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Abstract—The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum
vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in
equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the
spatially f lat Friedmann–Robertson–Walker universe asymptotically approaches the Minkowski vacuum
only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introduc-
ing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we
obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski
asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach,
the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological
constant problem.
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1. INTRODUCTION
The dynamics of the quantum vacuum is one of the

major unsolved problems of relativistic quantum field
theory (RQFT) and cosmology. The reason is that
RQFT and general relativity (GR) describe processes
well below the Planck energy scale, while the deep
ultraviolet quantum vacuum at or above the Planck
energy scale remains terra incognita. Different regular-
ization schemes to treat the ultraviolet divergences do
not help much. Especially troublesome is the estimate
of the vacuum energy density, which represents the so-
called cosmological constant problem (CCP) [1]. We
need an extended theory which allows us to study, in a
more general way, the dynamical processes that follow
after “cosmological catastrophes” have strongly per-
turbed the deep vacuum. The typical source of such
catastrophes is the vacuum instability caused by differ-
ent types of gravitational backgrounds (see [2–4] and
[5] for different results) or by cosmological phase tran-
sitions [6].

Similar processes occur in condensed matter phys-
ics, where the ground state of the system (the “vac-
uum”) is, for example, disturbed by a quench. After a
kick of the system from its equilibrium state, the quan-
tum condensed matter (e.g., quantum liquid or super-
conductor) experiences a power-law oscillatory atten-

uation of the Bardeen–Cooper–Schrieffer order
parameter [7–12]. The observation of oscillations
emerging in superconductors after a kick has even
allowed to resolve the Higgs amplitude mode of the
order parameter [13, 14]. Different from elementary
particle physics, condensed matter physics is able to
study both the infrared macroscopic regime described
by the effective quantum field theory and the corre-
sponding ultra-high-energy regime described by the
microscopic physics, the known atomic physics.

The experience with vacuum dynamics in con-
densed matter physics has led to a special macroscopic
approach called q-theory, which incorporates the
ultraviolet degrees of freedom of the quantum vacuum
into an effective theory [15–18]. The deep physical
vacuum is described in terms of a microscopic
dynamic variable—the vacuum field q. The vacuum
variable q is a conserved quantity, which allows for the
stabilization of the ground state of the system (the vac-
uum) in the absence of an environment, i.e, with zero
external pressure. The vacuum in our approach is con-
sidered as the Lorentz-invariant analog of the con-
densed matter system (liquid or solid), which is stable
in free space. The variable q is the Lorentz-invariant
analog of the particle number density n, whose conser-
vation determines the thermodynamics and dynamics
of many-body systems.1The article is published in the original.
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The variable q relevant for the description of the
quantum vacuum occurs in different relativistic theo-
ries. In particular, the vacuum variable q has been for-
mulated in terms of the 4-form field strength [19–27].
The difference between our approach [15] and these
references is that, instead of taking a quadratic action
term q2, we use a general function e(q), which allows
us to consider an equilibrium vacuum with a non-zero
value of q. We shall use this specific realization of the
q-field, but the results are not very sensitive to the
choice of q-variable. The advantage of q-theory is that
its equations are universal, in the sense that they
essentially do not depend on the origin of the q-field
and that they naturally modify GR.

Whatever the origin of q may be, the q-theory
approach naturally solves the problem of the equilib-
rium energy. The diverging contribution of the zero-
point-energies to the vacuum energy density is auto-
matically canceled by the microscopic degrees of free-
dom. This cancellation follows from the Gibbs-
Duhem identity, which is applicable to any equilib-
rium ground state, including the one of the physical
vacuum. As a result, the proper vacuum energy density
entering the Einstein gravitational equation is zero in
full equilibrium at zero temperature. Let us consider
the illustrative case where the matter sector is repre-
sented by a single real scalar field with a non-zero
absolute minimum of the potential. Without q-field,
the vacuum has a large energy density and a corre-
sponding large cosmological constant. However, in
equilibrium, the q-field automatically compensates
this contribution to the vacuum energy density with-
out any fine-tuning [15]. The only assumption is that
the quantum vacuum is a self-sustained system with
the energy being an extensive quantity. Out of equilib-
rium and/or at nonzero temperature, the vacuum
energy density is determined in the infrared and,
hence, is many orders of magnitude smaller than the
value suggested by the non-zero absolute minimum of
the potential or by the ultraviolet cutoff in RQFT. The
CCP is then reduced to the problem of the relaxation
of the vacuum to its thermodynamic equilibrium.

