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Abstract—It has been shown that localized and semi-localized stationary states exist near a thin structured
defect layer between a linear medium and a Kerr nonlinear medium. Localized states are described by a
monotonically decreasing amplitude of the field on the both sides of the interface between the media. Semi-
localized states are characterized by the field that has the form of a standing wave in the linear medium and
decreases monotonically in the nonlinear medium. Kerr media with self-focusing and defocusing are consid-
ered. The proposed model is described by a system of the linear and nonlinear Schrödinger equations with a
specific potential simulating a thin structured defect layer. It has been shown that localized and semi-local-
ized states exist in different energy ranges in the case of contact of the linear medium with the self-focusing
medium. In the case of contact of the linear medium with the defocusing medium, two types of localized and
semi-localized states differing in energy and field profile can exist in different energy ranges. In particular
cases, expressions for energies of states of these types have been obtained and conditions of their applicability
have been indicated.
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1. INTRODUCTION

Localization of excitations of various physical
fields is one of the contact phenomena at an interface
between crystals with different characteristics. Such
processes play an important role when developing var-
ious technical applications involving nonlinear optical
media, multilayer structures with various magnetic
properties, layered crystals with a multiatomic unit
cell, etc.

Theoretical studies of the features of propagation of
nonlinear waves are of particular interest for the devel-
opment of such systems. Nonlinear surface waves as
vibrational states localized near defects in crystals have
long been studied [1].

In most cases, nonlinear waves are analytically
described by the nonlinear Schrödinger equation. This
equation includes a term with the third power of the
wavefunction corresponding to the so-called Kerr
nonlinearity. Nonlinear optical waves localized near
the interface between Kerr nonlinear media and in
layered structures were theoretically described in
detail in [2]. Such studies were continued in [3, 4],
where various models of interfaces between nonlinear
crystals were used. The existence of nonlinear surface
waves at the interface between the linear and nonlinear
media was revealed in [5]. Localized nonlinear states
at the interface between nonlinear media with spatial
dispersion were considered in [6]. The features of the

interaction between bound soliton states referred to
different states of a two-level system near a defect were
analyzed in [7].

The interaction of nonlinear excitations with
defects plays an important role in nonlinear dynamics.
Mathematical models based on the nonlinear
Schrödinger equation make it possible to qualitatively
analyze effects of localization of an excitation. Local-
ization of the excitation is due to the character of the
interaction between the excitation and defects. A
defect is usually simulated by a potential appearing in
the nonlinear Schrödinger equation. In the standard
approximation for a short-range potential in a one-
dimensional model, this potential has the form

(1)
where δ(x) is the Dirac delta function and U0 is the
intensity of the interaction of the excitation with the
defect located at the origin of the coordinate system
(sometimes called the “power” of the defect). At U0 >
0 and U0 < 0, the excitation repels and attracts a defect,
respectively.

The model of the defect based on the potential
given by Eq. (1) is insufficient to completely analyze
the effect of the intrinsic characteristics of the defect
on localization of excitations. In order to study the
possibility of controlling the propagation of waves in
layered structures through interfaces between media,
which present the effect of long-range forces, a modi-

= δ0( ) ( ),U x U x
284



LOCALIZATION OF EXCITATIONS NEAR 285
fied potential was proposed in [8] for simulation of a
structured planar defect. To theoretically describe the
features of scattering of waves in a linear medium with
the spatial dispersion, the modified potential was used
in [9], where the linear Schrödinger equation includ-
ing higher-order derivatives with such a potential was
solved. Peculiarities of the localization of nonlinear
excitations near the structured defect were described
in [10]. A solution of the nonlinear Schrödinger equa-
tion with the modified potential was found for nonlin-
ear media containing the structured defect.

It is noteworthy that there are other theoretical
approaches to the description of thin planar defects
with the use of nonstandard potentials, in particular,
nonlinear with respect to the desired field [11].

