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Abstract—The response of an electron system to nonuniform heating of layered conductors with an arbitrary
quasi-two-dimensional electron energy spectrum in a strong magnetic field B is investigated theoretically in
the case when cyclotron frequency ωc is much higher than the frequency 1/τ of collisions between charge car-
riers. In the case of a multisheet Fermi surface (FS), we calculate the dependence of the thermoelectric coef-
ficients on the magnitude and orientation of the magnetic field in the vicinity of the Lifshitz topological tran-
sition when the FS connectivity changes under the action of an external force (e.g., pressure) on the conduc-
tor. Upon a decrease in the spacing between individual pockets (sheets) of the FS, conduction electrons can
tunnel as a result of the magnetic breakdown from one FS sheet to another; their motion over magnetic-
breakdown trajectories becomes complicated and entangled. The thermoelectric field exhibits a peculiar
dependence on the magnetic field: for a noticeable deviation of vector B from the normal through angle ϑ to
the layers, the thermoelectric field oscillates as a function of tanϑ. The period of these oscillations contains
important information on the distance between individual FS sheets and their corrugation.
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The energy spectrum of elementary excitations in
crystals contains a number of critical values of energy
εk, at which the topological structure (connectivity) of
constant-energy energy surfaces ε(p) = const changes.
At low temperatures T, thermodynamic and kinetic
characteristics of the conduction electron system in
degenerate conductors mainly depend on the struc-
ture of the Fermi surface (FS), ε(p) = εF to within
small corrections proportional to (T/εF)2. Although
critical energy levels εk are separated considerably
from the Fermi level as a rule, the electronic topolog-
ical transition in degenerate conductors can still be
clearly observed when the chemical potential μ of con-
duction gradually can be varied continuously by grad-
ually bringing it to εk (for example, by applying a high
pressure or by doping the conductor with impurity
atoms). This topological transition predicted by Lif-
shitz [2] was soon observed and thoroughly investi-
gated experimentally for many metals and alloys in the
normal and superconducting states [3–21]. Detailed
information on these experiments can be found in
Supplement to I.M. Lifshitz works written by Zavar-
itskii [22]. During last three decades, the interest in
experimental investigations of the electronic topologi-

cal transition was switched to MIS, nanostructures,
and other low-dimensional current-conducting sys-
tems. The interest in such research persists even now.
It turned out that the Lifshitz topological electronic
transitions can be detected most simply and reliably
using thermoelectric phenomena. We consider the
linear response of the electron system of a layered con-
ductor to a perturbation by electric field E and tem-
perature gradient ∂T/∂r in the vicinity of the electronic
topological transition in the case when upon the con-
vergence of individual FS pockets (sheets), conduc-
tion electrons can roam over various FS pockets. Fol-
lowing [23], we assume that a quasi-2D electron
energy spectrum of a layered conductor

(1)
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is arbitrary and its FS consists of topologically differ-
ent elements in the form of cylinders and planar sheets
weakly corrugated along momentum projection pz =
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n ⋅ p onto normal n to the layers. For definiteness, we
direct the px axis orthogonally to quasi-2D FS sheets.

Here, a is the distance between the layers,  is the
Planck constant, and εn(px, py) and α(px, py) are arbi-
trary functions of their arguments such that all func-
tions εn(px, py) with n ≠ 0 are much smaller than
ε0(px, py) because the electron velocity

(3)

along the normal to the layers is much smaller than the
characteristic Fermi velocity vF for an electron moving
along the layers. In low-dimensional complexes of
organic origin, parameter η of quasi-two-dimension-
ality of the electron energy spectrum is on the order of
10–2, which facilitates the clearest manifestation of
oscillatory effects in low-dimensional conductors.

We can determine electric current density

(4)

and heat f lux

(5)

by solving the kinetic equation for the charge carrier
distribution function

(6)

Here,

is the equilibrium Fermi distribution function for con-
duction electrons and T is the temperature in energy
units. For variables in the momentum space, we are
using the integrals of motion of a charge in magnetic
field B and time t of its motion in trajectory ε = const
and pB = p ⋅ B/B = const. On the left-hand side of
kinetic equation (6), we have omitted the terms qua-
dratic in the weak perturbation of the electron system.
In the same approximation, collision integral  is the
sum of two linear operators acting on sought functions
φ and ψ.

We must seek the solution to Eq. (6) in the space of
the eigenfunctions of integral operator . The relax-
ation time in the system of charge carriers is equal to
the reciprocal of the smallest eigenvalue of the colli-
sion operator, the relaxation times τ and τε in the
direction of momenta and in energies being essentially
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different. These times are approximately identical only
at very low temperatures at which charge carriers are
scattered mainly by impurity atoms and other crystal
lattice defects. However, upon an increase in tempera-
ture, the additional mechanism of electron scattering
from thermal vibrations of ions in the crystal becomes
operative, leading to different temperature depen-
dences of relaxation times τε and τ in the temperature
range below the Debye temperature TD. If we disregard
numerical factors on the order of unity, it is expedient
to use the τ approximation for the collision integral.
Then kinetic equation (6) can be written as the system
of two first-order ordinary differential equations

(7)

(8)

Using these equations and

(9)

(10)

we obtain the electric current density

(11)

and heat f lux

(12)

Here, e, v, and TB are the charge, velocity, and period
of motion of conduction electrons in trajectory ε(p) =
const, pB = const; c is the velocity of light, and  is the
Planck constant.