Up till now, we have considered the classical ver-
sion of q-theory [15], in which the quantum-dissipa-
tive energy exchange between vacuum and matter has
been neglected. In the classical theory, the analog of
the chemical potential μ – the variable thermodynam-
ically conjugate to the variable q – becomes an inte-
gration constant. In a perfect equilibrium vacuum, μ
has the value μ0 determined by the microscopic
parameters of the physical vacuum, which gives a zero
value for the cosmological constant. After a cosmic
catastrophe, the energy density of the perturbed vac-
uum may be huge, of the order of the Planck energy
scale. Still, if the cosmic catastrophe occurs in the

original Minkowski vacuum (i.e., with μ = μ0), the
state with a huge cosmological constant will relax back
to the Minkowski state with zero cosmological con-
stant (see Figs. 1–5 in [16]).

The drawback of the q-theory at the classical level
is that, if the original chemical potential μ is unequal
to the value μ0, the vacuum does not relax to the Min-
kowski vacuum but to a de-Sitter state (see Fig. 6 in
[16]). This situation is similar to that of superconduc-
tors after a quench [7–12]: if dissipation is neglected,
the power-law oscillatory attenuation does not neces-
sarily lead to the equilibrium ground state.

The next step is to extend q-theory in order to
incorporate quantum-dissipation. This is why the next
step should be to extend q-theory in order to incorpo-
rate quantum-dissipation and, thus, to allow μ to relax
to its equilibrium value μ0. In a full quantum theory,
the dynamics of the q-field and the accompanying
oscillating gravitational field should give rise to parti-
cle production and, thus, to the transfer of vacuum
energy density to the energy of the produced matter
fields. At this moment, we cannot discuss the full
quantum theory, but we can use, instead, a phenome-
nological extension of q-theory, which is based on the
theoretical results of particle production in external
fields [28–31]. The question is if there are conditions
under which the Minkowski vacuum appears as an
attractor of the dynamical equations.

Here, we consider the case where the dissipation
comes from the time-dependence of the vacuum field
q(t) or from the time-dependence of the Hubble
expansion parameter H(t). In this way, dissipation is
absent not only in the Minkowski vacuum but also in
the de-Sitter vacuum. In other words, we assume that
the de-Sitter vacuum is not radiating. (The phenome-
nological q-theory based on the Polyakov mechanism
of the radiative instability of the de-Sitter vacuum [2–
4] has been considered in [32].) Even if the Minkowski
and de-Sitter vacuo are treated on an equal footing, it
could be that some range of initial conditions prefers
the Minkowski vacuum, and we intend to check for
this possibility.

It appears that in q-theory there are several equilib-
rium Minkowski states of the quantum vacuum, which
correspond to different equilibrium values  of q.
The present physical vacuum has nonzero  ≠ 0 and
a nonzero gravitational coupling constant G–1[ ] ≠
0. But gravity may be absent or completely modified in
the trivial vacuum with  = 0, implying that depend-
ing on the microscopic (trans-Planckian) theory of
the vacuum either the gravitational coupling constant
vanishes, G[ ] = 0, or the inverse gravitational cou-
pling constant vanishes, G–1[ ] = 0. For the setup
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considered, we have found that the nontrivial Min-
kowski vacuum with q0 ≠ 0 can only result from fine-
tuning.

Though we found a variety of dynamical behaviors,
with or without eternal expansion of the model uni-
verse, we have not found attractor behavior in the
investigated regions of parameter space. This negative
result suggests that, within the q-theory approach, the
decay of the de Sitter vacuum (by radiation or due to
instability) is a necessary condition for the dynamical
solution of the CCP. In a companion paper [33], we
discuss another extension of q-theory, which leads to
the dynamical preference of the Minkowski vacuum
over the de-Sitter vacuum.

2. q-THEORY DYNAMICS

2.1. q-Theory and the Cosmological Constant Problem

In the four-form realization [15, 16], the vacuum
variable q is represented by the antisymmetric field
strength Fκλμν of the three-form gauge field Аλμν
[19, 20]:

(1a)

(1b)

(1c)

where ∇μ is the covariant derivative and a pair of
square brackets around spacetime indices stands for
complete anti-symmetrization. Henceforth, we use
natural units with с = ℏ = kB = 1 and take the metric
signature (– + + +). In (1b), eκλμν is the Levi-Civita
symbol and q is a pseudoscalar. However, q is not a
fundamental pseudoscalar but a composite pseu-
doscalar made from the gauge field Aκλμ and the met-
ric gμν (see also Sec. 2 of [18] for further discussion).