It is well known that the types of solutions of the
nonlinear Schrödinger equation are determined by the
sign of nonlinearity. Free solitons propagate in a
medium without a defect (U(x) ≡ 0). In the case of
positive nonlinearity (γ > 0) and when E < Ω, the non-
linear Schrödinger equation (  = 1 is accepted),

where m, Ω, and γ are constants, has the stationary
solution

As is known, the nonlinear Schrödinger equation
with negative nonlinearity (γ < 0) has two types of sta-
tionary solutions:

(i)

with

at E < Ω;
(ii)

with

at E > Ω.
Localized states in nonlinear media with positive

and negative nonlinearities, which are described by
wavefunctions with hyperbolic cosine and sine, and
with the interface between them simulated by the
short-range potential given by Eq. (1) have been
unambiguously described in the literature. Solutions
of such type vanish at infinity; i.e., |ψ| → 0 at x → ∞.
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The solution of the nonlinear Schrödinger equation
with negative nonlinearity, which is described by the
wavefunction with hyperbolic tangent and is called
kink, does not satisfy this condition, but it is widely used
to describe various physical phenomena (in paticular,
in a superconductor).

In this work, it is shown that there are several types
of localized states near the structured planar defect
between linear and nonlinear media. The cases of con-
tact of the linear medium with Kerr nonlinear media
with positive and negative nonlinearities are consid-
ered. The main aims of the work are to find the ener-
gies of localized states of all types appearing in the
considered system and to analyze the effect of the
internal structure of the defect on the features of local-
ization of excitations.

2. EQUATIONS OF THE MODEL
Let a thin spacer separating crystals with harmonic

and anharmonic interactions between elementary
excitations be located in the yz plane perpendicular to
the x axis. The thickness of the spacer is much smaller
than the characteristic localization length of exci-
tations.

The linear (harmonic) and nonlinear (anhar-
monic) crystals occupy the x < 0 and x > 0 half-spaces,
respectively. Correspondingly, the parameter of non-
linearity in the nonlinear Schrödinger equation has
the form

The interface as a planar defect produces a perturba-
tion of the characteristics of media, which is localized
at distances much smaller than the localization length
of the considered excitations.

The model of the structured defect was proposed in
[8] and was used for the case of a linear medium with
spatial dispersion [9] and for a nonlinear crystal [10].
Such a defect is mathematically described by a short-
range potential. The modified potential includes the
effect of the interaction not only between the nearest
neighbors in the crystal lattice but also between the
next-nearest neighbors in the long-wavelength
approximation. Such a description is important at the
transition from discrete lattice models to continuum
medium models.

It is proposed to describe the structured defect by
the limiting case of a double-hump potential (poten-
tial with two symmetric peaks). Such a description is
possible for a potential well with a quasistationary
energy level. The potential well can be specified by
Eq. (1) with an additional term with the second deriv-
ative of the Dirac delta function in the limiting case of
an infinitely deep crater:

(2)
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286 SAVOTCHENKO
where V0 is the second parameter characterizing the
interaction of the internal structure of the interface
between media with excitations.

Let the interaction of nonlinear excitations local-
ized near the structured defect be described by the
one-dimensional nonlinear Schrödinger equation
( = 1 is accepted):

(3)

Here, m is the effective mass of an excitation and

where Ω1 and Ω2 are constants.

To find stationary states with the energy E, it is
appropriate to substitute the wavefunction

into the nonlinear Schrödinger equation (3). This sub-
stitution reduces Eq. (3) to the time-independent
nonlinear Schrödinger equation

(4)

The solution of the nonlinear Schrödinger equa-
tion (4) with the potential (2) is equivalent to the solu-
tion of the nonlinear Schrödinger equation without
potential:

(5)

with two matching boundary conditions at the point
x = 0 lying in the plane of the defect. The first bound-
ary condition corresponds to the continuity of the
wavefunction:

(6)

As was described in [8], to obtain the second
boundary condition, it is necessary to integrate both
sides of Eq. (4) with the potential (2) with respect to x
over a narrow interval [–ε; ε] and to tend ε to zero.
Since the derivatives of the wavefunction are not con-
tinuous at the point x = 0, the second boundary con-
dition is obtained in the form

(7)

Condition (7) with V0 = 0 yields the well-known
boundary condition used to describe the localization
and scattering of excitations on a point defect, which
corresponds to the short-range potential (1).
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3. LOCALIZED STATES
3.1. Localized States at the Interface between
a Linear Crystal and a Self-Focusing Medium

