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Abstract—Based on a discrete nonlinear Schrödinger equation (DNSE), we studied analytically and numer-
ically the peculiarities of the self-action of one-dimensional quasi-optic wave beams injected into a spatially
inhomogeneous medium consisting of a set of equidistant mutually coupled optical fibers. A variational
approach allowing the prediction of the global evolution of localized fields with the initially plane phase front
was developed. The self-consistent equations are obtained for the main parameters of such beams (the posi-
tion of the center of mass, the effective width, and linear and quadratic phase-front corrections) in the aber-
rationless approximation. The case of radiation incident on a periodic system of nonlinear optical fibers at an
angle to the axis oriented along them is analyzed in detail. It is shown that for the radiation power exceeding
a critical value, the self-focusing of the wave field is observed, which is accompanied by the shift of the inten-
sity maximum followed by the concentration of the main part of radiation only in one of the structural ele-
ments of the array under study. In this case, the beams propagate along paths considerably different from lin-
ear and the direction of their propagation changes compared to the initial direction. Asymptotic expressions
are found that allow us to estimate the self-focusing length and to determine quite accurately the final position
of a point with the maximum field amplitude after radiation trapping a channel. The results of the qualitative
study of the possible self-channeling regimes for wave beams in a system of weakly coupled optical fibers in
the aberrationless approximation are compared with the results of direct numerical simulations within the
DNSE framework.
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1. INTRODUCTION

One of the basic models for studying the self-action
of wave fields in a continuous medium is the nonlinear
Schrödinger equation (NSE) playing an important
role in optics, plasma physics, hydrodynamics, and in
the field of ultracold degenerate quantum gases [1–3].
This model (and its modifications) was used to
develop a variety of analytic methods explaining the
key features in the behavior of one or several mutually
interacting localized systems with finite amplitudes.
Methods of the qualitative analysis of the problem
such as, for example, the construction of self-similar
and soliton-like solutions, the method of moments,
the asymptotic expansion in a small parameter, the
variational approach, etc. [1–3], allow one to not only
interpret but also predict the results of numerical cal-
culations and laboratory experiments.

Nonlinear processes in periodic structured systems
are often studied using the discrete nonlinear
Schrödinger equation (DNSE) [2–9], which is a

direct analog of the NSE for spatially stratified media.
However, in this case, the evolution of wave fields is
analyzed, as a rule, based on numerical simulations
[2–9]. This is explained, first of all, by the fact that the
application of standard asymptotic procedures
becomes more complicated and quite cumbersome. In
addition, a combination of nonlinearity and discrete-
ness gives rise to new physical effects, in particular,
related to drastic structural changes of localized sys-
tems and considerable radiative losses. As a result, the
system dynamics proves to be more complicated [2–
10], and discrete models, even in the one-dimensional
case, demonstrate a number of scenarios of their
behavior that are not encountered in the continual
limit and require a separate analytic description and
understanding. For this purpose, a variational
approach is often used that is based on a priori con-
cepts about the structure of nonlinear excitations
under study [1–4, 9, 10]. In particular, this approach
for the DNSE was used to estimate the amplitude and
width of stationary soliton-like distributions [11–19].
21
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The variational method can also be quite effective for
the qualitative study of the evolution of localized sys-
tems [18–22].

In this work, we studied analytically and numeri-
cally within the DNSE framework the features of the
self-action of intense wave fields. For definiteness,
processes under study are considered by the example
of Gaussian optical beams injected at an angle to a
spatially inhomogeneous medium consisting of equi-
distantly arranges optical fibers. Interest in this prob-
lem is explained first of all by the fact that light beams
in modern fiber optics are controlled with the help of
periodic waveguides [3–8, 23, 24]. The theoretical
description of various aspects of the evolution of laser
radiation presented below can be used for interpreta-
tion and prediction of variations in the propagation
direction of the electromagnetic field and its self-
channeling in one of the structural elements of these
systems. Note that such effects have been already
observed directly in experiments [25–29]. Note also
that, due to the universality of the DNSE model, the
results presented here can be also applied in other
fields of physics [2–9], in particular, in the dynamics
of the Bose–Einstein condensate in optical lattices
[20, 30–34].

This paper is organized as follows. In Section 2, the
variational approach is developed for describing the
key features of radiation evolution in a periodic struc-
tural medium. Here, using this method, we obtained
in Section 2.1 a closed self-consistent system of equa-
tions for the position of the center and the effective
width of the amplitude profile and linear and qua-
dratic corrections of the phase front of a quasi-optical
Gaussian beam. In Section 2.2, these truncated equa-
tions were used for the qualitative analysis of the self-
action regimes of the wave field in an array of weakly
coupled optical fibers. In Section 3, we present the
results of direct numerical simulations within the
DNSE framework and compare them with the ana-
lytic study of the spatial beam dynamics. A special
attention is devoted to radiative losses during radiation
self-channeling in one of the nonlinear optical fibers.
In Conclusions (Section 4), the main results of the
paper are formulated. In Appendix A, we discuss mod-
ifications caused by consideration of additional terms
in the variational procedure that were neglected in
Section 2.1. In Appendix B, we analyze in detail the
possible scenarios of behavior of a wave beam in an
array of optical fibers based on the phase plane of a
system of ordinary differential equations for the effec-
tive width of the amplitude distribution and the phase
front curvature.
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2. ANALYTIC DESCRIPTION
OF THE EVOLUTION OF WAVE BEAMS

IN AN ARRAY OF OPTICAL FIBERS

2.1. Variational Approach to a Problem of Radiation 
Self-Focusing in a Discrete Medium

Сonsider the features of the self-action of one-
dimensional quasi-optical wave beams injected into a
spatially inhomogeneous medium consisting of an
infinite number of equidistantly arranged single-mode
delta-shaped optical fibers with the Kerr (cubic) non-
linearity. In an ideal system (in the absence of losses),
we arrive at an infinite ordered sequence of relations,
which is called the DNSE and has the form [3–8]

(1)

in normalized variables. Here, the function Ψn(z)
determines the complex amplitude of the mode of the
nth directing element oriented parallel to the z axis of
an array of weakly coupled optical waveguides in
which dispersion and diffraction effects can be
neglected. DNSE model (1) is one of the simplest and
universal discrete models. As its continuous NSE ana-
log, this model has the Hamiltonian structure and two
integrals of motion [2–8]

(2)

(3)

Preserving quantities  and  are directly connected
with the beam power and energy in the problem under
study [2–8]. In fact,  is a controlling parameter
whose value considerably determines the radiation
propagation process, while expression (3) is the Ham-
iltonian of model (1).

