with a
decrease in the Landau radius, as well as with an
increase in the screening radius. It can also be seen
that formula (23) is a good approximation only for ne ~
1015–1017 cm–3, and ion–ion correlations in the region
behind the minimum of Λei must be taken into account
more exactly than in the Debye approximation.

Comparison of the positions of minima of Λei in
Fig. 5 and of ratio kF/kDe in Fig. 6 shows that these
positions almost coincide. The emergence of a mini-
mum of ratio kF/kDe is associated with the following
circumstance. Screening constant kDe on the left
branch in the range of a nondegenerate plasma
increases in proportion to , while kF increases as

; for this reason, their ratio decreases as . On
the right branch behind the minimum, screening con-
stant kDe in the range of the degenerate plasma

increases as  in accordance with relation (13);
therefore, ratio kF/kDe increases in proportion to .
This explains the emergence of the minimum of ratio
kF/kDe in the region of transition from the nondegener-
ate to degenerate plasma. This leads to the conclusion
that the emergence of the minimum of the Coulomb
logarithm is a consequence of suppression of screening
of ions due to the degeneracy of the electron gas.
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With increasing charge number of ions, the values
of the Coulomb logarithm decrease (see Fig. 7) due to
an increase in the Landau radius for small ne < 1014–
1015 cm–3 (the theoretical curves with Si = 1 for differ-
ent values of zi subsequently merge into one curve),
while the differences for large ne are due to differences
in the static structure factors in Debye approximation
(22), as well in those obtained from the OZ equation
in the HNC approximation. As can be seen from
YSICS  Vol. 126  No. 3  2018
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Fig. 6. (Color online) Dependences of the ratio of the
Fermi wavenumber to the electron screening constant on
the electron concentration at different temperatures:
300 (1), 1000 (2), and 3000 K (3).
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Fig. 7. (Color online) Coulomb logarithm as a function of
the electron concentration at T = 300 K with the boundary
value of the wavevector qm = qmZ disregarding the contri-
bution of ions to screening, ks = kDe at different values of
the ion charge number zi = 1 (1), 3 (2), and 5 (3). Solid curves
correspond to numerical integration of expression (17) with
the static structure factor from the OZ equation in the
HNC approximation; dot-and-dash curves correspond to
formula (21) and dotted curves, to (23).
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the electron concentration at T = 300 K, zi = 1 with the
boundary value of the wavevector qm = qmZ taking into
account the contribution of ions to screening, ks = kD.
Numeration of the curves is the same as in Fig. 3. 
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Fig. 7, the Λei minima are observed for the same value
of ne because the position of the kF/kDe minimum is
independent of zi.

3.2. Calculations for ks = kD and qm = qmZ (Variant 2)

Figure 8 shows the dependences of the Coulomb
logarithm in variant 2 (ks = kD and qm = qmZ). It can be
seen that the minimum disappears in this case, and
only the singularity in the form of two slight inflec-
tions is left in the region of the minimum in variant 1.
In this case, the calculations with the static structure
factor in the Debye approximation turn out to be quite
close to curve 1 up to ne ~ 1018 cm–3, and the results of
calculations with Si = 1 almost coincide with the cal-
culations in which Si is obtained from the OZ equa-
tion. Therefore, we can conclude that the effect of the
ion–ion correlation in this variant of calculations is
negligibly weak. An analogous behavior is also
observed at other temperatures (Fig. 9).

3.3. Calculations for ks = kDe and qm = qmS (Variant 3) 
and ks = kD and qm = qmS (Variant 4)

In Fig. 10, the above four variants of calculation are
compared. It can be seen that in calculations with qm =
qmS, the values of the Coulomb logarithm are notice-
ably smaller than in calculations with qm = qmZ. The
values of Λei are found to be smaller in calculations
with ks = kD than with ks = kDe. As can be seen from
Fig. 10, the inclusion of the ion–ion correlation is
important only in calculations disregarding screening
by ions. An analogous pattern was also observed in cal-
culations with T = 300, 1500, and 3000 K.
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4. ELECTRICAL CONDUCTIVITY
OF A NONIDEAL PLASMA

Apart from the Coulomb logarithm, we calculated
the electrical conductivity of a plasma for the four
variants of determining the Coulomb logarithm. The
conductivity was determined using the Lorenz–Bloch
D THEORETICAL PHYSICS  Vol. 126  No. 3  2018



COULOMB LOGARITHM IN NONIDEAL AND DEGENERATE PLASMAS 437

Fig. 9. (Color online) Coulomb logarithm as a function of
the electron concentration for zi = 1 with the boundary
value of the wavevector qm = qmZ taking into account the
contribution of ions to screening, ks = kD at different tem-
peratures: 300 K (1); 1500 K (2), and 5000 K (3). Solid curves
correspond to numerical integration of expression (17) with
the static structure factor from the OZ equation in the
HNC approximation; dot-and-dash curves correspond to
formula (21) and dotted curves, to (23).
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Fig. 10. (Color online) Coulomb logarithm as a function of
the electron concentration for zi = 1, T = 5000 K. Curve 1
corresponds to variant 1 with the boundary value of
wavevector qm = qmZ disregarding the contribution of ions
to screening, ks = kDe; (2) variant 2 with qm = qmZ and ks =
kD; (3) variant 3 with qm = qmS and ks = kDe; (4) variant 4
with qm = qmS and ks = kD. Solid curves correspond to
numerical integration of expression (17) with the static
structure factor from the OZ equation in the HNC approx-
imation; dot-and-dash curves correspond to formula (21)
and dotted curves, to (23).
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model [18, 28]:

(31)

Here, ν is the transport frequency of electron colli-
sions:

(32)

where Qea and Qei are the transport cross sections of
electron scattering by atoms with concentration na and
ions with concentration ni, respectively. If the plasma
contains several species of neutral atoms (molecules)
and/or ions, summation should be performed over
these species of particles. In this work, we consider
only the case when collisions of electrons with singly
ionized ions prevail. In the general case, the collisions
with neutral atoms and molecules must be taken into
account, which will reduce the electrical conductivity
of the plasma; for this reason, the values obtained in
this study determine the upper boundary of the elec-
trical conductivity.

In the case when the electron–ion collisions dom-
inate, we have

(33)
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Using relation (32), we obtain from (31)

(34)

Figure 11 shows the dependences of the electrical
conductivity for the four variants of selection of the
boundary value of the wavevector and the screening
constant. It can be seen that the lowest values of the
conductivity are obtained in the calculations with vari-
ant 1 (ks = kDe and qm = qmZ); the results obtained in
variant 3 (ks = kDe and qm = qmS) begin to approach
these values for high electron concentrations. It can be
seen from Fig. 11 that the values of the conductivity
with the unit value of the Coulomb logarithm for ne >
1017 cm–3 are lower than in all four variants.

Figure 11 also shows the values of the electrical
conductivity of the plasma, which were obtained in
[18] taking into account the contribution of neutral
atoms and molecules to electron scattering, and the
Coulomb logarithm was calculated by formula (23) as
in variant 4 (see dotted curve 4 in Fig. 10). The contri-
bution of neutral atoms and molecules to the total
scattering cross section turned out to be overwhelm-
ing. Figure 11 also shows the experimental values of
the plasma conductivity measured in [39–43]. For
determining the electron concentration from the
number density or concentration of atoms and mole-
cules of the neutral gas, we used the results of calcula-
tions [18]; the recalculation was performed at a tem-
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π ηπ Λ
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( )2 8 .
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e
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Fig. 11. (Color online) Conductivity in the case when scat-
tering of electrons by ions prevails at T = 5000 K, zi = 1.
Curve 1 corresponds to variant 1 (qm = qmZ, ks = kDe);
(2) variant 2 (qm = qmZ, ks = kD); (3) variant 3 (qm = qmS,
ks = kDe); (4) variant 4 (qm = qmS, ks = kD); (5) calculation
with Λei = 1; (6) calculation [18]; (s) experimental data
from [40, 41]; (n) experimental data from [42].
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perature of 5000 K for the results obtained in [39, 41]
and at 2500 K for the data from [42]. It can be seen that
a number of experimental points are above curves 1
and 5; for this reason, the results of calculations with
the Coulomb logarithm as in variant 1 and for Λei = 1
are in worse agreement with experimental data from
[39–43] than in calculations in the three remaining
variants when electron scattering by neutral hydrogen
atoms and molecules is taken into account.

5. CONCLUSIONS

The investigations carried out in this study have
shown that the values of the Coulomb logarithm
strongly depend on the choice of the boundary value
of the wavevector and on the choice of the method for
determining the ion screening constant taking into
account or disregarding this contribution. The effect
of the ion–ion correlation in a nondegenerate plasma
is found to be weak, while in the degenerate plasma,
this correlation must be taken into account only in the
case when the ion–ion interaction potential is deter-
mined by the screening by the electron component
alone. Comparison of the calculated values of the
electrical conductivity of the hydrogen plasma with
the experimental values obtained in the megabar
region of pressures have shown that the values of the
Coulomb logarithm that are much smaller than unity
can indeed exist. A more accurate determination of
the Coulomb logarithm requires the planning and
running of special experiments.
JOURNAL OF EXPERIMENTAL AN
Small values of the Coulomb logarithm at high
pressures make scattering by neutral atoms and mole-
cules a dominating process (in hydrogen up to densi-
ties on the order of 1 g/cm3) despite the above-men-
tioned ionization by pressure and the high degree of
ionization of the gas. Since the frequency of electron–
ion collisions is strongly reduced by the small Cou-
lomb logarithm, electrons in a nonideal dense plasma
can be “magnetized” quite easily in moderate mag-
netic fields of about 1 T. At extremely high pressures
and gas densities (this range of densities for hydrogen
is above 5 g/cm3), scattering of electrons by ions pre-
vails over scattering by neutral atoms and molecules.
For this reason, the electron transfer coefficients in
such conditions are determined by collisions of elec-
trons with ions and not with neutral atoms. The elec-
trical and thermal conductivities of the plasma in this
case may turn out to be comparable with or higher
than their values in metals. At high temperatures, the
heat transfer is determined by heat conduction; there-
fore, the electron thermal conductivity plays an insig-
nificant role; however, its value on a low-temperature
plasma can be significant. This paves ways for experi-
mental verification of various theories of electron
transport in a nonideal plasma, including the methods
for determining the Coulomb logarithm. The electri-
cal (and thermal) conductivity in a magnetic field
across this field cannot be extremely high and can be
measured experimentally.
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