In the case of contact of a linear crystal with a self-
focusing medium, i.e., with a crystal with positive
nonlinearity (γ > 0), when the energy of the excitation
is in the range E < min{Ω1, Ω2}, the nonlinear
Schrödinger equation (5) has the solution

(8)

The parameters of the solution (8) are determined
after its substitution into Eq. (5) and continuity condi-
tion (6):

(9)

(10)

(11)

The parameter x0 specifies the position of the “center”
of the soliton in the nonlinear crystal to the right of the
defect. It is related to the energy of localization of the
excitation, which is determined from the dispersion
relation obtained after the substitution of solution (8)
into the boundary condition (7):

(12)

One of the wavenumbers (any of q1 and q2 because
they are related to each other) can be found from
Eq. (12); as a result, the energy is determined as a
function of the parameters E = E(m, U0, V0, γ, x0). The
position x0 of the center of the soliton is a free param-
eter. Dispersion relation (12) will be analyzed in vari-
ous particular cases where its solution can be obtained
in an explicit form.

In the case of the structureless defect, Eq. (12) with
V0 = 0 gives the dispersion relation

(13)
In the long-wavelength approximation at q2x0 ≪ 1, the
energy of the localized state can be obtained from
Eq. (13) in the explicit form

(14)

For the structured defect at V0 ≠ 0, the energy of the
localized state whose center lies in the plane of the
defect, i.e., x0 = 0, can be obtained from Eq. (12) in the
explicit form. In this case, the spatial damping of the
excitation in the linear crystal is determined from
Eq. (12) in the form
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(15)
Since q1 > 0, the parameters of the defect should sat-
isfy the condition

The energy of this localized state can be obtained
from Eqs. (9) and (15):

(16)
It is noteworthy that the spatial damping and energy of
such a state with x0 = 0 at Ω1 = Ω2 will be the same as
for the structureless defect, as follows from Eqs. (14)
and (16).

In the long-wavelength approximation at q2x0 ≪ 1
and V0 ≠ 0, the energy of the localized state is obtained
from Eq. (12) in the form

(17)

where d = 2m[U0 + mV0(Ω1 – Ω2)]. The long-wave-
length approximation (q2x0 ≪ 1) means that the
energy of the excitation is close to the edge of the spec-
trum, i.e.,

|Ω2 – E| ≪ 1/2m .

In the long-wavelength approximation or at x0 = 0,
Eq. (11) gives the amplitude of oscillations of the
defect layer in the form

3.2. Localized States at the Interface between a Linear 
Crystal and a Defocusing Medium

In the case of contact of a linear crystal with a defo-
cusing medium, i.e., with a crystal with negative non-
linearity (γ < 0), when the energy of the excitation lies
in the range E < min{Ω1, Ω2}, the nonlinear
Schrödinger equation (5) has the solution

(18)

For the solution (18) to be bounded, the condition x0 <
0 should be satisfied. The parameters of the solution
(18) are determined after its substitution into Eq. (5)
and the continuity condition (6). Let g = –γ > 0 for
convenience. The parameters q1,2 are determined by
Eq. (9), and the amplitudes have the form
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The substitution of the solution (18) into the
boundary condition (7) gives the dispersion relation

(21)

In the case of the structureless defect, Eq. (21) with
V0 = 0 provides the dispersion relation in the form

(22)
In the long-wavelength approximation (q2x0 ≪ 1), the
spatial damping in the linear crystal can be obtained
from Eq. (22) in the form

(23)

Since q1 > 0, the parameters of the defect should
satisfy the condition U0 < –1/2mx0. To be bounded,
the localized state (18) should satisfy the condition
x0 < 0; consequently, U0 > 0. In other words, the local-
ized state under consideration exists only for repulsive
defects. The energy of such a state is determined after
the substitution of Eq. (23) into Eq. (9):

(24)

In the long-wavelength approximation (q2x0 ≪ 1), the
spatial damping of the excitation in the linear crystal
with the structured defect at V0 ≠ 0 is obtained from
Eq. (21) in the form

(25)

Since the spatial damping in the linear crystal is
positive, the parameters of the defect should satisfy the
condition