The action for the vacuum field q, the generic mat-
ter field ψ, and the gravity field gμν is a generalization
of the one considered in [19–27]. Specifically, a Max-
well-type term, quadratic in q, is replaced by the gen-
eral function e(q) and Newton’s gravitational constant
GN is replaced by a function G(q). The action then
reads

(2)

Here, we have neglected the possible q dependence of
the parameters of the matter Lagrange density +M(ψ).
The action (2) contains two arbitrary functions with
the only assumption that the equilibrium vacuum has
a nonzero constant value q0 for the q field, i.e., the vac-
uum is not “empty” (q = 0). The cancellation of the
vacuum energy density in equilibrium does not
depend on the choice of these two functions. We have

κλμν
κλμν≡ −2 1 ,
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already mentioned that q in the action (2) is not a fun-
damental pseudoscalar field, as it derives from the
gauge field Aμνρ and the metric field gμν according
to (1b).

One important characteristic of q-theory is that the
microscopic energy density of the vacuum e(q), which
enters the action, does not coincide with the thermo-
dynamic vacuum energy density ρV(q), which enters
the Einstein equation as a cosmological constant.
Indeed, the generalized Einstein equation is obtained
by variation of the action (2) over the metric gμν and
has the following form:

(3)

where  is the invariant d’Alembertian and  is the 
energy-momentum tensor of the matter field ψ. If the 
dependence of the gravitational coupling G on q is 
ignored, this is the standard Einstein equation where 
the role of the cosmological constant Λ is played by 
the following vacuum energy density:

(4)

The vacuum energy density pV(q) from (4) is the
analog of the thermodynamic potential e – nde/dn in
condensed matter physics. In condensed matter phys-
ics, such a thermodynamic potential is nullified in the
perfect equilibrium at zero temperature (T = 0) and in
the absence of external forces (i.e., vanishing external
pressure, P = 0). The nullification follows from the
integrated form of the Gibbs-Duhem relation [15],
e ‒ nde/dn = –P. This thermodynamic relation is uni-
versal and should also be applicable to a relativistic
medium such as the physical vacuum. As a result, any
equilibrium state of the physical vacuum at T = 0 has
ρV = 0, if it is assumed that the vacuum belongs to the
class of the self-sustained systems, that is, systems
which may exist without external environment (i.e., at
P = 0). This means that the nullification of the cosmo-
logical constant in the vacuum is a natural conse-
quence of the thermodynamics of self-sustained sys-
tems. Due to the thermodynamic laws, the huge con-
tribution to Λ from the zero-point-energies of the
quantum fields [1] is automatically canceled by the
microscopic (trans-Planckian) contribution. This
cancellation occurs without fine-tuning.
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An example of the microscopic vacuum energy
density e(q) and the corresponding gravitating vacuum
energy density ρV(q) is given by [16]

(5a)

(5b)

with nonzero constants q0 and χ0. This example shows
two types of equilibrium quantum vacua, both obeying
ρV(q) = 0 in f lat spacetime. One type is the trivial vac-
uum with q = 0 and μ ≡ de/dq = 0. The other type has
nonzero equilibrium parameters,

(6a)

(6b)

(6c)

where χ ≡  corresponds to the isother-
mal compressibility [15]. The trivial vacuum is an
“empty” one and gravity may also be absent in this
vacuum. An appropriate example of the q-dependence
of the gravitational coupling is given by the following
function [16]:

(7)

where GN is Newton’s constant in the equilibrium vac-
uum, i.e., at q = q0. If the trivial vacuum is approached
(q → 0), we have G–1(q) → 0 and the Einstein-Hilbert
term in the action (2) vanishes. Here we assume that q0
provides the cut-off energy scale for the inverse gravi-
tational constant and that G–1 vanishes in the trivial
vacuum. Since the effective gravitational constant
becomes infinite, one can expect the formation of cur-
vature singularities in this limit; see [34, 35] for details.

In principle, the quantum vacuum can be multi-
component and have several nonequivalent nontrivial
states. However, in any of these states, the thermody-
namics ensures nullification of the cosmological con-
stant in a perfect equilibrium vacuum.