Using (1), we analyzed in detail the possible sce-
narios of propagation of an initially collimated wave
beam coupled into a periodic system of optical fibers
at an angle to the z axis oriented along them. For this
purpose, we used the variational approach, which is
quite universal and is often applied for the analytic
study of the dynamics and interaction of localized sys-
tems in various nonlinear media [1–5, 9, 10].

First, using the Poisson summation formula (for
example, see [20–22]), we rewrite the Lagrange func-
tion corresponding to DNSE (1) [2–5, 11–19] in the
form
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(4)

This allows us to work with the only function Ψ(x, z)
instead of an infinite ordered set of complex ampli-
tudes Ψn(z) in each of the waveguides. This function
depends now not only on the coordinate z, but also on
a continuous argument x.

Then, we assume that the radiation intensity distri-
bution is described by a Gaussian with the effective
width a(z) and the center at the point x0(z), while the
phase front contains only linear and quadratic correc-
tions with the corresponding coefficients γ(z) and
β(z). In other words, we approximate Ψ(x, z) by the
expression

(5)

corresponding to the aberrationless approximation [2, 3].
By substituting (5) into (4) and integrating over the

continuous variable x, we obtain a functional series
with coefficients decreasing exponentially with
increasing n (for example, [20–22]). It follows directly
from the structure of this series that for the condition
a(z) ≫ /π, i.e., even for wave fields with the charac-
teristic transverse size a(z) comparable with the period
of the array of optical fibers, self-action processes can
be approximately analytically described by keeping
only the term with n = 0 in (4).

As a result, we obtain the averaged Lagrange func-
tion  of the system under consideration in the form

(6)

The Euler equation for collective coordinates a(z),
β(z), x0(z), and γ(z) corresponding to the truncated
Lagrangian  (6) takes the form
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(7c)

(7d)

These relations clearly demonstrate that the beam
evolution in discrete model (1) significantly differs
from its spatial dynamics in the continual situation
described by the NSE and proceeds over complicated
scenarios. In particular, according to (7c), the dis-
placement of the radiation intensity maximum x0(z)
across the optical fiber array depends on the effective
width a(z) and the curvature β(z) of the phase front of
the wave field. The passage to the limit from
Eqs. (7a)–(7d) to their analogs in the continuous case
proves to be rather nontrivial, because it is necessary
to assume not only that a ≫ 1, but also that βa ≪ 1. It
is when these two conditions are simultaneously ful-
filled in the paraxial approximation (γ ≪ 1), we arrive
instead of (7c) at the result dx0/dz = 2γ well known for
a continuous medium.

Note that within the framework of variational
description developed in this section, taking into
account only the term with n = 0 in Lagrangian (4),
the coefficient γ responsible for the linear correction
of the wave-field phase front, according to (7d), is
independent of the coordinate z and remains equal to
its initial value γ0 along the entire radiation propaga-
tion path, i.e., γ = γ0. Therefore, by analyzing the
behavior of beams with the help of self-consistent
Eqs. (7a)– (7b), we will use γ0 instead of γ. It should be
emphasized that, if the averaged Lagrangian  is cal-
culated taking into account not only the terms of the
series with n = 0 but also with n = ±1, then the deriv-
ative dγ/dz will become nonzero and the value of γ will
change with increasing z even within the framework of
the aberrationless approximation (see Appendix A).
However, these effects do not strongly affect processes
discussed in the paper and can be neglected for simpli-
fying further calculations and estimating critical values
of parameters of the problem.

2.2. Self-Channeling Regime. Change in the Beam 
Propagation Direction Due to Radiation Self-Focusing

Consider the wave-field focusing in discrete
model (1) based on the self-consistent system of equa-
tions (7a)–(7d) for the main parameters of Gaussian
beam (5) in the aberrationless approximation. Accord-
ing to (7a)–(7d), the shift of the radiation intensity
maximum x0(z) across the z axis does not affect the
spatial dynamics of the effective with a(z) of the
amplitude distribution and the phase-front curvature
β(z). In turn, the propagation path of the wave field as
a whole strongly depends on the behavior of a(z) and
β(z) and is determined by relation (7c). Under these
conditions, it is reasonable to divide analysis into two
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stages. At the first stage for γ = γ0, a system of autono-
mous ordinary differential equations (7a), (7b) and its
possible solutions are considered, and at the second
stage, their influence on the change in x0(z) is dis-
cussed based on expression (7c).

By the change of variables ζ = zcosγ0, relations (7a)
and (7b) can be reduced to the form in which the only
parameter

(8)
is present. This means that the evolution of the beam
internal structure depends first of all on the value of Q
directly related to the power . In addition, Eqs. (7a)
and (7b) are Нamiltonian equations in canonic vari-
ables a2 and β, which follows from the presence of the
Hamiltonian (3) for DNSE (1). Thus, the dynamic
system (7a), (7b) has the first integral of motion,
which we present for convenience in the form

(9)

The conservation law (9) allows one to analyze the a,
β phase plane for different Q (see Appendix B),
thereby providing the advance in the analytic solution
of the problem and revealing the conditions under
which critical changes in the beam propagation pro-
cess should be expected.

The study (see details in Appendix B) of the features
of the phase space of the system of equations (7a), (7b)
taking (9) into account shows that there exist two crit-
ical powers  and  connected with bifurcation
values  ≈ 0.638 and Qcr =  ≈ 0.858 by the rela-
tions

(10)

(11)

If the radiation power  falls into the interval 0 <  ≤
, the situation is qualitatively the same as in a con-

tinuous medium described by the NSE. In this case,
the transverse size a(z) of the initial collimated beam
with a(z = 0) = a0 will either increase infinitely or
oscillate along the propagation path. In this case, the
field will be never captured in one optical fiber. When

 ≥ , in contrast, radiation will be always collected
in a channel with the characteristic scale

(12)

which is determined by the value of  and the first
integral (9) of problem (7a), (7b). Note, however, that
for the above considerations to be valid,  should not
exceed  too strongly, because otherwise the
approximation of the field amplitude distribution by a
Gaussian is quite rapidly violated with increasing z. In
the intermediate case, when  <  < , the effec-