Thus, because of the existence of the internal structure
of the defect, the localized state described by the solu-
tion given by Eq. (18) can exist for both attractive and
repulsive defects. The energy of this state is deter-
mined after the substitution of Eq. (25) into Eq. (9):

(26)

In the long-wavelength approximation at q2x0 ≪ 1,
Eq. (20) yields the amplitude of oscillations of the
defect layer in the form

In the case of contact of the linear crystal with the
crystal with negative nonlinearity, when the energy of
the excitation lies in the range Ω2 < E < Ω1, the non-
linear Schrödinger equation (5) has another solution
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(27)

For the existence of such a solution, the condition
Ω2 < Ω1 should be satisfied, which was not required for
the existence of the solutions described above.

The parameters of the solution (27) are determined
after its substitution into Eq. (5) and the continuity
condition (6). The q1 value is given by Eq. (9) and the
other characteristics have the form

(28)

(29)

(30)

The substitution of the solution (27) into the boundary
condition (7) gives the dispersion relation

(31)

In the case of the structureless defect at V0 = 0, the dis-
persion relation (31) acquires the form

(32)

In the long-wavelength approximation (qtx0 ≪ 1), the
same expressions for the spatial damping of the exci-
tation in the linear crystal (23) and energy (24) as for
the localized state described by the wavefunction (18)
are obtained from Eq. (32).

In the long-wavelength approximation at qtx0 ≪ 1
and under the additional condition mV0q1 ≪ 1, the
spatial damping of the excitation in the linear crystal
with the structured defect at V0 ≠ 0 is obtained from
Eq. (31) in the form

(33)

The long-wavelength approximation qtx0 ≪ 1 means
that the energy of the excitation is close to the edge of
the spectrum; i.e.,

The additional requirement means that |Ω1 – E| ≪
1/2m3 . Such conditions can be satisfied simultane-
ously in a sufficiently narrow band when Ω2 and Ω1 are
close to each other:
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Without the additional requirement mV0q1 ≪ 1, in
the long-wavelength approximation, the spatial damp-
ing of the excitation in the linear crystal is obtained
from Eq. (31) in the form

(34)

The energy of this state is determined after the substi-
tution of Eq. (34) into Eq. (9):

(35)

where

For the existence of such a state, the condition Ωa >
‒Ωb should be satisfied; i.e.,

Under this condition, the considered state can exist for
different signs of the parameters of the defect and the
free parameter.

In the long-wavelength approximation at qtx0 ≪ 1,
Eq. (30) yields the amplitude of oscillations of the
defect layer in the form

4. SEMI-LOCALIZED STATES
4.1. Semi-Localized States at the Interface between

a Linear Crystal and a Self-Focusing Medium
In the case of contact of a linear crystal with a crys-

tal with positive nonlinearity (γ > 0), when the energy
of the excitation lies in the range Ω1 < E < Ω2, the non-
linear Schrödinger equation (5) has the solution

(36)

For the existence of such a solution, the condition
Ω1 < Ω2 should be satisfied. The parameters of the
solution (36) are determined after its substitution into
Eq. (5) and continuity condition (6). The parameter q2
is given by Eq. (9), the amplitude Ac is specified by
Eq. (10), and the characteristics of the wave in the lin-
ear crystal have the form

Ω − Ω −� �1 23 2 2
0 0

1 1 .
2

E
m V mx

⎧ ⎫= + Ω − Ω − − −⎨ ⎬
⎩ ⎭

1 0 0 1 2 0
0 0

1 11 8 [ ( ) ] 1 .
4

q mV mV U
mV x

⎛ ⎞Ω= Ω − Ω ± +⎜ ⎟Ω⎝ ⎠
2 1 1 ,b

a
a

E

Ω = 2 2
0

1 ,
32

a
m V

⎡ ⎤Ω = Ω − Ω − −⎢ ⎥
⎣ ⎦

0 1 2 0
0 0

1 1( ) .
2 2b mV U
V mx

⎛ ⎞< Ω − Ω + −⎜ ⎟
⎝ ⎠

0 0 1 2
0 0

1 1 1( ) .
2 2

U mV
m mV x

ψ = −
2

0
0 .t

t
q x

mg

+ ϕ <⎧ψ = ⎨ − >⎩ 2 0

cos( ), 0,
( )

/ cosh[ ( )], 0.
c

c

B kx x
x

A q x x x
D THEORETICAL PHYSICS  Vol. 126  No. 2  2018



LOCALIZATION OF EXCITATIONS NEAR 289
(37)

(38)

The substitution of the solution (36) into the
boundary condition (7) yields the dispersion relation

(39)

One of the wavenumbers (any of k and q2 because they
are related to each other) can be found from Eq. (39);
as a result, the energy is determined as a function of
the parameters E = E(m, U0, V0, γ, ϕ, x0). The position
x0 of the center of the soliton and the phase ϕ are now
free parameters.