2.2. Reversible Dynamics of Vacuum Energy 
and Pressure

In the present article, we are primarily interested in
the dynamical approach of the quantum vacuum to
the equilibrium state (or equilibrium states). In the
absence of energy dissipation, the equation for the
vacuum variable q is obtained by the variation of the
action (2) over the gauge field Aλμν

(8)
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In the spatially-flat (k = 0) Friedmann-Robertson-
Walker (FRW) universe, with the field q depending
only on the cosmic time t, the generalized Maxwell
Eq. (8) is reduced to

(9)

which results in an integration constant μ for the solu-
tion,

(10)

In condensed matter physics, the integration constant
μ corresponds to the fixed chemical potential.

The fate of the expanding universe after a cosmic
catastrophe depends on the value of this integration
constant μ [16]. The universe relaxes to the equilib-
rium Minkowski vacuum only if μ = μ0 with μ0 as given
by (6b) for the Ansatz (5a). For μ ≠ μ0, the solutions of
the dynamic equations have a de-Sitter asymptote,
with a Hubble constant H determined by μ. Hence, if
reversible dynamics of the vacuum is used, the cosmo-
logical constant problem is replaced by another prob-
lem [17]: why does μ have the “correct” value?

This is the reason for introducing dissipation into
the equation for the vacuum variable q. Then, the
effective chemical potential μeff is no longer an inte-
gration constant and may relax.

2.3. Irreversible Dynamics of Vacuum Energy 
and Pressure

Phenomenologically, we introduce dissipation by
adding a source term to (9):

(11)

The role of the function S can be best understood if,
for the moment, we neglect the dependence of the
gravitational coupling G on q. Then, from the Fried-
mann equation [based on the Einstein equation (3)]
and Eq. (11) for the vacuum, we obtain the following
evolution equations for the energy densities of vacuum
and matter:

(12a)

(12b)

This demonstrates that qS describes the dissipation of
vacuum energy density into matter excitations. The
energy exchange between vacuum and matter is caused
by particle production, which takes place due to either
a time-dependent gravitational environment [28, 29,
31] or a parametric resonance caused by oscillations of
the fields [30, 36].
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Here, we follow the lead of condensed matter phys-
ics, where the dissipation function can be expressed in
terms of a quadratic form of the time derivatives. In
our case, we have

(13)

with nonnegative constants Γq and ΓH. The second
term on the right-hand side of (13) has a parallel with
the R2 term for particle production in [28], where R is
the Ricci scalar. For the spatially-flat FRW universe,
we have R2 = 36(∂tH + 2H2)2, which differs from
36(∂tH)2 by a total time derivative: a3[R2 – 36(∂tH)2] =
∂t[48(∂ta)3]. The second term on the right-hand side of
(13) can be written in terms of the Riemann tensor as
the combination of R2 and the Gauss-Bonnet term
E = R2 – 4RμνRμν + RμνρσRμνρσ, the latter also giving a
total time derivative as Ef lat – FRW = 24H2(∂tH + H2).
Specifically, we have

(14)

The crucial property of the source dissipation
function (13) is that it does not discriminate between
Minkowski and de-Sitter vacua: the dissipation van-
ishes for both vacua. The particular phenomenologi-
cal term (13) can only be relevant if the de-Sitter vac-
uum is stable. The issue of the stability of the de-Sitter
vacuum remains an unsolved problem. The possible
instability of the de-Sitter vacuum is discussed in [2–
4, 37]. An alternative point of view on the fate of the
de-Sitter vacuum is given by [5]. Here, we intend to
study whether or not the dissipative source term (13)
dynamically leads to the Minkowski asymptote. In a
companion paper [33], we have considered the source
dissipation function S ∝ |H|R2, which differs from zero
and, hence, does discriminate between Minkowski
and de-Sitter vacua.

3. MODEL EQUATIONS

As in [16], we use dimensionless variables f, k, h,
and τ,

(15a)

(15b)

(15c)

(15d)

with the following Ansatz based on (7):

(16)

if we assume that f stays positive. Moreover, a dot and
a prime will stand for a derivative with respect to τ and
f, respectively.
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In terms of these dimensionless variables, the vac-
uum, Friedmann, and matter equations have the fol-
lowing form:

(17a)

(17b)

(17c)

with the effective vacuum energy density

(18a)

and the Ansatz functions

(18b)

(18c)

where (18b) and (18c) correspond to the previous
Ansatze (13) and (5a), respectively. The ODEs (17) can
also be obtained from those of Sec. IV in [16] by using
Eq. (4.1) of that reference, which corresponds to
Eq. (10) here, to eliminate μ.