= π γ0/ 8 cosQ 3

3

⎛ ⎞= − − β +⎜ ⎟
⎝ ⎠

2 2
2

1exp .
24
Qa
aa

#

cr
'3 cr3

cr
'Q 2/e

= π γ ≈ π γcr cr 0 0
' '8 cos 1.276 2 cos ,Q3

= π γ = π γcr cr 0 08 cos 4 / cos .Q e3

3 3

cr
'3

3 cr3

= = π γch 0/2 /(4 2 cos ),a Q # 3 #

3

3

cr3

cr
'3 3 cr3
JOURNAL OF EXPERIMENTAL AN
tive width a(z) of the wave beam with the initially
plane phase front, depending on its start value a (z =
0) = a0, can either change periodically or collapse
during self-focusing, becoming on the order of the lat-
tice period. Therefore, the real critical power 
above which radiation self-channeling is observed is
not a universal quantity, but is determined by a0. The
form of the function (a0) can be found from ana-
lytic results described in Appendix B. In particular, it
follows from them that (a0) monotonically
decreases from  to  with increasing a0.

Let us estimate the characteristic self-focusing
length. Consider the situation when the wave beam
with initially plane phase front is wide enough, i.e.,
β(z = 0) = 0, a(z = 0) = a0 ≫ 1, and the radiation
power  exceeds (a0). Until the field collected in
a channel, we can assume (at least at the first stage of
radiation propagation) that the effective beam width
a(z) is comparatively large, i.e., a ≫ 1 (however, a(z) ≲
a0), which allows us to separate a small parameter
ε ~ 1/a in the problem. Using relation (9), we repre-
sent the product β2a2 as a function of a, which will be
expanded into an asymptotic series in ε. Retaining in
this expansion only the main terms on the order of ε
and taking in to account that  ≈ 1 + Q/2a0, we obtain
the approximation

(13)
for the dependence of the phase-front curvature β(z)
on the size a(z) of the amplitude distribution. By sub-
stituting (13) into (7a), we finally arrive at the simpli-
fied equation for a(z),

(14)

Its solution specifies a(z) in the form of the implicit
function

(15)

Note that the sign “+” in relations (13), (14), and (15)
corresponds to negative values of z. In this case, the
phase-front curvature β(z) of the wave field is positive
and the effective width a(z) increases with approach-
ing z to zero, achieving its maximum a0 for z = 0. The
choice of the sign “–” in relations (13), (14), and (15)
corresponds to the situation when radiation propa-
gates in the region z > 0. Here, the transverse size a(z)
of the beam, on the contrary, decreases with increas-
ing z and β(z) < 0.

Figure 1a demonstrates a comparison between the
implicit approximation (15) for the function a(z) and
direct calculations performed using Eqs. (7a)–(7d).
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Fig. 1. (Color online) Transverse size a(z) and position
x0(z) of the peak intensity of the initially collimated wave
beam with the initial width a0 and linear phase-front cor-
rection γ0 for power  > (a0, γ0). Solid curves are
obtained from Eqs. (7a)–(7d) for a0 = 10, γ0 = 0.0875,

= 6.9917 (lines with light squares) and a0 = 14, γ0 = 0.1,
 = 3.9953 (lines with light circles). In Fig. 1a, approxi-

mation (15) for the function a(z) and the self-focusing
length z0 determined from (16) are shown for the first com-
bination of a0, γ0, and  by the dashed curve and square,
respectively, and for the second combination of a0, γ0, and

 by the dot-and-dash line and circles, respectively. In
(b), the estimate (21) of the finite displacement Δx0 of the
maximum of the field amplitude across the array of optical
fibers for a0 = 10, γ0 = 0.0875, and  = 6.9917 is shown by
the dashed line and for a0 = 14, γ0 = 0.1, and  = 3.9953 –
by the dot-and dash straight line.
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One can see that expression (15) adequately repro-
duces the behavior of the effective width a(z) of the
beam in the aberrationless approximation, not only for
a ≫ 1, but also for a, comparable with the lattice
period.

According to (15), a(z) should vanish at the point
z = z0, where

(16)

approaching zero by the law ∝(z0 – z)2/3. Note that z0

decreases inversely proportional to . In real-
ity, beginning from z close to z0, a(z) tends to a station-
ary value ach and a channel is formed gradually. The
distance z0 can be used as the estimate of the self-
focusing length as long as ach ≲ 1, i.e., for the power 
not strongly exceeding the critical value , as follows
from (12). A more accurate estimate can be obtained
from expression (15), where a is replaced by ach, deter-
mined by expression (12).

At the final stage of the radiation self-channeling
process, the discreteness of the system under study
begins to play a key role, which substantially affects
the evolution of the main parameters of the wave
beam. In particular, assuming in (7a) and (7b) that the
effective width a(z) of the field amplitude distribution
approaches ach with increasing z, while, on the con-
trary, the phase front curvature β(z) increases
infinitely, we find the behavior of a(z) and β(z) for
z → ∞:

(17)

(18)
where z1 ~ z0 is a constant allowing the most accurate
comparison of this approximation with the numerical
solution of Eqs. (7a)–(7d). Using (17), we can readily
determine the characteristic length Δzch at which the
transverse size a(z) reaches the stationary value ach at
the final stage of the process under study. For initially
broad beams with a0 ≫ 1, this length is proportional to
the power  and is

(19)
A comparison between (16) and (19) shows that z0

considerably exceeds Δzch. Thus, for  > (a0), the
evolution of the wave field (in the absence of radiative
losses) includes two stages: at the first stage, the main
self-focusing of radiation occurs, and, at the final
stage, a waveguide channel is formed. Note that the
second stage is considerably shorter than the first one.
According to (18), as the effective width a(z) decreases
down to the minimal size acr, the phase-front curva-
ture β(z) increases linearly with increasing z along the
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beam propagation path in contrast to the usual self-
channeling regime. This scenario most likely corre-
sponds to a collapse resulting in the formation of a
nonlinear wave structure with a finite width.

The one-dimensional collapse of the wave field
resulting in radiation localization at scales comparable
with the period of an array of equidistant optical fibers
substantially affects all the aspects of the beam behav-
ior in the spatially inhomogeneous medium consid-
ered here—in particular, the beam displacement
across the array. In the aberrationless approximation,
a change in the propagation direction can be easily
observed. This leads to a considerable distortion in the
motion path of the center of masses of the initially col-
YSICS  Vol. 126  No. 1  2018
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limated broad beam coupled to a system of nonlinear
optical waveguides at an angle to the axis directed
along them, which converges to a channel during self-
focusing.

