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Abstract—We have studied rotating magnetohydrodynamic f lows of a thin layer of astrophysical plasma with
a free boundary in the β-plane. Nonlinear interactions of the Rossby waves have been analyzed in the shal-
low-water approximation based on the averaging of the initial equations of the magnetic f luid dynamics of the
plasma over the depth. The shallow-water magnetohydrodynamic equations have been generalized to the case
of a plasma layer in an external vertical magnetic field. We have considered two types of the f low, viz., the
flow in an external vertical magnetic field and the f low in the presence of a horizontal magnetic field. Qual-
itative analysis of the dispersion curves shows the presence of three-wave nonlinear interactions of the mag-
netic Rossby waves in both cases. In the particular case of zero external magnetic field, the wave dynamics in
the layer of a plasma is analogous to the wave dynamics in a neutral f luid. The asymptotic method of multi-
scale expansions has been used for deriving the nonlinear equations of interaction in an external vertical mag-
netic field for slowly varying amplitudes, which describe three-wave interactions in a vertical external mag-
netic field as well as three-wave interactions of waves in a horizontal magnetic field. It is shown that decay
instabilities and parametric wave amplification mechanisms exist in each case under investigation. The insta-
bility increments and the parametric gain coefficients have been determined for the relevant processes.
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1. INTRODUCTION
This study is devoted to the development of the

nonlinear theory of the Rossby waves in astrophysical
and space plasma layers in the shallow-water approxi-
mation on the β-plane. Here, the Rossby waves is the
term used for the large-scale waves emerging due to
nonuniformity of the Coriolis force depending on the
latitude on a sphere, which propagate due to the con-
servation of the total vorticity in a rotating plasma anal-
ogously to a neutral fluid. Such waves determine the
large-scale dynamics of the Sun and stars [1–4], as well
as dynamics of magnetoactive atmospheres of exoplan-
ets trapped by tides of a carrier star [5] and the flows in
accretion disks of neutron stars [6]. In spite of complex-
ity of observation of the Rossby waves in astrophysical
plasmas, such waves have been recently detected on the
Sun [7]. The Rossby waves have also been discovered
indirectly on the Sun in some studies [8–12].

Large-scale Rossby waves in a neutral f luid deter-
mine the global dynamics of planetary atmospheres.
Analysis of such waves is the subject of numerous
investigations in geophysical f luid dynamics [13, 14].
In this case, the waves are considered against the back-
ground of the trivial stationary (rest) state, and the
theory of such waves is developed using the shallow-
water approximation or the geostrophic approxima-

tion. A direct analog of Rossby waves in geophysical
f luid dynamics are drift waves in a plasma [13, 15]. In
the case of astrophysical plasma flows, the theory of
Rossby waves is substantially complicated due to the
existence of nontrivial stationary states of the magnetic
fields (e.g., the toroidal and poloidal fields or an exter-
nal vertical magnetic field) [3, 4, 16, 17]; for this reason,
the main results concerning the magnetic Rossby waves
were obtained in the linear approximation.

In this study, we develop a weakly nonlinear theory
of magnetohydrodynamic Rossby waves. It is worth
noting that the dynamics of Rossby waves in the pres-
ence and absence of an external vertical magnetic field
differ significantly. The main difference lies in the fact
that the magnetic field continuity equation plays an
important role in the shallow-water approximation in a
magnetic field; when this equation is taken into account
correctly, traditional concepts concerning the 2D
nature of shallow-water equations and the possibility of
using the 2D magnetic fluid dynamics for explaining
large-scale processes should be substantially modified.

The magnetohydrodynamic equations in the shal-
low-water approximation also play equally important
role in the space and astrophysical plasmas like classi-
cal shallow-water equations in the fluid dynamics of a
neutral fluid. The system of equations can be obtained
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from the classical equations of magnetic fluid dynamics
of an incompressible plasma by averaging over the depth
under the assumption of the hydrostatic nature of pres-
sure distribution and the smallness of the layer thickness
as compared to the characteristic horizontal linear size of
the problem [18–24]. Such an approximation was used
for developing the theory of the three-wave interaction of
the Poincaré waves in magnetic fluid dynamics [25, 26].
It should be noted that a significant difference in the
magnetohydrodynamic equations for a rotating plasma
and for a neutral fluid is associated with the existence of
the condition of a nondivergent magnetic field, which is
satisfied identically. It follows, hence, that approximate
shallow-water equations must obey the corollary of the
zero-divergence condition in the initial system of magne-
tohydrodynamic equations, which must also be satisfied
identically for the resultant simplified system. Therefore,
the shallow-water equations in the presence of an exter-
nal vertical magnetic field [26] differ from the traditional
equations. Averaging of the magnetohydrodynamic
equations over the depth in the presence of an external
magnetic field indicates the fundamental three-compo-
nent nature of the magnetic field along with the two-
component nature of the velocity field [26]. Conse-
quently, the use of the modified shallow-water equations
provides a detailed description of the magnetic field,
explains its 3D structure, and gives a more comprehen-
sive explanation for both linear and nonlinear effects.