The solution (36) describes the state in which the
linear wave after the transition through the thin defect
layer damps deep in the anharmonic crystal; i.e.,
waves are localized. Since the energy of such a station-
ary state is in the spectrum of linear waves and the
excitation is localized on one side of the planar defect,
states of such a type can be called semi-localized.

In the case of the structureless defect at V0 = 0, the
dispersion relation is obtained from Eq. (39) in the
form

(40)

The energy of the solution for which x0 = 0 is deter-
mined from Eq. (40) in the form

(41)

The considered state and states that will be obtained
below exist for certain values of the phase ϕ.

In the long-wavelength approximation at q2x0 ≪ 1,
the expression for the energy of the semi-localized
state can be obtained from Eq. (40) in the explicit form
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ϕ = 0 can exist only at x0 ≠ 0.
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energy is obtained from Eq. (39) in the form
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States with the energy given by Eq. (44) exist at phases
satisfying the condition tan2ϕ > 8m Ωc.

4.2. Semi-Localized States at the Interface between
a Linear Crystal and a Defocusing Medium

In the same energy range, Ω1 < E < Ω2, in the case
of contact of a linear crystal with a crystal with nega-
tive nonlinearity (γ = –g < 0), the nonlinear
Schrödinger equation (5) has another solution:

(45)

The parameters of the solution (45) are determined
after its substitution into Eq. (5) and the continuity
condition (6). The parameter q2 is given by Eq. (9), the
amplitude As is specified by Eq. (19), the wavenumber
k is given by Eq. (37), and the amplitude of the wave in
the linear crystal has the form

(46)

The substitution of the solution (45) into the
boundary condition (7) yields the dispersion relation

(47)

The position x0 of the center of the soliton, which
should be negative for the solution (45) to be bounded,
and the phase ϕ are free parameters for such a semi-
localized state.

In the case of the structureless defect at V0 = 0,
Eq. (47) gives the dispersion relation

(48)

In the long-wavelength approximation (q2x0 ≪ 1), the
energy of the semi-localized state can be obtained
from Eq. (48) in the explicit form

(49)

In the long-wavelength approximation at q2x0 ≪ 1 and
V0 ≠ 0, the energy of the semi-localized state is
obtained from Eq. (47) in the form

(50)
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In the case of contact of a linear crystal with a crys-
tal with negative nonlinearity (γ = –g < 0), the nonlin-
ear Schrödinger equation (5) in the energy range E >
max{Ω1, Ω2} has another solution

(51)

The parameters of the solution (51) are determined
after its substitution into Eq. (5) and the continuity
condition (6). The parameter qt is given by Eq. (28),
the amplitude At is specified by Eq. (29), the wave-
number k is given by Eq. (37), and the amplitude of the
wave in the linear crystal has the form

(52)

The substitution of the solution (51) into the boundary
condition (7) gives the dispersion relation

(53)

In the case of the structureless defect at V0 = 0,
Eq. (53) provides the dispersion relation

(54)

The energy of such a state obtained from Eq. (54) in
the long-wavelength approximation (qtx0 ≪ 1) coin-
cides with the energy given by Eq. (49).

In the case of the structured defect (V0 ≠ 0), the
energy of the semi-localized state is obtained from
Eq. (54) in the long-wavelength approximation
(qtx0 ≪ 1) in the form

(55)

where

For the existence of such a state, the condition Ωt <

‒  should be satisfied. Consequently,

Since Ωt can have any sign, semi-localized states with
the energy given by Eq. (55) can exist for both attrac-
tive and repulsive defects.