The presence of the first integral (9) in the prob-
lem (7a), (7b) allows us to rewrite Eq. (7c) for the
position x0(z) of the radiation intensity maximum in
the form

(20)

It follows directly from (20) that in the absence of the
wave-field self-channeling, i.e., for  ≤  (Q ≤ ),
the beam will constantly shift across the array of equi-
distant optical fibers with almost constant velocity,
slightly decelerating with decreasing a(z) and then
slightly accelerating again with increasing a(z). In
other words, the beam propagates at an angle to the
system axis whose value weakly oscillates with respect
to the average value γ0. In this case, the oscillation
period coincides with the changing period of the effec-
tive width a(z). A completely different picture can be
observed in a situation when the field is captured in a
channel with the transverse size ach. In this case, the
right-hand side of relation (20) vanishes, which indi-
cates to a considerable turn of the beam path and a
cessation of its motion as a whole in the direction per-
pendicular to optical fibers. This peculiar “stop” effect
appears due to localization of radiation in a region
with the characteristic scale on the order of the dis-
tance between two neighboring nonlinear optical
waveguides.

Let us estimate the displacement of the position
x0(z) of the wave-field intensity maximum before the
angle between the beam propagation direction and the
z axis along which optical fibers are oriented will
become zero. Assume that the derivative dx0/dz
remains constant and equal to 2sinγ0 until radiation
trapping in a channel for z =  and then the coordi-
nate x0 ceases to change; i.e., x0(z > ) = x0( ). This
assumption is based on the results of calculations per-
formed directly with the help of Eqs. (7a)–(7d) and
also on the analysis presented above, which allows
separating two different (short and long) stages of radi-
ation self-focusing at powers  exceeding the critical
value (a0, γ0). In particular, Fig. 1b demonstrates
dependences x0(z) typical for  >  (a0, γ0) and
confirming the possibility of using this approximation.
In addition, using asymptotic relations (17) and (20)
valid for z → ∞, we can easily show that the character-
istic distance on which the beam mainly changes its
direction coincides with Δzch and is determined by
expression (19). As , with the same accuracy as in
the previous assumption, we can take the self-focusing
length z0 calculated from (16). As a result, the final dis-
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placement Δx0 of the beam with respect to its initial
position is approximately

(21)

The estimate for Δx0 coinciding with relation (21)
can be also obtained for powers  not strongly exceed-
ing  using another, more formalized approach.
First of all, based on Eqs. (7a) and (7c), we can easily
see that the equality

(22)

is valid in the aberrationless approximation. Then, we
assume that conditions are fulfilled for which approx-
imation (13) is valid for relation between the phase-
front curvature β(z) and the effective width a(z) of the
amplitude distribution. In particular, we will assume
that for z = 0 (at the system input), a broad collimated
beam is specified, i.e., a(z = 0) = a0 ≫ 1 and β(z = 0) =
0, and perform our analysis at the initial self-channel-
ing stage when the value of a(z) still remains large
enough compared to the final transverse size ach of the
channel. By substituting expression (13) instead of β
into (22), we obtain the equation

(23)

which can be easily integrated, as in the case with (14),
to find the dependence x0(a) in the explicit form

(24)

To estimate the resulting displacement Δx0 of the radi-
ation intensity maximum during the wave-field self-
focusing, we should substitute a = ach. However, when
ach ≲ 1, i.e., for  not strongly exceeding , we can
set a equal to zero, as in deriving expression (16) for
the length z0 beginning from which a one-dimensional
collapse passes to the final channel-formation stage.
As a result, with a slightly deteriorated accuracy, we
obtain expression (21).

Figure 1b clearly demonstrates that relation (21)
gives the adequate value of Δx0 and can be used for
analytic approximation. One can see that Δx0

decreases inversely proportional to . Therefore, the
maximum displacement Δx0 of the center of masses of
the beam with respect to its initial position at the input
to the system of equidistant optical fibers should be
expected for the power  close to the critical power

(a0, γ0). In addition, by setting Δx0 equal to the
array period (i.e., to unity in dimensionless variables
used), we can estimate another critical power
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(25)

above which the wave-field intensity maximum will
not strongly shift in the transverse direction and the
beam will initially propagate parallel to the axis ori-
ented along nonlinear optical waveguides without any
noticeable deviations. Note that (a0, γ0) can be
either greater or smaller than (a0, γ0) depending on
two parameters a0 and γ0. If (a0, γ0) ≤ (a0, γ0),
then the beam with  > (a0, γ0) coupled to the sys-
tem at the angle γ0 will be captured in the initially cen-
tral optical fiber, i.e., the number of a structural ele-
ment of the array with the peak field amplitude will
not change. It also follows from this that, by equating

(a0, γ0) to the lower boundary  of the interval of
possible values of (a0, γ0), we will find the minimal
angle

(26)

for each specified size a0 of the collimated beam
beginning from which linear corrections of the field
phase front become essential for self-channeling. For
|γ0| ≤ (a0) and  > (a0, γ0), the transverse dis-
placement of the beam will certainly be absent.

Thus, the analytic study shows that for powers 
exceeding the critical value , the radiation self-
channeling into a separated optical fiber occurs. This
process changes the type of propagation of a wave
beam coupled to a system of equidistant optical fibers
at the angle γ0 to the z axis oriented along them.
“Above-critical” beams deviate from the initial linear
propagation direction and are localized in a structural
element displaced with respect to an optical fiber,
which is initially central for a symmetric amplitude
distribution. This deviation decreases with increasing

. As a result, high-power inclined beams with  >
 and γ0 ≠ 0 should be captured into a channel

without any visible displacements perpendicular to the
z axis.

3. NUMERICAL SIMULATIUON
OF RADIATION SELF-FOCUSING

IN A DISCRETE SYSTEM

In this section, we discuss the results of detailed
DNSE (1) numerical calculations of the spatial
dynamics of initially collimated broad wave beams
injected into an array of equidistant identical optical
fibers at an angle to their orientation direction. The
field distribution at the input to the system was speci-
fied in the form

γ = π γ γ5/2 3 2
cr2 0 0 0 0 0( , ) sin / 8 cos ,a a3
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(27)

which corresponds to expression (5) with initial
parameters a(0) = a0, x0 = 0, γ(0) = γ0, and β(0) = 0.