In this study, considerable advances have been made
in analysis of Rossby waves. We write the magnetohydro-
dynamic shallow-water equations on the β-plane in an
external magnetic field taking into account the identities
ensuring the nondivergence of the magnetic field in the
approximate equations. In zero magnetic field, the sys-
tem of shallow-water equations can be reduced to the tra-
ditional system and has time-independent solutions in
the form of horizontal (poloidal, toroidal, and their sum)
magnetic fields. For each stationary state, we have devel-
oped a weakly nonlinear theory of waves, derived the
equations for Rossby wave packets, and analyzed para-
metric instabilities [27–29].

In Section 2, we write the system of magnetohydro-
dynamic equations in the shallow-water approximation
in an external vertical magnetic field. The dispersion

relation for magnetohydrodynamic Rossby waves in a
vertical magnetic field and in a horizontal (toroidal and
poloidal) magnetic field are analyzed qualitatively, and
conclusions concerning the possibility of three-wave
interactions for these waves are formulated.

In Section 3, we derive the system of equations for
slowly varying amplitudes of the three-wave interac-
tions of the Rossby waves in an external vertical mag-
netic field using the method of multiscale expansions.
Parametric instabilities are analyzed. In Section 4, the
same is done for a horizontal magnetic field. The
results are discussed in Conclusions.

2. SHALLOW-WATER 
MAGNETOHYDRODYNAMIC EQUATIONS. 
LINEAR WAVES. QUALITATIVE ANALYSIS

OF DISPERSION RELATIONS
2.1. Modified Shallow-Water Magnetohydrodynamic 

Equations on the β-Plane
The magnetohydrodynamic equations in the shal-

low-water approximation describe the f lows of a thin
layer of a plasma (magnetic f luid) with a free boundary
in a uniform gravity field in a rotating frame of refer-
ence in an external vertical magnetic field (Fig. 1) [26]:

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
In these equations, h is the layer thickness, v(vx, vy) is
the horizontal velocity averaged over the thickness,
B(Bx, By) is the horizontal magnetic field averaged
over the layer thickness, Bz is the vertical magnetic
field component averaged over the layer thickness, g is
the free-fall acceleration, f is the Coriolis parameter,
and B0 is the external vertical magnetic field.
System (2.1)–(2.5) is the result of integration of 3D
magnetohydrodynamic equations along the vertical
coordinate z. We assume that the total pressure (sum
of the hydrodynamic and magnetic pressures) is
hydrostatic. Equation (2.1) is the continuity equation;
Eq. (2.2) was obtained by averaging of the momentum
variation equation over the layer thickness; Eqs. (2.3)
and (2.4) describe the magnetic field variation, and
Eq. (2.5) is the magnetic field nondivergence condi-
tion averaged over the height. If vertical magnetic field
is B0 = 0, Eqs. (2.1)–(2.5) can be reduced to the well-
known magnetohydrodynamic shallow-water equa-
tions [18, 23, 30, 31]. The system of equations (2.1)–
(2.3) is closed and is used in analysis of linear waves
and nonlinear interactions [17, 25].
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Fig. 1. Geometry of the problem.
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Let us clarify the physical meaning of additional
equations (2.4) and (2.5) [26]. In the traditional deriva-
tion of magnetohydrodynamic shallow-water equations
from the complete system of 3D magnetohydrody-
namic equations, the vertical magnetic field component
is assumed to be zero. It should be noted that the pres-
ence of a vertical magnetic field leads to significant
modifications of the horizontal magnetic field dynam-
ics in the shallow-water approximation. The horizontal
magnetic field in the case of flows in zero magnetic field
is sinusoidal, but the presence of an external vertical
magnetic field changes the situation. Vertical changes of
the magnetic field differ from zero, and the nondiver-
gence condition contains vertical component (2.5).
Therefore, we must add Eq. (2.4) for the vertical varia-
tion of the magnetic field to describe the magnetic field
dynamics. Thus, the magnetic field is basically three-
dimensional, and each of its components is a function
of only horizontal coordinates. Nondivergence condi-
tion (2.5) is satisfied identically as a corollary of
Eqs. (2.3) and (2.4) for the magnetic field and is used
for specifying correct initial conditions. Equations (2.4)
and (2.5) are important in the magnetohydrodynamic
shallow-water approximation in an external magnetic
field not only as technical details; these equations also
indicate the existence of the z component of the mag-
netic field, the equation for which differs from the shal-
low-water equations [26]. For describing large-scale
magnetic Rossby waves, we will use the β-plane
approximation for the Coriolis force analogously to
rotating flows of a neutral fluid on a sphere.