+ ϕ <⎧ψ = ⎨ − >⎩ 0

cos( ), 0,
( )

tanh[ ( )], 0.
t

t t

B kx x
x

A q x x x

= −
ϕ

0tanh( ).
cos

t t
t

q q xB
mg

ϕ −

⎧ ⎡ ⎤⎫
= − +⎨ ⎬⎢ ⎥

⎩ ⎣ ⎦⎭

0
2

2
0 0 2

0

2tan
sinh(2 )

22 .
cosh ( )

t

t

t

t

qk
q x

qm U V k
q x

ϕ − = 0
0

2tan 2 .
sinh(2 )

t

t

qk mU
q x

ϕ ϕ= Ω + Ω + Ω Ω −1 ( 1 / 1),t t tE

ϕ ϕΩ =
2

2
0

tan ,
32

t
mx

Ω = + Ω − Ω +0 0 2 1 0
0

1 [ ( ) 1/2 ].
2t U mV mx
U

ϕΩt

ϕ > − Ω2 2 2
0tan 32 .tm U
JOURNAL OF EXPERIMENTAL AN
5. DISCUSSION
The effect of the internal structure of the defect on

the features of localization of stationary states will be
analyzed below.

5.1. Defect in the Linear Medium
The defect in the linear medium (γ = 0) is first con-

sidered under the simplifying assumption that the
medium to the left and right of the defect has the same
characteristics, in particular, Ω1 = Ω2 = Ω. In this
case, q1 = q2 = q. Free waves with the square dispersion
relation E = Ω + k2/2m, where k is the wavenumber,
propagate in the linear medium without defect
(γ(x) ≡ 0 and U(x) ≡ 0 in the nonlinear Schrödinger
equation (4)).

It is well known that a symmetric state exists in a
linear medium with a simple defect (U0 ≠ 0, V0 = 0),
which is described by the short-range potential (1),
and is localized on both sides of the defect. This state
is described by the wavefunction

where q = –mU0, and exists only for the attractive
defect with U0 < 0. The energy of such a local level is

E = Ω – m /2.
It was shown in [8] that localized states exist in the

linear medium with the structured defect and are
described by the wavefunction exponentially decreas-
ing on both sides of the defect for both the attractive
and repulsive defects. To reveal the effect of the inter-
nal structure of the defect on the localization of exci-
tations, the results will be analyzed below in detail for
the case U0 = 0 and V0 ≠ 0.

In this case, the localized state in the linear
medium is described by the same wavefunction as in
the linear medium with the simple defect (i.e., at U0 ≠
0 and V0 = 0), but the spatial damping is now q =

‒1/mV0 and the energy is E = – 1/2m3 . Such a
localized state exists at V0 < 0. It is noteworthy that the
localization length is l = 1/q = m|V0|; i.e., the coeffi-
cient V0 is proportional to the field localization length
in this case.

A particular role of the internal structure of the
defect leading to qualitatively new effects can be
demonstrated on the example of scattering of the
monochromatic plane wave from the defect simulated
by the potential (2). The scattering wavefunction can
be represented in the form

(56)

The reflection and transmission coefficients were
obtained in [8]. After the substitution of Eq. (56) into
the boundary conditions (6) and (7) at U0 ≠ 0 and
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V0 ≠ 0, these coefficients can be determined by the
formulas

(57)

(58)

Therefore, the total transmission when |R|2 = 0 and
|T|2 = 1 at the wavenumber k2 = U0/V0 is possible only
at V0 ≠ 0. The energy of the total transmission is given
by the expression

This effect does not occur for the structureless defect
(i.e., at V0 = 0).

5.2. Interface between Linear and Nonlinear Media
The case of contact of a linear crystal with a crystal

with positive nonlinearity (γ > 0), where the energy of
the excitation is in the range E < min{Ω1, Ω2} and the
wavefunction has the form of Eq. (8), is first consid-
ered. For the sake of simplicity, the localized state in
which x0 = 0 is considered. In the case of interest at
U0 = 0 and V0 ≠ 0, Eq. (15) gives the spatial damping

which corresponds to the energy of the localized state

Consequently, if Ω1 > Ω2, localization occurs at V0 <
0, whereas if Ω1 < Ω2, localization occurs at V0 > 0.
This means that the excitation can be localized near
both the attractive and repulsive defects depending on
the relation between the characteristics of the media
(e.g., the chemical potentials).