The numerical DNSE simulation (1) demonstrates
a more complex and rich picture of radiation evolution
compared to that predicted by the analytic description
developed in Section 2.1. Apart from the appearance
of aberrations, this is caused by the following reasons.
First, according to the inverse scattering problem for
the NSE, the initially limited distribution gradually
transforms to a set of mutually interaction solitons [1–
3] from which, in particular, breathers are formed [1–
3]. Therefore, as in the continual problem, within the
framework of DNSE (1), an initially broad intense
beam can stratify into several soliton-like structures,
which violates the assumption about the single-scale
nature of the test function describing the wave-field
form. Second, the behavior of nonlinear formations in
a discrete system is strongly affected by radiative
losses, which are naturally present in DNSE (1) simu-
lations and lead to emission of a part of radiation from
the main region of its localization. Because of some
factors neglected in the variational approach, along
with aberrationless regimes, a number of effects are
observed which strongly affect the spatial dynamics
and self-channeling of beams. However, before pro-
ceeding to a detailed discussion of data obtained by
direct numerical calculations of Ψn(z), note that anal-
ysis presented in previous paragraphs considerably
improves the understanding of composite processes
proceeding in the system under study. In addition, our
estimates are in good agreement with the values
obtained by the numerical solution of DNSE (1).

Figures 2 and 3 present the results of the DNSE
simulation of the self-focusing of initially Gaussian
beams with the plane wave front (see (27)) in a peri-
odic system of optical fibers for γ0 = 0.1 and a0 = 7
(Fig. 2) and a0 = 14 (Fig. 3). Each fragment in these
figures demonstrates one of the possible typical sce-
narios of the spatial dynamics of the wave field pro-
duced depending on the quantity . The data pre-
sented above describe quite completely the evolution
of broad beams introduced at an angle to the z axis.

In Figs. 2a and 3a for z = 0, the radiation power
= 2.5 is lower than the bifurcation value . One

can see that the wave field propagates in this case on
average along a straight line that does not coincide in
the general case γ0 ≠ 0 with the z axis. This means that
the coefficient γ responsible for the linear correction
of the wave front remains almost constant and approx-
imately equal to γ0. Also, it is easy to see that the width
of the amplitude distribution changes in fact periodi-
cally. The main part of the beam is periodically com-
pressed down to a few periods of the array and then is
expanded up to the initial size. Note especially that for
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Fig. 2. (Color online) Spatial dynamics of the intensity |Ψn(z)|2 of a wave beam calculated by direct numerical DNSE (1) simu-
lation. The beam is specified for z = 0 by (27) with a0 = 7, γ0 = 0.1 and  = 2.5 (a), 3.25 (b), 3.5 (c), 4.5 (d), 9 (e), and 15 (f).
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Fig. 3. (Color online) Same as in Fig. 2, but for a0 = 14 and  = 2.5 (a), 3.5 (b), 4 (c), 5.5 (d), 13 (e), and 17 (f). 
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parameters of numerical calculations corresponding
to Figs. 2a and 3a, the effective width never becomes
smaller than the distance between neighboring optical
fibers and no radiation trapping in a channel is
observed. Such a behavior qualitatively coincides with
theoretical concepts based on the analysis of possible
solutions of the system of ordinary differential equa-
tions (7a)–(7d) and developed in Section 2. Note,
however, two important moments. Although  < ,
radiative losses are relatively weak, they increase with

3 cr
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approaching  to . Figure 3a shows that the beam
decompose during its propagation into several compo-
nents. In fact, such effects appear in this situation due
to the closeness to the continual limit.

When the initial radiation power  weakly differs
from the first bifurcation value  at which the phase
plane of the conservative system of equations (7a),
(7d) undergoes topological modifications, the spatial
dynamics of wave beams in a discrete array of optical

3 cr
'3

3

cr
'3
D THEORETICAL PHYSICS  Vol. 126  No. 1  2018



PECULIARITIES OF THE SELF-ACTION OF INCLINED WAVE BEAMS INCIDENT 29
fibers also begins to change strongly. This is clearly
demonstrated in Fig. 2b presenting the results of
numerical DNSE simulations (1) for the wave field
specified for z = 0 in form (27) with  = 3.25, a0 = 7
and γ0 = 0.1. For such parameters, the input radiation
power  = 3.25 slightly exceeds  ≈ 3.18336. One
can see that the initially broad beam propagates at the
initial stage along a straight line and is compressed
down to the period of the structural medium under
study. During the beam compression, the radiation
intensity maximum in the beam cross section
increases and achieves its maximal value when almost
all the field is collected in one optical fiber. The pro-
cessing of numerical calculation data shows that the
main parameters of the beam (first of all, its effective
width a(z) and the position x0(z) of the center of
masses) drastically change at the final stage of the pro-
cess, which is qualitatively consistent with the theoret-
ical analysis and estimates presented in Section 2.2. As
a result, large radiative losses appear, which are seen in
Fig. 2b. They cause cardinal changes in the wave-field
evolution. Later on the preserved beam ceases to shift
along the previous direction, as in the situation shown
in Fig. 2a. The motion path of the amplitude distribu-
tion maximum is considerably distorted; i.e., the angle
of propagation of the main part of radiation with
respect to the z axis noticeably changes. It even
appears visually that the beam is reflected from a cell
in which the wave field was focused (see, for example,
Figs. 2b, 2c and 3c). As for the effective width, its
oscillations become less noticeable or are in fact
absent at all. This suggests the formation of a soliton-
like structure due to radiative losses. Note, however,
that the propagation paths of such wave structures
localized on a small number of optical fibers can be
both almost straight and strongly bent.

With increasing the input radiation power  in the
system, once the initially broad beam is compressed
down to the size of one waveguide and loses a fraction
of its energy, the formation of channels discussed in
Section 2 begins. For example, Fig. 2c shows that the
focused beam turns through a smaller angle and the
wave field remaining localized tends to propagate par-
allel to the direction along which structural elements
of the inhomogeneous medium are oriented. The
motion path of the intensity maximum deviates hither
and thither from the z axis. This is probably explained
by the fact that the power of the preserved nonlinear
structure gradually increases and approaches the
threshold (a0, γ0) above which, according to the
generalized aberrationless approximation, the radia-
tion self-channeling should occur (see Section 2.2 and
Appendix B). Note that this circumstance is caused
not only by the increase in the power  of the beam
injected at z = 0, but also by the increase in the length
Δzch of the region where the behavior of the wave field
drastically changes. Because it is the break of the adi-
abatic approximation for the evolution of the main
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parameters of the beam that most likely gives rise to
strong radiative losses at the first collapse stage, a
decrease in these losses should be reasonably expected
with increasing Δzch.