We assume that the vertical component of the veloc-
ity of rotation changes with latitude θ. The waves
induced by the latitude dependence of the Coriolis force
are analogs of the Rossby waves in geophysical fluid
dynamics and are referred to as magnetic Rossby waves.
In the β-plane approximation, we assume that the vari-
ations of Coriolis parameter f are small for small varia-
tions of the latitude and write this parameter in the form

(2.6)

Here, Ω is the angular velocity of the layer, f0 = 2Ωsinθ0,
and β = ∂f/∂y. With allowance for the dependence
(2.6) of the Coriolis parameter on the latitude,
momentum variation equations (2.2) describe the
rotating f lows on a sphere in the Cartesian system of
coordinates. Therefore, we obtain from Eqs. (2.1)–
(2.3) the following system as the initial equations for
analysis of magnetic Rossby waves:

(2.7)

(2.8)

(2.9)

(2.10)

This system will be used below for studying the mag-
netic Rossby waves in an external vertical magnetic
field. For B0 = 0, initial system (2.7)–(2.10) is trans-
formed into the system of magnetohydrodynamic equa-
tions in the shallow-water approximation on the β-
plane and will be used for analyzing nonlinear processes
in horizontal (toroidal and poloidal) fields. The com-
plete solution of the linear problem will be given below
for an external vertical magnetic field as well as for zero
field, which is necessary for constructing the perturba-
tion theory in the weakly nonlinear approximation.

2.2. Linear Rossby Waves in a Vertical Magnetic Field

Linearizing the initial system (2.7)–(2.9) relative to
the state of rest (h = H = const, vx = vy = Bx = By =
Bz = 0), we obtain

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Let us differentiate Eq. (2.12) with respect to y:

(2.16)

Further, we use the β-effect approximation [14] in the
same way as for neutral f luid f lows. We seek the solu-
tion to system (2.11)–(2.15) in the form

(2.17)

Substituting this solution into system (2.11)–(2.15)
and into Eq. (2.16), we obtain the system of linear
equations

(2.18)

in which linear operator A has the form

= Ω θ ≈ Ω θ
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(2.19)
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System (2.18) has nontrivial solution when the con-
dition detA = 0 holds. After simple transformations,
we obtain from Eq. (2.18) the dispersion relation

(2.20)

where vA = B0 is the Alfven velocity and C0 = .
In the high-frequency approximation, the depen-
dence of the Coriolis parameter on the latitude in
expression (2.20) disappears, and the dispersion rela-
tion describes the magnetic Poincaré mode in mag-
netic f luid dynamics in the shallow-water approxima-
tion. This approximation leads to the dispersion rela-
tion, in which the wave dynamics is determined by the
gravity force, rotation, and external vertical magnetic
field:

(2.21)

In the low-frequency approximation, dispersion
relation (2.20) describes large-scale movements of
Rossby waves. In the shallow-waver magnetic f luid
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v

dynamics, the dispersion relation for Rossby waves in
the presence of an external vertical magnetic field is
modified and assumes the form

(2.22)

It should be noted that in the interval between high-
frequency solutions to the dispersion equation in the
form of magnetic Poincaré modes and low-frequency
solutions for slow magnetic Rossby waves, the disper-
sion relation permits the modes of fast magnetic
Rossby waves [4].

Relation (2.22) describes the Rossby waves propa-
gating in the k direction in the shallow-water approxi-
mation. The main mechanism of their formation is the
shift of the rotating f low due to the latitude depen-
dence of the Coriolis force. The general form of dis-
persion curves is shown in Fig. 2. The solutions to the
linearized systems are amplitude waves α(k). In the
general form, solution u1 to the linear system of differ-
ential equations (2.11)–(2.15) can be written as

(2.23)

where ω(k) is determined by expression (2.20) and a is
the eigenvector of linear operator A,

(2.24)
System (2.24) has nontrivial solutions a ≠ 0

because condition (2.20) holds. Therefore, the eigen-
vector has the form

(2.25)

where ω = ω(k) in accordance with condition (2.20).
To estimate the possibility of interwave interactions

for the wave described above, we must analyze its disper-
sion relation and determine the asymptotic forms of dis-
persion curves. The synchronism condition required for
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Fig. 2. (Color online) Dispersion curves for Rossby waves in
a vertical external magnetic field in magnetic fluid dynamics.
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the interaction between waves with different wavevectors
and frequencies can be written in general form as

Let us illustrate this condition graphically (Fig. 3). The
first term defines point (k1, ω(k1)) on the dispersion
curve of one of the solutions, while the second term
defines point (k2, ω(k2)) on the dispersion curve dis-
placed by (k1, ω(k1)). The intersection indicates the
existence of a set of three waves, which satisfies the syn-
chronism condition. Qualitative analysis of dispersion
curves makes it possible to find out whether the above
synchronism condition is satisfied for the Rossby waves
in a vertical magnetic field. It can be seen from Fig. 3
that dispersion curve ω(k) intersects the identical curve
displaced by (k1, ω(k1)) and, hence, there exist three
such waves for which the synchronism condition is sat-

ω + ω = ω +1 2 1 1( ) ( ) ( ).k k k k

isfied. Therefore, three-wave interactions occur in the
case of a vertical external magnetic field B0.