Now, define the dimensionless effective chemical
potential (in dimensional units μeff = ueff/χ0q0),

(19)

and obtain

(20)

which resembles the f lat-spacetime result without dis-
sipation [15], rV(f) = e(f) – uf [or, using dimensional
variables, ρV(q) = e(q) – μq]. With ueff from (19), the
first ODE (17a) can be read as

(21)

which allows for the relaxation of the vacuum energy
density to the equilibrium value. Indeed, the ODE
(17a) can also be written as

(22)

The ODEs (17) have an exact solution with con-
stant functions f, h, and rM:

(23a)

(23b)

(23c)

This de-Sitter solution does not exist for values of 
which make the right-hand side of (23b) negative. In
that case, there may exist another type of asymptotic
solution, as will be seen in the next section.
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4. NUMERICAL RESULTS AND DISCUSSION

We have numerically investigated the model-uni-
verse dynamics from the ODEs (17), either with or
without dissipation. Without dissipation, the universe
approaches, in general, a de-Sitter vacuum with a
Hubble constant H determined by the original chemi-
cal potential μ which plays the role of an integration
constant. The Minkowski vacuum as the final state of
the evolution is obtained for a fine-tuned value of the
chemical potential, μ = μ0. The Minkowski vacuum is
approached, in particular, if the cosmic catastrophe
occurs already in the original equilibrium state or if the
catastrophe is a local event which does not disturb the
chemical potential at spatial infinity, 

Figures 1 and 2 demonstrate the evolution starting
with the same initial conditions but without and with
dissipation, respectively. Without dissipation (Fig. 1),
the universe approaches the de-Sitter vacuum with a
Hubble constant H determined by the integration con-
stant. The effective chemical potential ueff starts and
keeps the value ‒0.883133, which is far away from the
Minkowski equilibrium value ‒1/3 (cf. [16]).

With dissipation and certain initial conditions
(Fig. 2), we still end up with a de-Sitter universe. The
effective chemical potential ueff changes from an initial
value ueff(1) = ‒0.883133 to a value ueff(100) =
‒0.333499, close to the Minkowski equilibrium value
‒1/3. Changing the initial conditions somewhat, we
get in Fig. 3 a similar drop of the effective chemical

→∞
μ = μ0

| |
lim ( ) .
x

x

potential ueff from a value ueff(1) = ‒0.883133 to a
value ueff(98) = ‒0.333276. But the further evolution
of the model universe is very different: the expansion
continues forever (Fig. 2) or the expansion stops and
the universe starts to contract (Fig. 3).

In the four-dimensional space of initial conditions,
Min = {h(1), (1), f(1), rM(1)}, there is indeed a sepa-
ratrix which divides regions with or without asymp-
totic-de-Sitter behavior. For the source term (18b)
with γf = γh = 1, we have first considered the slice
{ (1), rM(1)} = {0, 0} and have found a separatrix line
between expansion and re-collapse behavior in the
plane spanned by h(1) and f(1) values (see Table 1).
For slightly different slices of { (1), rM(1)}, the separa-
trix line moves little (see caption of Table 1), and we
conclude that the separatrix is a three-dimensional
submanifold of Min, at least, for the ranges considered.
It remains to be seen if the separatrix extends over the
whole of the four-dimensional space Min. In addition,
a detailed study is needed of the final singularity where
it occurs (see the Appendix for some preliminary
remarks).

The behavior of the solutions close to the separatrix
has already been shown in Figs. 2 and 3, which have
slightly different values of the boundary condition
f(1). Approaching the separatrix from the de-Sitter
side, the asymptotic vacuum energy density
approaches zero from above and the asymptotic-de-
Sitter universe can get arbitrarily close to the Minkow-

�h

�h

�h

Fig. 1. Numerical solution for the evolution of the universe after a cosmic catastrophe, neglecting dissipation. The model param-
eters of the ODEs (17) with auxiliary functions (18) are (wM, γf, γh) = (1/3, 0, 0) and the boundary conditions at τ = 1 are {a(1),
h(1), (1), f(1), rM(1)} = {1, 0.55, 0, 0.2953, 0}. With these parameters and boundary conditions, the matter energy density van-
ishes exactly, rM(τ) = 0 for τ ≥ 1.
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ski universe with vanishing vacuum energy density. In
this way, the Minkowski vacuum is obtained by fine-
tuning of the initial conditions. Still, the Minkowski
vacuum does not originate from a point in the four-

dimensional space of initial conditions Min but rather
from a three-dimensional submanifold and the fine-
tuning is only one-dimensional (if started close enough
to the separatrix and on the de-Sitter side; see Table 2).