According to numerical DNSE (1) calculations,
the formation of a channel at the array-period scale
from initially broad beams and the concentration of a
greater part of radiation in one of the optical fibers
occur only for  > . An example is presented in
Fig. 2d corresponding to the power  = 4.5 weakly
exceeding the bifurcation value  ≈ 4.2787. This fig-
ure shows how a long enough transient process, never-
theless, ends the self-channeling of the wave field con-
centrating in a region of size on the order of the dis-
tance between neighboring structural elements of the
chain under study and then propagating exactly along
the z axis.

The tendencies and behavior described above are
also observed in simulations of the spatial dynamics of
initially collimated beams specified for z = 0 in form
(27) with a0 = 14 and γ0 = 0.1. In particular, Figure 3b
shows that the wave field for  = 3.5 is compressed
down to the array-period scale, which is accompanied
by strong radiative losses. However, in this case, the
wave field stratifies after collapse into two nonlinear
structures with different powers. One of them gradu-
ally diffracts, while another exhibits a few oscillations
of its width, thereby losing a part of its energy, and
then transforms to a soliton-like structure concen-
trated on several waveguide elements, still displacing
across the z axis. Note that here no sharp and strong
distortion of the motion path of the localized part of
the beam is observer; i.e., the propagation direction
changes not so strongly as, for example, in situations
in Figs. 2b, 2c. Note also that it seems that the splitting
into nonlinear structures described above is insepara-
bly related to the prerequisites of passing from the ini-
tial Gaussian amplitude distribution to the wave field
which alternately decomposes into two interacting
components and is gathered to one (see Fig. 3a). This,
in particular, causes a strong energy loss, which can
amount to 30% of the initial radiation power .

As  approaches  ≈ 4.2787 for a beam with a0 =
14, the relative radiative losses decrease; however, they
remain large in magnitude. As a result, the nonlinear
structure is dropped and its transverse sizes oscillate
during its further spatial dynamics. Because of the
recoil, the angle at which the remaining part of the
wave field propagates with respect to the z axis notice-
ably changes. Thus, we can say that the reflection of
the beam is observed again from the point of compres-
sion, as in the case a0 = 7. An example for  = 4 is pre-
sented in Fig. 3c. This figure also shows the tendency
to the formation of a channel. However, the radiation
self-channeling occurs only for  >  ≈ 4.2787 due
to the additional long enough transient process, as
illustrated in Fig. 3d.
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Fig. 4. (Color online) Self-focusing length z0 and finite
displacement Δx0 of a point with the peak intensity across
a discrete array as functions of the input power . Blue cir-
cles present the results obtained after processing data of the
direct numerical DNSE (1) simulation. Solid curves show
approximate analytic functions describing the depen-
dences of (a) z0 and (b) Δx0 on  (taking into account the
additional correction factor equal to 0.62 in this case). The
plots correspond to a0 = 14 and γ0 = 0.3.

(a)

(b)

0

0

5

10

15

20

2

4

6

8

10

20 40 60 80

Δx0

z0

3

3

As  is increased, the region in which the beam is
initially compressed down to the size smaller than the
array period decreases. Also, the intermediate region
decreases, which precedes the final concentration of a
greater part of radiation in one of the nonlinear optical
fibers and is characterized by main radiative losses.
According to DNSE (1) calculations, the number of
an optical fiber in which the light field was captured,
most often coincides with the position of the intensity
maximum at the first compression. In particular, this
circumstance is clearly confirmed by Figs. 2e and 3f.
Note especially that, when  is considerably
exceeded, nonlinear structures with powers sufficient
for passing to the strong compression regime are
dropped during radiative processes. As a result, a part
of dropped radiation again returns to the formed chan-
nel and collides with it. Such spatial dynamics can be
observed in Figs. 2f and 3e, 3f. In a number of situa-
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tions, these collisions can cause the displacement of
the final position of the maximum field value by one
cell, as in Fig. 3e. In other cases (see, for example,
Fig. 3f), radiation captured in the channel transfers
into an adjacent optical fiber only on a small finite
length of the propagation path, and then the field
maximum returns back.

As a whole, the numerical DNSE (1) simulation
gives a picture predicted in many respects by data
obtained in the aberrationless approximation. A key
role in this picture belongs to the self-focusing of radi-
ation propagating at an angle to the z axis along which
the periodic system of optical fibers is oriented. When
the radiation power exceeds the critical value , the
wave field is captured in one of the optical fibers and
the position of the amplitude-distribution maximum
drastically deviates from the initial propagation direc-
tion. Despite the complex spatial dynamics of the
beam, finally two experimentally observed character-
istics can be separated: the self-focusing length z0 and
the displacement Δx0 of a point with the peak intensity
across the array. In the aberrationless approximation,
these quantities are calculated approximately from
corresponding analytic expressions (16) and (21). The
values of z0 and Δx0 were numerically determined at
the moment when the diameter of the initially broad
beam became smaller than the discrete-array period.
The comparison of estimates made from (16) and (21)
with direct DNSE (1) calculations demonstrates quite
good agreement taking into account an additional cor-
rection factor, which is common for z0( ) and Δx0( )
for the same a0 and γ0, although depends on the input
beam parameters. Figure 4 demonstrates the depen-
dences of z0 and Δx0 on the power  of radiation spec-
ified for z = 0 by (27) with a0 = 14 and γ0 = 0.3. Note
first of all that the decrease in the self-focusing length
z0 and the displacement Δx0 of the point with the peak
intensity with increasing  are described by the laws
close to 1/ . This suggests that approximation (5)
and the variational approach developed in Section 2
quite adequately describe the beam structure in the
prefocal region.

The conclusions made above qualitatively explain
experimental studies of the radiation propagation at an
angle to the axis of a periodic system of optical fibers
[25–29] and also can promote a deeper investigation
of the features of the self-action of wave fields in dis-
crete lattices.