2.3. Linear Rossby Waves
in a Horizontal Magnetic Field

Let us now analyze the linear problem in zero
external magnetic field. As noted above, system (2.7)–
(2.9) in this case has steady solutions in the form of a
horizontal (toroidal, poloidal, or their sum) magnetic
field. As the initial equations for the Rossby waves in a
horizontal magnetic field, we consider system (2.7)–
(2.9) for B0 = 0. We linearize this system relative to the
steady solution describing horizontal field B0: h = H,
vx = vy = 0, Bx = , and By = :

(2.26)
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(2.28)

(2.29)

(2.30)
The last two equations, (2.29) and (2.30), lead to the
magnetic field nondivergence condition:

Taking this condition into account and substituting
the solution in the form of a wave, we obtain the fol-
lowing system of linear equations
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Introducing notation vA = B0 and  = gh, we can
write the dispersion relation in the form

2
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Fig. 3. (Color online) Dispersion curves for the Rossby
waves in magnetic f luid dynamics in the absence of a large-
scale magnetic field.
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Analogously to the case of (2.22) with a vertical external
magnetic field, the dispersion relation for low frequencies
and long-wavelength flows assumes the form

(2.34)

and describes the mode of slow magnetic Rossby
waves in the magnetic f luid dynamics in the shallow-
water approximation [4]. The general view of disper-
sion curves was given in Fig. 2.

Let us analyze qualitatively the resultant dispersion
curves to explore the possibility of realization of weakly
nonlinear interactions. The necessary condition for the
three-wave interaction of Rossby waves is that the three
waves must satisfy the synchronism condition

(2.35)
Let us consider three waves with dispersion
relation (2.34). Their three-wave interactions are pos-
sible when condition (2.35) is satisfied, which corre-
sponds to the intersection of the dispersion curves in
Fig. 3. The existence of intersection indicates the possi-
bility of three-wave interactions of magnetohydrody-
namic Rossby waves in horizontal magnetic field
B0 = ( , ).

In the particular case of a toroidal magnetic field,
the dispersion relation has the form

(2.36)

Such a magnetic field configuration is typical of f lows
in the solar tachocline [2, 3].

In the case of a poloidal magnetic field, the disper-
sion relation has the form
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In the limit of a neutral f luid,  = 0,  = 0, the dis-
persion relations for the Rossby waves takes the form

(2.38)
In the long-wave approximation, dispersion equa-
tion (2.38) has a solution (Fig. 4)

(2.39)

It should be noted that for zero horizontal magnetic
field, the linearized equations for the magnetic field
can be reduced to the trivial form

Therefore, a wave is not magnetohydrodynamic any
longer, and the dispersion relation describes the
dynamics of only hydrodynamic parameters. The
eigenvector in this case has the form

(2.40)

where ω = ω(k) in accordance with relation (2.39).
Let us analyze qualitatively the resultant dispersion

curves to explore the possibility of realization of
weakly nonlinear interactions. It is shown in Fig. 5 for
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values ω1, k1, ω2, k2, and ω3, k3, for which the synchro-
nism conditions ω1 + ω2 = ω3 and k1 + k2 = k3 hold.
Indeed, the coordinates of points on curve 1 represent
the wavevector and frequency of the first wave. Points
on curve 2, which is displaced relative to curve 1 by ω1,
k1, have coordinates k1 + k2 (sum of two wavevectors)
and ω(k1) + ω(k2) (sum of two frequencies). The fact
that curve 2 intersects curve 1 means that the coordi-

0
xB 0

yB

ω − ω + − β =3 2 2 2 2
0 0 0( ) 0.xf C k C k

βω = −
+

2
0

2 2 2
0 0

.xk C
f C k

∂∂ = =
∂ ∂

0, 0.yx BB
t t

ω −⎛ ⎞
⎜ ⎟= ω − =⎜ ⎟
⎜ ⎟− ω⎝ ⎠

2 2 ( ),
x y

y

x y

k H ik fH

k gH
k k gH i f

a a k

Fig. 4. (Color online) Synchronism condition for three
Rossby waves in an external vertical field in magnetic f luid
dynamics.

k

ω

Fig. 5. (Color online) Synchronism condition for three
Rossby waves in magnetic f luid dynamics in the absence of
a large-scale field.

k

1

ω

2



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 125  No. 4  2017

ROSSBY WAVES IN THE MAGNETIC FLUID DYNAMICS 603

nates of the point of intersection of curves 1 and 2
coincide; i.e., the synchronism condition is satisfied.
Therefore, in zero horizontal magnetic field, the
three-wave interactions of Rossby waves take place in
the resultant hydrodynamic problem [32].