The next case is contact of a linear crystal with a
crystal having negative nonlinearity (γ < 0) when the
energy of the excitation is in the range E < min{Ω1, Ω2}
and the wavefunction has the form of Eq. (18). For
simplicity, only the case Ω1 = Ω2 = Ω can be consid-
ered; in this case, q1 = q2 = q. In the case of interest at
U0 = 0 and V0 ≠ 0, Eq. (25) in the long-wavelength
approximation qx0 ≪ 1 gives the spatial damping

Therefore, for the existence of a localized state, the
condition x0 < –2mV0 should be satisfied. Since the
condition x0 < 0 is required for the solution (18) to be
bounded, localization of the excitation is possible at
V0 > 0. At small V0 values, the localization length of
excitations is l ≈ x0(1 – 2V0/x0); i.e., such an excitation
almost damps at distances of about x0.

The next case is contact of a linear crystal with a
crystal having negative nonlinearity when the energy
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of the excitation is in the range Ω2 < E < Ω1 and the
wavefunction is given by Eq. (27). In the case of inter-
est at U0 = 0 and V0 ≠ 0, in the long-wavelength
approximation qx0 ≪ 1 and under the additional
requirement mV0q1 ≪ 1, Eq. (33) gives

For the existence of such a localized state, the condition
x0 > 1/2m2V0(Ω1 – Ω2) should be satisfied. Conse-
quently, since Ω2 < Ω1 and the sign of x0 is not fixed,
localization of the excitation is possible at any sign of V0.

It can be similarly shown that semi-localized states
described by functions (36), (45), and (51) can exist
under the conditions U0 = 0 and V0 ≠ 0.

Thus, the inclusion of the internal structure of the
interface, which sometimes leads to the appearance of
qualitatively new effects, can be important when
studying the features of localization of excitations near
the interface between media.

6. CONCLUSIONS

It has been shown that localized states of several
types can appear near a structured planar defect
between linear and nonlinear media. Such localized
states are described by soliton solutions of the nonlin-
ear Schrödinger equation.

The mathematical formulation of the model for the
description of the structured defect requires the use of
the modified potential including derivatives of the
Dirac delta function. The solution of the nonlinear
Schrödinger equation with this potential is reduced to
the solution of the nonlinear Schrödinger equation
without potential with boundary conditions. Solutions
of the formulated contact boundary value problem with
such conditions have been found. Explicit analytical
expressions have been obtained for the energy. It has
been shown that the inclusion of the internal structure
of the defect modifies the profile of nonlinear localized
excitations and the region of their existence.

Two types of stationary states exist in the consid-
ered system. States localized on both sides of the
defect constitute the first type. The second type of the
stationary state consists of a state localized in the non-
linear medium and a standing wave in the linear
medium and is called semi-localized.

Both types of stationary states are implemented in
three types determined by the sign of nonlinearity of
the medium and by the range of the possible energy
of excitations. In the case of contact of the linear
crystal with the self-focusing medium, i.e., with the
crystal with positive nonlinearity (γ > 0), the local-
ized state occurs when the energy of the excitation is
in the range E < min{Ω1, Ω2} and the semi-localized
state appears when the energy of the excitation is in
the range Ω1 < E < Ω2.

= Ω − Ω −2
1 0 1 2 02 ( ) 1/ .q m V x
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In the case of contact of the linear crystal with the
defocusing medium, i.e., with the crystal with negative
nonlinearity (γ < 0), two types of both localized and
semi-localized states exist. Localized states of the first
type are implemented in the excitation energy range
E < min{Ω1, Ω2}, whereas localized states of the sec-
ond type exist in the range Ω2 < E < Ω1. Semi-local-
ized states of the first and second types exist in the
excitation energy ranges Ω1 < E < Ω2 and E >
max{Ω1, Ω2}, respectively. Thus, different types of
localized states can be obtained by varying the local-
ization energy.

The results obtained in this work supplement stud-
ies [8–10] of the features of localization of nonlinear
excitations in media with defects to the case of the
interface between linear and nonlinear media.
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