4. CONCLUSIONS

Based on DNSE (1), we have studied in detail the
self-focusing of wave beams injected at an angle to the
axis of a system consisting of a set of equidistant iden-
tical optical fibers. We have proposed the analytic
method describing the evolution of initially broad (at
the scale of the structured medium under study) local-
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ized field distributions in discrete lattices. Using power
 as a controlling parameter, radiation self-action

regimes are classified. The presence of three charac-
teristic values , , , and  is demonstrated.
For  < , the discreteness of the medium is weakly
manifested and the spatial evolution of the wave beam
occurs, in fact, as in a continuous medium (the inten-
sity peak moves along a straight line, the width of the
wave beam periodically changes, etc.). For  > ,
the radiation self-channeling in one of the optical
fibers becomes dominant and the beam path is
strongly distorted. The numerical DNSE simulation
of the problem shows that radiation capturing in an
optical fiber is accompanied by strong radiative losses.
They substantially affect the wave-field evolution
behind the focal plane. In particular, beams with the
initial power  lying in the interval  <  <  are
transversely reflected from a cell in which the wield
was focused. For  considerably exceeding , radi-
ative losses lead to the formation of an intermediate
region before the capturing of a greater part of radia-
tion followed by its self-channeling in one of the non-
linear optical fibers. For  > , the wave beam
incident obliquely on an array of optical fibers is
refracted at the interface and then propagates along
the system axis. The deviation of the wave-beam
intensity peak from the propagation direction consid-
ered in the paper is a new nonlinear effect reflecting
specific features of a discrete system.
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APPENDIX A
Consider in more detail the variational approach

used in Section 2.1 for describing the propagation of
wave beams in an array of equidistant optical fibers. As
before, we substitute approximation (5) for Ψ(z, x)
into expression (4) for the Lagrange function  of ini-
tial model (1). However, now we will calculate the
averaged Lagrangian  taking into account terms with
n = 0 and ±1. For beams with the transverse size a ≫

/π, the quantity exp(–π2a2/2) can be treated as a
small parameter μ of the problem. As a result, retain-
ing only terms of the zero and first order of smallness
in μ, we obtain
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(A.1)

Euler equations for collective coordinates a(z),
β(z), x0(z), and γ(z) corresponding to  (A.1) have the
form

(A.2a)

(A.2b)

(A.2c)

(A.2d)

The main changes here concern the second and fourth
relations. In particular, according to (A.2c), the coef-
ficient γ is no longer constant even in the aberra-
tionless approximation. Note, however, that addi-
tional terms appeared in (A.2b) and (A.2c) are propor-
tional to exp(–π2a2/2), i.e., to a small parameter μ.
Therefore, their contribution to the dynamics of sys-
tem (A.2a)–(A.2d) is often insignificant even for
localized wave fields with the effective width a compa-
rable with the array scale. Nevertheless, these correc-
tions can affect the long-term evolution of relatively
narrow beams. For example, it follows from (A.2a)–
(A.2d) that stationary field distributions with a con-
stant finite width are possible only at zero linear and
quadratic corrections of the phase front. In addition,
the condition sin(2πx0) = 0 should be also fulfilled,
which is valid when x0 = m or x0 = m + 1/2, where m is
an integer. Here, we see the correspondence with two
well-known soliton solutions of DNSE (1), one of
which is stable (x0 = m), while another is unstable
(x0 = m + 1/2) (see, for example, [3–9]).

The physical interpretation of effects caused by
additional terms with n = ±1 in (4) considered in the
calculation of the averaged Lagrangian  can be
obtained by comparing expressions (6) and (A.1). It is
easy to see that the difference is only in one term con-
taining a periodic function of the position x0 of the
radiation intensity maximum and representing the so-
called Peierls–Nabarro (PN) potential [3–9]. This
potential was first discussed in the theory of crystal
dislocations (see details in [9]). However, it was shown
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later that its existence principally affects the motion of
kinks and solitons in various discrete models and, as a
result, the behavior of solitary wave structures in arrays
of coupled elements differs from their evolution in a
continuous medium [3–9].

The authors of papers [10, 35] proposed to calcu-
late the shape of the PN potential for DNSE (1) by the
method using the closeness of (1) to the exactly inte-
grable Ablowits–Ladik (AL) model [2, 4, 9]. The per-
turbation theory [10, 35] based on the inverse scatter-
ing transformation, in which differences of DNSE (1)
from the system of AL equations are considered as
small corrections, describes the dynamics of a broad
soliton based on self-consistent ordinary equations for
the coordinate of the center of mass and the linear cor-
rection coefficient in the phase. In this case, the trans-
verse size of an exciton proves to be invariable in the
approximation considered in [10, 35]. A comparison
of relations (A.2c) and (A.2d) with relations obtained
in [10, 35] for analogous quantities shows that their
structures are very similar. In particular, if the effective
width a of the amplitude distribution is assumed finite
and virtually constant and the phase-front curvature β
is assumed close to zero, then, according to (A.2c) and
(A.2d), the evolution of parameters x0 and γ of such a
soliton-like wave beam will occur under the action of
a periodic potential. As in [10, 35], the amplitude of
this potential decreases exponentially with increasing
a. Note that a nonlinear localized structure in DNSE
(1) can be captured near one of the minima of the PN
potential relief [10, 35]. However, the stop of the beam
displacement across the array of optical fibers has a
different physical nature and is caused first of all by the
collapse of the wave field, although the PN potential,
of course, favors the radiation self-channeling and
leads to additional radiative losses during the spatial
dynamics of the beam.

APPENDIX B
According to analysis presented above, the behav-

ior of the dynamic system described by Eqs. (7a) and
(7b) considerably depends on the range from Q ≤ ,

 < Q < Qcr, or Q ≥ Qcr where the positive parameter
Q lies. Before specifying the bifurcation values  and
Qcr, we will illustrate qualitative transformations pro-
ceeding in the general picture of possible regimes of
“motions” of such a system when Q passes through
points  and Qcr.