3. THREE-WAVE INTERACTIONS 
AND PARAMETRIC INSTABILITIES

OF ROSSBY WAVES IN AN EXTERNAL 
VERTICAL MAGNETIC FIELD

For deriving equations describing the three-wave
interactions, we can use the asymptotic method of large-
scale expansions [33]. The solution to system (2.7)–
(2.10) can be written in the form of a series in small
parameter ε:

(3.1)

where u1 is the solution to linearized system (2.18) and
u2 is a correction describing the effect of the quadratic
nonlinearity. Writing the terms proportional to ε2, we
obtain a system of linear inhomogeneous differential
equations in u2, containing on the right-hand side the
resonance terms leading to a linear increase in the

solution (in time and coordinate). Therefore, the con-
dition ε2u2 ≪ εu1 is violated on large scales. To elimi-
nate the influence of the resonance terms, we intro-
duce the dependence of the wave amplitude on large
temporal and spatial scales in the form

The evolution equation for a slowly varying amplitude
ensures the uniform convergence of the asymptotic
series. We pass from argument t, x, y to “fast” (T0, X0,
Y0) and “slow” (T1, X1, Y1) arguments in accordance
with the relations

(3.2)

Substituting expressions (3.1) and (3.2) into the initial sys-
tem (2.7)–(2.10), we write the terms proportional to ε2:
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The right-hand sides of these equations contain the
terms including the solution of the problem obtained in
the first approximation, which may induce the resonance
with the operator on the left-hand side. To eliminate the
resonance terms on the right-hand side, we can use the

condition of orthogonality of the right-hand side of
expression (3.3) to the kernel of operator A (2.19), which
is known as the compatibility condition. We denote the
eigenvector of operator A* by z = (z1, z2, z3, z4, z5)T. The
eigenvectors of operator A* can be found from

(3.4)

This gives dispersion relation (2.20). Eigenvector z =
(z1, z2, z3, z4, z5)T satisfies the following system of equa-
tions:

(3.5)
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(3.7)

(3.8)

(3.9)

The expression for eigenvector z has the following
form correct to a constant:

(3.10)

where c is an arbitrary constant. We can write the solution
in the form of three magnetic Rossby waves satisfying
synchronism condition (2.35), where k1 + k2 = k3:
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where φ, ψ, χ are the amplitudes of the interacting
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the complex-conjugate vector. After differentiation,
the right-hand side of system of equations (3.3), which
is proportional to exp(iθ1), takes the form
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(3.12)

Multiplying expression (3.12) by the eigenvector z
(3.10) of the conjugate operator and using the compat-
ibility condition A*z = 0, we obtain the following
equation for amplitude φ of the first wave:

(3.13)
where the differentiation operator sv1 with respect to
slow time and coordinates T1, X1, Y1 and coefficient fv1
depend only on the initial conditions and characteris-
tics of the interacting waves:

(3.14)
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In these expressions, the eigenvector a = a(k1),

(3.18)

In the latter expression, the product of the form aiaj =
[ (k2)aj(k3) + ai(k3) (k2)]/2.

Analogously, multiplying the right-hand side of
system (3.3) by the eigenvector z, we obtain the equa-
tion for amplitude ψ of the second wave for the terms
proportional to exp(iθ2):
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coefficient fv2 has the form

(3.24)

In this expression, the product of the form aiaj =
[ (k1)aj(k3) + ai(k3) (k1)]/2.

Writing the terms proportional to exp(iθ3) from the
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In these expressions, the eigenvector a = a(k3). The
interaction coefficient fv3 has the form

(3.30)

In this expression, the product of the form aiaj =
[ai(k1)aj(k2) + ai(k2)aj(k1)]/2.

Thus, we have obtained the system of interacting
amplitudes of three Rossby waves in magnetic fluid
dynamics in the shallow-water approximation in an
external vertical magnetic field. For convenience of fur-
ther analysis, we write the resultant system in the form

(3.31)

(3.32)

(3.33)
We have obtained a set of three equations for amplitudes
φ, ψ, χ of the interacting waves. The system (3.31)–
(3.33) describes the three-wave interaction of Rossby
waves, which satisfy synchronism condition (2.35). In
Eqs. (3.31)–(3.33), coefficients fv1, fv2, and fv3 are
defined by expressions (3.18), (3.24), and (3.30),
respectively, and operators sv1, sv2, and sv3 are defined
by expressions (3.14), (3.20), and (3.26).

We can use the system (3.31)–(3.33) for analyzing
parametric instabilities of Rossby waves qualitatively
[34]. Let us consider the case when the amplitude of
one of the three interacting waves at the initial instant is
much larger than the amplitudes of the other two waves
(φ ≫ ψ, χ). Then we can approximately assume that the
amplitude of the first wave is constant (φ = φ0); in this
case, we can disregard the reverse effect of waves with
amplitudes ψ and χ on the pump wave with amplitude
φ. Then system (3.31)–(3.33) assumes the form

(3.34)

(3.35)
We seek the solution of the resultant linear system of
equations in the form
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This gives the instability increment
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where fv2 and fv3 are defined by expressions (3.24) and
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The instability can evolve in two ways when the
amplitudes of growing waves become comparable with
the amplitude of the pump wave: explosive growth and
instability saturation. The approximation considered
above holds as long as amplitude φ0 of the pump wave
is much larger than the amplitudes ψ, χ of the other
two magnetic Rossby waves. However, at a certain
stage of the process, the amplitudes of the growing
waves become comparable with amplitude φ0. There-
fore, we must include Eq. (3.31) into our analysis. For
fv1 < 0, amplitude φ of the pump wave, as well as the
growth rates of amplitudes ψ, χ, decrease, which leads
to parametric instability saturation.