Fig. 3. Numerical solution of the ODEs (17), taking into account dissipation. The model parameters are the same as in Fig. 2,
(wM, γf, γh) = (1/3, 1, 1), but the boundary conditions at τ = 1 are different, {a(1), h(1), (1), f(1), rM(1)} = {1, 0.55, 0, 0.2952,
0}. The scale factor а(τ) of the numerical solution drops to a value O(10) at τ ≈ 198.
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Fig. 2. Numerical solution for the evolution of the universe after a cosmic catastrophe, taking into account dissipation, which
leads to energy exchange between vacuum and matter. The model parameters of the ODEs (17) are (wM, γf, γh) = (1/3, 1, 1). The
boundary conditions at τ = 1 are the same as in Fig. 1, {a(1), h(1), (1), f(1), rM(1)} = {1, 0.55, 0, 0.2953, 0}.
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5. CONCLUSION

In this article, we have introduced dissipation into
q-theory, in order to study the irreversible relaxation of
the vacuum energy density. We have used a general
phenomenological approach in terms of a dissipation
function, describing the decay of the coherent motion
of the quantum vacuum into the incoherent degrees of
freedom of the matter fields. We have chosen a dissi-
pation function which does not discriminate between
Minkowski and de-Sitter vacua, as the dissipation
function vanishes for both vacua. This approach
assumes that the de-Sitter universe is not radiating.

Specifically, we have used a simple model of the
deep quantum vacuum, described by a single dynamic
variable q expressed in terms of the four-form field
strength F. Even with this simplification, q-theory
demonstrates different scenarios for the behavior of
the universe depending on the parameters of the sys-
tem and the initial conditions. This includes the relax-
ation to a de-Sitter vacuum or the collapse to a final
singularity. The last type of behavior may correspond
to a scenario where the universe cycles through a finite
or infinite number of Big Bangs, each followed by
expansion and contraction. In our case, different from
the scenario discussed in [38], the vacuum energy den-
sity would decrease after each cycle due to dissipation.

We have not found a Minkowski attractor, but it is
still possible that a Minkowski attractor exists in some
region of parameter space for the case of multi-com-
ponent q-fields. If that does not happen, then the fact
that the present universe is very close to equilibrium
can be explained, within the q-theory approach, only
if we accept that the de-Sitter vacuum is radiating. For
the case of a nonzero dissipation function in a de-Sit-

ter universe, the relaxation to the Minkowski vacuum
has been considered in the companion paper [33].
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APPENDIX

In this appendix, we take a closer look at the final
singularity found numerically in Sec. 4. If we make the
approximation that f(τ) is constant, we are able to
obtain an analytic solution close to the singularity.

Equation (17a) then gives

(A.1a)

(A.1b)

Next, take the time derivative of (17b) for f =  and
use Eqs. (A.1b) and (17c), with the result

(A.1c)

Hence, we only need to solve the single ODE (A.1b)
for h(τ), which then gives rM(τ) from (A.1c).

The second-order ODE (A.1b) requires two
boundary conditions, for example, two initial condi-
tions on h(τin) and (τin). These two initial conditions

= = const,f f

+ = −γ�� � �

24 ( ) .hh hh h

f

= −
+

�

2 1 .
31M

M

r fh
w

�h

Table 2. Numerical solutions of the ODEs (17) with bound-
ary conditions close to the separatrix of Table 1. The model
parameters are (wM, γf, γh) = (1/3, 1, 1). For the slice {h(1),

(l), rM(1)} = {0.525, 0, 0}, the initial value of f(1) is fine-
tuned towards obtaining the Minkowski vacuum with
h(∞) = (∞) = rM(∞) = 0. Similar results have been
obtained for the slice {h(1), (l), rM(1)} = {0.55, 0, 0}, see
also Figs. 2 and 3

f(1) h(200) f(200) (200) rM(200)