Figure 5a shows the a0, Q plane (a0 is the effective
width of a collimated wave beam) in which regions
Q ≤ ,  < Q < Qcr and Q ≥ Qcr are indicated with
three different colors different from each other not
only in color, but also in contrast. The characteristic
phase portraits of the autonomous system of ordinary
differential equations (7a), (7b) corresponding to
these regions are presented in Figs. 5b, 5c, 5d. For

cr'Q
cr'Q

cr'Q

cr'Q

cr'Q cr'Q
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Fig. 5a Q = 0.45 < . In this case, there exist two
equilibrium states: the saddle A' (red square) and the
center C ' (blue circle). Note especially that for Q < ,
separatrices (in Fig. 5b, red curves beginning or end-
ing at the saddle point A') are unclosed lines. There-
fore, when Q < , there exists a specific phase trajec-
tory in the two-dimensional phase space a, β separat-
ing the regions of infinite and finite motions. This
trajectory intersects the β = 0 axis for a finite effective
width a and then for a → +∞. Such a curve in Fig. 5b
is shown by a green line passing through the point B'
(green rhomb). For Q = , the parts of the phase tra-
jectory described above symmetrically located with
respect to the straight line β = 0 coincide with the cor-
responding separatrices, which in turn are closed for
a → +∞, thereby producing prerequisites for generat-
ing a loop. When the parameter Q lies in the interval

 < Q < Qcr, Eqs. (7a), (7b) have a doubly asymptotic
solution separating now the f light and captured
motion regimes of the system under study, which is
clearly demonstrated for Q = 0.675 in Fig. 5c. The sep-
aratrix loop (red curve) in this figure starting (for
z → –∞) from the saddle A (red square) and returning
(for z → +∞) to it, makes a coil around the equilib-
rium state of the center C type (blue circle) turning at
the point B (red rhomb) with coordinates a ≈ 7.517,
β = 0. The phase trajectories lying inside the loop
describe oscillations of the effective width a(ζ) and the
wave-front curvature β(ζ) of a Gaussian wave beam. If
the initial parameters of radiation are such that the
imaging point on the α, β phase plane lies initially in
the external region for the separatrix, then the field
will finally be localized in the approximation used in
one of the optical fibers of the equidistant array. For
Q = Qcr, the saddler and center merge. As a result,
when Q > Qcr, the equilibrium states of the autono-
mous system of equations (7a), (7b) disappear and the
phase space a, β becomes topologically simpler, which
is seen, for example, in Fig. 5d constructed for
Q = 0.9. In this case, the variational analysis predicts
that any beam should be captured in a channel.

The equilibrium states of the system (7a), (7b) exist
only for β = 0; i.e., for a plane phase front, while the
effective width a0 of such stationary beams is related to
Q by the expression

(B.1)

Transcendental Eq. (B.1) has two solutions a0(1)(Q)
and a0(2)(Q) corresponding to the saddle and center on
the a, β plane only for Q < . This is, in particular,
clearly demonstrated in Fig. 5a, where the dotted red
line passing through points A' and A (red squares) and
the dashed blue line passing through points C ' and C
(blue circles) show dependences Q(a0(1)) and Q(a0(2))
corresponding to these equilibrium states. Thus, the

cr'Q

cr'Q

cr'Q

cr'Q

cr'Q

⎛ ⎞
− =⎜ ⎟
⎝ ⎠

02
0

1exp .
4

Qa
a

2/e
D THEORETICAL PHYSICS  Vol. 126  No. 1  2018



PECULIARITIES OF THE SELF-ACTION OF INCLINED WAVE BEAMS INCIDENT 33

Fig. 5. (Color online) (a) The (a0, Q) plane in which regions with qualitatively different behavior of the dynamic system (7a), (7b)
are distinguished. Dependences Q(a0) for the equilibrium states of the system are shown by the dotted curve (saddle) and the
dashed curve (center). The dot-and-dash curve shows the function Q(a0) determining in the (a, β) phase space the position of

the point a = a0, β0 = 0 lying on the trajectory separating the regions of infinite and finite motions for Q ≤ . The solid curve
specifies the effective width a0 of the beam at the turning point of the separatrix loop for different values of Q in the interval

< Q ≤ Qcr. Figures (b, c, d) demonstrate topologically different (a, β) phase planes constructed for Q = 0.45 < ,  <
Q = 0.675 < Qcr, and Q = 0.9 > Qcr. Squares in (b, c) indicate saddles A' and A and circles – centers C' and C. In (b), the line
passing through the pony B' (rhomb) corresponds to the trajectory separating regions of the f light and captured behavior.
Figure (c) is characterized by the presence of the separatrix loop coming out from the saddle A and returning to it after turning at
the point B (rhomb). 
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bifurcation value of Qcr is determined from the condi-
tion of the presence of the only solution of (B.1) and is
equal to Qcr =  ≈ 0.8578.

Taking into account integral (9), we see that, if for
Q < , the transverse size a0(3) of a collimated wave
beam satisfies the expression

(B.2)

then the point with coordinates a0(3), β = 0 in the a, β
phase space lies on the trajectory separate by us earlier,
which is closed at infinity and separates the regions of
infinite and finite motions. The plot of the function
Q(a0(3)) obtained using (B.2) is shown in Fig. 5a by the
dot-and-dash green curve containing also the point B '
(green rhomb) corresponding to the point B ' in
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Fig. 5b. One can see from Fig. 5a that the bifurcation
value  is determined by the intersection of the dot-
ted and dot-and-dash curves, i.e., by the combined
solution of Eqs. (B.1) and (B.2). As a result, we have
finally  ≈ 0.6382.

Apart from three curves described above, another
red solid curve presented in Fig. 5a, which is com-
pletely located in the region with  < Q < Qcr. It
determines the effective width a0(4)(Q) at the turning
point of the separatrix loop depending on the param-
eter Q from the interval  < Q ≤ Qcr. In this case, if
the wave beam with the zero phase-front curvature has
the transverse size a0 for which the point a0, Q proves
to be below the given solid curve Q(a0(4)), then,
according to the above discussion, the periodic varia-
tions of a(ζ) and β(ζ) should be observed. In the
opposite case, radiation will be self-channeled, result-

cr'Q
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ing in the field localization at the scale of one nonlin-
ear optical waveguide. To find the dependence
Q(a0(4)), it is necessary first, by fixing Q, to find for
equation (B.1) the smallest root a0(1)(Q) correspond-
ing to the saddle equilibrium state. Then, by substitut-
ing a = a0(1)(Q) and β = 0 into (9), to calculate the first
integral  on the separatrix and, using the specified Q
and , to solve the equation

(B.3)

for a0 and to find the solution a0(4)(Q) different from
a0(1)(Q). By repeating this procedure for different Q
satisfying  < Q ≤ Qcr, we can easily reconstruct the
function Q(a0(4)).
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