In the case of linear damping, we can write sys-
tem (3.34), (3.35) in the form [27]
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where terms η2ψ and η3χ determine damping. In
this case, the exponentially increasing solutions of
type (3.36) exist only provided that
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wave amplitude,
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Equation (3.31) for amplitude φ then assumes the form
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Substituting the solution in this form into Eq. (3.42),
we obtain the following expression for the gain,
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The approximation considered above is valid as long
as amplitudes ψ0 and χ0 of the pump waves are much
larger than amplitude φ of the third Rossby wave. How-
ever, at a certain stage of the process, the amplitude of the
growing wave becomes comparable with amplitudes ψ0,
χ0. Therefore, we must include Eqs. (3.32) and (3.33) in
our analysis. Amplitudes ψ0 and χ0 of the pump waves, as
well as the growth rate of amplitude φ, decrease, which
leads to the parametric instability saturation.

In the case of damping, Eq. (3.42) for the ampli-
tude of the wave can be written in the form

(3.45)

where η1 is the linear damping coefficient for ampli-
tude φ in Eq. (3.45). Thus, the necessary condition for
the evolution of instability is

This conditions determines the threshold value for the
product of amplitudes of waves (ψ0χ0)cr, at which the
solution increases exponentially,

(3.46)

with the increment

(3.47)

4. THREE-WAVE INTERACTIONS
AND PARAMETRIC INSTABILITIES OF ROSSBY 
WAVES IN A HORIZONTAL MAGNETIC FIELD

To obtain a qualitative description of the interaction
of Rossby waves in a horizontal magnetic field, we per-
form, analogously to the case of the vertical field, the
substitution of variables, passing from t, x, y to “fast” (T0,
X0, Y0) and “slow” variables (T1, X1, Y1) arguments in
accordance with expressions (3.2). The solution to the
system (2.7)–(2.9) for B0 = 0 can be written in the form
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As in the previous case, for eliminating the resonance terms on the right-hand side, we will use the condition of
orthogonality of the right-hand side of expression (4.2) to the kernel of operator Ah (2.32). To this end, we denote
the eigenvector of operator  by zh = (zh1, zh2, zh3, zh4, zh5)T and determine the eigenvectors of operator :

(4.3)

This leads to expression (2.33). Eigenvector zh = (zh1,
zh2, zh3, zh4, zh5)T satisfies the system zh = 0, which
gives

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Using this system of equations, we can define the
eigenvector of operator  to within a constant:

(4.9)

Let us again represent the solution in form (3.11),
where a is now the eigenvector of operator Ah (i.e., in
the form of three magnetic Rossby waves satisfying
synchronism condition (2.35)). We can use the right-
hand side of system of equations (4.2), which is pro-
portional to exp(iθ1), for obtaining the first equation
of three-wave interactions for wave amplitude φ. We
choose from the right-hand side of system (4.2) the
terms proportional to exp(iθ1) and exp(iθ3) exp(–iθ2).
As before, multiplying this part by eigenvector z of the
conjugate operator and using compatibility condition

z = 0, we obtain the following equation for the
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amplitude of the first of the interacting magnetic
Rossby waves:

(4.10)

where operator sh1 can be expressed as

(4.11)

(4.12)
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(4.14)

In these expressions, eigenvector a = a(k1). Coeffi-
cient fh1 in Eq. (4.10) has the form

(4.15)

In this expression, the product of the form aiaj =
[ (k2)aj(k3) + ai(k3) (k2)]/2.

Using an analogous procedure for the terms pro-
portional to exp(iθ2), we obtain from the right-hand
side of system (4.2) multiplied by eigenvector z the
equation for amplitude β of the second of the interact-
ing magnetic Rossby waves,
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In these expressions, eigenvector a = a(k2). The
expression for coefficient fh2 in Eq. (4.16) has the form

(4.21)

In this expression for fh2, the product of the form aiaj =
[ (k1)aj(k3) + ai(k3) (k2)]/2.