0.352 − − − −

0.353 0.0362 1.00131 0.00132 5 × 10−12

0.354 0.0510 1.00259 0.00260 3 × 10−14

0.355 0.0615 1.00376 0.00379 5 × 10−15

0.36 0.0952 1.00895 0.00915 0

0.37 0.136 1.0180 0.0188 0

0.38 0.164 1.0260 0.0277 0

0.39 0.187 1.0334 0.0363 0

�h

�Vr
�h

�Vr

Table 1. Depending on the boundary conditions, the ODEs
(17) may or may not give an asymptotic de-Sitter spacetime.
The model parameters are (wM, γf, γh) = (1/3, 1, 1). For the
slice { (l), rM(1)} = {0, 0}, the results are shown for h(1) val-
ues ranging between 0.525 and 0.7 and f(1) values ranging
between 0.24 and 0.49: Y/N stands for a Yes/No answer to
the question if there occurs an asymptotic de-Sitter space-
time. The same Y/N pattern is obtained for a slice with
{ (1), rM(1)} = {–1/100, 0} and for a slice with { (1), rM(1)} =
{0, 1/50}. This suggest that the separatrix is three-dimen-
sional, at least, for the ranges considered

f(1)
h(1)

0.5250 0.5375 0.55 0.60 0.65 0.70

0.24 N N N Y Y Y
0.29 N N N Y Y Y
0.34 N Y Y Y Y Y
0.39 Y Y Y Y Y Y
0.44 Y Y Y Y Y Y
0.49 Y Y Y Y Y Y
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are, however, not independent, but are related to the
value of  by

(A.2)

This constraint equation corresponds to the original
ODE (17b) for f =  and evaluated at τ = τin, where
rM(τin) has been eliminated by use of (A.1c).

In the following, we set γh = 1 for simplicity. In
(A.1b), we first neglect the 4h  term on the left-hand
side, which will be justified a posteriori. Then, the
resulting ODE for (τ) is easily solved and one further
integration gives the solution for h(τ). For the time
interval τ < τsing, this h(τ) solution and the correspond-
ing rM(τ) solution are given by

(A.3a)

(A.3b)

with constants ch and τsing. There is a similar solution
for τ > τsing. With (А.3а), it can now be checked that
the  term on the left-hand side of (A.1b) dominates
over the  term, namely, the first term goes as
(τsing – τ)–2 and the second as (τsing – τ)–1 ln(τsing – τ).
The scale parameter а(τ), defined by /a = h, is read-
ily obtained from (А.3а),

(A.4)

for τ < τsing and with an arbitrary constant С > 0. This
scale parameter а(τ) does not vanish as τ approaches
τsing from below. Still, there is a physical singularity as
τ ↑ τsing with, for example, both the Ricci scalar R and
the matter energy density rM diverging as (τsing – τ)–1.

Incidentally, we also have another type of solution
of the ODEs (A.1), namely, the de-Sitter solution:

(A.5a)

(A.5b)

(A.5c)
as discussed at the end of Sec. 3. The two types of solu-
tions are distinguished by the  boundary condition
for appropriate values of :  = 0 gives the de-Sit-
ter solution (A.5) for τ > τin and (τin) < 0 gives the
asymptotic singular solution (A.3) for τin < τ < τsing.

Expanding on the last statement, observe that the
constraint (A.2) allows for a heuristic understanding
of the two different types of solutions found numeri-
cally in Sec. 4. If the asymptotic value  is such that
the right-hand side of (A.2) is positive, then a de-Sit-
ter vacuum is possible. But, if the asymptotic value 
is such that the right-hand side of (A.2) is negative,

f

=
+ τ + τ = −

+
�

2
in in

1/3 ( ) ( ( )) [ ' ] .
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f f
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w fh f h f
w

e e
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τ = + τ − τsing( ) ln( ),hh c
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2 1 1( ) ,
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τ = − τ − τ − τ τ − τsing sing( ) exp[( 1) ( ) ln( )],ha C c

= = const,f f

= = const,h h

=� 0,Mr

�h
f τ� in( )h
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f

f

then a de-Sitter vacuum with  = 0 is strictly impossi-
ble and we are led to the asymptotic singular solution.

In closing, we have two remarks on the relevance of
the asymptotic singular solution as given by (A.3).
First, this singular analytic solution gives only a quali-
tative description of the numerical solution, because
fnum(τ) appears to be not perfectly constant. Second,
the physical relevance of the singular solution relies on
the applicability of the Ansatz (13) for the dissipation
function, which may not be valid for the conditions at
the final singularity.
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