Finally, writing only the terms proportional to
exp(iθ3) on the right-hand side of system (4.2), we
obtain the following equation for amplitude χ of the
third of the interacting waves:

(4.22)

where

(4.23)

(4.24)

(4.25)

(4.26)

In these expressions, eigenvector a = a(k3). The inter-
action coefficient for Eq. (4.22) has the form

= + + ω
− +

+ − −

0
2 1 3 2 4 1 3 3

0
1 3 5 1 3 1

0 0
3 2 0 4 2 5 3

( )

2 2

.

h y

y y y

y y

q z a H z a B H i z a H

ik z a B H ik z a gH

z a f H z a B H z a B H

k

= β =
+ − ω + −

+ − +
+ ⋅ − + ω

0
2 2 1 2 3 0 2 1 1 2

2 2
2 1 1 3 2 2 1 2 2 2 2 2 2 4

2
2 2 2 3 2 2 4 5 2 2 1

0 2 2 1 4 0 2 1 3 2 2 3 1 3

( , , , , , , , ) 2

2 2 ( ) 2 2

2 2 2
2( ) 2 2

h h x

y x x

y y x

y

f f f g H ik z a a

ik z a a i z a a ik z a ik z a

ik z a a ik z a a ik z a g
z a a f z a a k z a a

k k k B

k

B k

+ − + −
+ + +

− ⋅

2 2 2
2 2 3 2 3 4 5 2 3 3 5

2 2 2 2 2
2 3 1 1 3 3 1

0
2 2 3 1 5

2 ( ) 2 ( )

2 ( )

2 ( )

x y y

y y y

y

k k z a a a a H k z a a H

k z a g k k z a g

ik z a aB k

+ + β + ω
+ − − ⋅
+ ω + −

− ⋅

2 3 1 2 0 3 1 2 2 4 1 4
0

2 4 3 4 2 5 2 4 1 2

2 4 1 5 2 4 2 5 3 4
0

2 4 1 3

2 2 ( )

2 ( ) 2( )
2 ( ) 2 ( )

2( ) .

y

y

x

ik z a a f z a a i z a a

ik z a a a a H z a a
i z a a ik z a a a a H

z a a

k

B k
k

B k

*ia *ja

χ = φψ3 3 ,h hs f

∂ ∂ ∂= + +
∂ ∂ ∂3 3 3 3

1 1 1

,h h h hs r p q
T X Y

= +
+ + +

3 1 1 2 2

3 3 3 4 4 5 5 ,
h

y

r z a z a H
ik z a H z a H z a H

=
+ − − +

3 1 2
0 0

2 1 4 4 2 3( ) ( ) ,
h

x x

p z a H

z a gH a B H z a a B H

= + + ω
− + +

− −

0
3 1 3 2 4 1 3 3

0
1 3 5 1 3 1 3 2 0

0 0
4 2 5 3

( )

2 2

.

h y

y y y

y y

q z a H z a B H i z a H

ik z a B H ik z a gH z a f H

z a B H z a B H

k

= β =
+ − ω + −

+ − +
+ ⋅ − + ω

0
3 3 1 2 3 0 3 1 1 2

2 2
3 1 1 3 3 2 1 2 3 2 2 3 2 4

2
3 2 2 3 3 2 4 5 3 2 1

0 3 2 1 4 0 2 1 3 1 3 3 1 3

( , , , , , , , ) 2

2 2 ( ) 2 2

2 2 2
2( ) 2 2

h h x

y x x

y y x

y

f f f g H ik z a a

ik z a a i z a a ik z a ik z a

ik z a a ik z a a ik z a g
z a a f z a a k z a a

k k k B

k

B k



610

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 125  No. 4  2017

KLIMACHKOV, PETROSYAN

(4.27)

In the expression for interaction coefficient fh3, the
product of the form aiaj = ai(k1)aj(k2) + ai(k1)aj(k2).

Thus, we have obtained the system of interacting
amplitudes of three Rossby waves in magnetic f luid
dynamics in the shallow-water approximation in a
horizontal magnetic field. For convenience of further
analysis, we write the resultant system in the following
form:

(4.28)

(4.29)

(4.30)

Writing separately the terms proportional to each of
the interacting waves from Eq. (4.2), we have obtained
system (4.28)–(4.30) of three equations for ampli-
tudes φ, ψ, χ of the interacting waves. This system
describes the interaction of Rossby waves satisfying
synchronism conditions (2.35). Coefficients fh1, fh2, fh3
and operators sh1, sh2, sh3 in system (4.28)–(4.30)
depend only on the initial parameters of the problem
and are uniquely determined by the compatibility con-
dition z = 0 analogously to the case with the vertical
external magnetic field (see Eqs. (4.15), (4.21),
(4.27), and (4.11), (4.17), (4.23)). We will use the sys-
tem (4.28)–(4.30) for qualitative analysis of paramet-
ric instabilities of Rossby waves.

Let us consider the case when the amplitude of one
of the interacting waves at the initial instant is much
larger than the amplitudes of the other two waves (φ ≫
ψ, χ). We can assume that the amplitude of the first
wave is constant (φ = φ0) and disregard the reciprocal
influence of waves with amplitudes ψ, χ on the wave
with amplitude φ. In this case, the system (4.28)–
(4.30) assumes the form
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We seek the solution to this linear system of equations
in the form
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This gives the instability increment
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where fh2 and fh3 are defined in expressions (4.21) and
(4.27). Therefore, one of the magnetic Rossby waves
with wavevector k1 and frequency ω1 = ω(k1) splits into
two magnetic Rossby waves with wavevectors k2 and
k3, frequencies ω2 and ω3, and with increment (4.34).

The approximation considered above holds as long
as amplitude φ0 of the pump wave is much larger than
amplitudes ψ, χ of the other two magnetic Rossby
waves. However, the amplitudes of the growing waves
become comparable with amplitude φ0 at a certain
stage of the process. Therefore, Eq. (4.28) must be
included into our analysis. For fh1 < 0, amplitude φ of
the pump wave, as well as the rates of growth of ampli-
tudes ψ and χ, decreases leading to parametric insta-
bility saturation.

In the case of linear damping, system (4.31), (4.32)
can be written in the form

(4.35)

(4.36)
where terms η2ψ and η3χ determine damping. In this
case, the exponentially increasing solutions of the
form (4.33) exist only when

Therefore, there exists a threshold value  of the
pump wave amplitude,

(4.37)

beginning with which instability evolves with incre-
ment

(4.38)

Let us now consider the case when the amplitude of
one of the interacting waves is much smaller than the
amplitudes of the other two waves, φ ≪ ψ, χ, so that we
can treat amplitudes ψ and χ as constant (ψ = ψ0 and
χ = χ0). The equation for amplitude φ then assumes
the form

(4.39)
We seek its solution in the form

(4.40)
Substituting this solution into Eq. (4.39), we obtain
the following expression for the gain:

(4.41)

where quantity fh1 is defined in (4.15). In the given case
of parametric amplification, the two initial magnetic
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Rossby waves with wavevectors k1 and k2 and frequen-
cies ω1 = ω(k1) and ω2 = ω(k2) amplify the magnetic
Rossby wave with wavevector k3 = k1 + k2 and fre-
quency ω3 = ω1 + ω2 with the gain (4.41).

The approximation considered above holds as long
as amplitudes ψ0 and χ0 of the pump waves are much
larger than amplitude φ of the first magnetic Rossby
wave. However, the amplitude of the growing wave
becomes comparable with amplitudes ψ0 and χ0 at a
certain stage of the process. Therefore, we must
include Eqs. (4.29) and (4.30) in our analysis. Ampli-
tudes ψ0 and χ0 of the pump waves, as well as the
growth rate of amplitude φ, decrease, leading to satu-
ration of the parametric instability.

In the case of damping, expression (4.39) for the
wave amplitude can be written in the form

(4.42)
where η1 is the linear damping coefficient for ampli-
tude φ in Eq. (4.42). Therefore, the necessary condi-
tion for instability evolution is

This condition determines the threshold value
( χ0)cr for the product of the wave amplitudes, for
which the solution increases exponentially,

(4.43)

with increment

(4.44)

In the particular case of a toroidal magnetic field
(Bx = , By = 0), the expressions for interaction coef-
ficients fh1, fh2, and fh3 and differential operators sh1, sh2,
and sh3 include factor kxvAx instead of k ⋅ vA.

In the case of a poloidal magnetic field (Bx = 0,

By = ), the expressions for interaction coefficients
fh1, fh2, and fh3 and differential operators sh1, sh2, and sh3
include factor kyvAy instead of k ⋅ vA.

5. CONCLUSIONS
We have considered the shallow-water model for

describing large-scale processes in astrophysical plas-
mas. It is shown that the magnetic field structure in an
external vertical magnetic field in the shallow-water
magnetohydrodynamic f low differs substantially from
the magnetic field structure in zero external field. The
required magnetic field nondivergence condition
necessitates the introduction of the vertical magnetic
field component in the system, which makes the mag-
netic field structure of Rossby waves essentially three-
dimensional. It is well known that in zero external ver-

φ + η φ = ψ χ1 1 1 0 0
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tical magnetic field, the magnetic field is two-dimen-
sional in the shallow-water approximation. It has been
concluded that the Rossby waves in magnetic f luid
dynamics in an external vertical field cannot be ana-
lyzed using 2D equations of magnetic f luid dynamics.
Magnetohydrodynamic equations averaged over depth
must be used as initial equations. It is noted that the
proposed system of equations is transformed into the
traditional system in the particular case of zero vertical
magnetic field.

The shallow-water approximation has been used
for the development of the weakly nonlinear theory of
Rossby waves in an external vertical magnetic field and
in the absence of a magnetic field also for stationary
states in the presence of a horizontal field (poloidal,
toroidal, and their sum). Qualitative analysis of the
dispersion curves for the Rossby waves in magnetic
fluid dynamics revealed the possibility of three-wave
interactions in the weak nonlinearity approximation.

The weakly nonlinear theory of Rossby waves has
been developed using the method of multiscale
asymptotic expansions, and three-wave equations for
slowly varying amplitudes have been derived. Approx-
imate analysis of the resultant systems of equations has
revealed that two types of parametric instability can
evolve in the system: parametric decay and parametric
amplification of Rossby waves. The increments of
these instabilities have been obtained.
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