Functions φ(λ1 + 0) and ψ(λ1 + 0) describe a com-
plex motion of charge carriers in magnetic-breakdown
trajectories with magnetic breakdown probability w in
region A and probability w' in region B of convergence
of individual FS pockets at instants λ1, λ2, λ3, λ4,
where λ1 is the closest to t instant of an electron tran-
sition from one FS sheet to another with the conserva-
tion of integral of motion pB, and λk > λk + 1 (see
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Fig. 1). For example, the nonequilibrium part of the
electron distribution function in FS sheet 1 after a
magnetic breakdown in the vicinity of point A,

(13)

is connected with the electron distribution function
φ1(λ1 + 0) in the same channel prior to the magnetic
breakdown by the following relation:

(14)
Function φi(λj – 0) before the magnetic breakdown at
instant λj is connected with function φi(λj + 1 + 0) after
the magnetic breakdown at an earlier instant λj + 1 by
the following simple relation:

(15)

where

(16)

is the energy acquired by a conduction electron in the
electric field during its motion over the ith FS sheet
over time (λj – λj + 1) between two magnetic break-
down events, which is equal to T1 for electrons on pla-
nar FS sheets 1 and 3 and to T' on arcs 2 and 4 of the
closed cross section of the corrugated cylinder. To
within small corrections proportional to parameter η,
time T1 of the quasi-periodic motion of charge carriers
in the magnetic field on FS sheets 1 and 3 is indepen-
dent of λj. In the same approximation in the small
quasi-two-dimensionality parameter η of the electron
energy spectrum, functions Ai are identical for any
value of λj.

Taking into account relations (14) and (15), we can
write the relation connecting function φ1(λ1 + 0) with
functions φ1 and φ2 at an earlier instant λ2 in the form

(17)
Analogously, at earlier instants λ2, λ3, λ4, and λ5, we
obtain
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It can easily be seen that relation (21) differs from (17)
only in the earlier instant of magnetic breakdown.
Continuing the recurrent relations, we proceed to the
remote past because the sought functions on the right-
hand sides of the equations for each recurrence
acquire factors smaller than unity and become
infinitely small after multiple recurrence. As a result,
functions φi on the left-hand side of Eqs. (17)–(20)
can be represented by an infinite series of terms pro-
portional to Aj, which form a geometrical progression
that can easily be summed.

Using recurrent relations for Eqs. (17) and (19), we
obtain
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Using relation (20) for function φ4, we can find the
relation between function φ3(λj + 0) and functions φ2
at different instants λn:
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Fig. 1. Projection of electron trajectories onto the pxpz
plane (a) and in a magnetic field tilted from this plane (b).
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(26)

Using relations (24)–(26), we obtain the following
functional equation for function φ2(λ2 + 0):

(27)

Applying the recurrent transformation to Eq. (27), we
acquire additional summation over powers of parame-
ter hh'. As a result, the functional equation for function
φ2(λj + 0) assumes the final form for any initial mag-
netic breakdown instant λj,

(28)

where

(29)

The solution to this equation is a geometrical progres-
sion with ratio q equal to the eigenvalue of linear oper-
ator φ0 = qφ0,
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Summing the progression with allowance for rela-
tions (22) and (23), we obtain the following relation
for φ2(λj + 0):

(31)

where γ = exp(T '/τ) – 1 and γ1 = exp(T1/τ) – 1.
Using relations (20)–(24), we obtain
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It can easily be seen that function φ2(λj + 0) for small γ
and γ1 in inversely proportional to (γ + γ1), and all
terms in formula (34) except the first are small correc-
tions to it for (γ + γ1) ≪ 1.

Using relations (9)–(12) and (31)–(34) for an arbi-
trary orientation of magnetic field B = (Bcosϕsinϑ,
Bsinϕsinϑ, Bcosϑ), we can determine all kinetic coef-
ficients of the conductor; in particular, the electrical
conductivity tensor has the form

(35)
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of summation over all regions of the magnetic-break-
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(37)

where tensor (μ) coincides with tensor σij(μ) if elec-
tron relaxation time τ in the directions of the momen-
tum in it is replaced by the electron energy relaxation
time τε.

Analogously, we can write the thermal conductivity
tensor components:

(38)

It is undoubtedly interesting to consider the case of a
long mean free path of conduction electrons or a
strong magnetic field, when the values of quantities γ
and γ1 (which are approximately of the same order of
magnitude) are so small that it is sufficient to confine
analysis to the asymptotic approximation for kinetic
coefficients w ≫ γ and w' ≫ γ1. In this approximations,
functions φi(λj + 0) assume the form
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The first terms on the right-hand sides of asymptotic
formulas (40) and (41) are much smaller than the last
terms, and a conduction electron “visits” all channels
of the magnetic-breakdown trajectory with the same
probability; in other words, in each occasion of a mag-
netic breakdown, the electron as if necessarily passes
to another FS sheet (see Fig. 2) and performs periodic
motion with period 2(T1 + T').

The asymptotic expressions for σij(ε) and (ε)
have the form
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The main contribution to the thermoelectric field
along the normal to the layers,

(45)

comes from the first term because the resistivity tensor
component ρzz equal to 1/σzz considerably exceeds all
the remaining components of tensor ρij in the main
approximation in parameter η.

The electrical conductivity tensor components 
and  can easily be calculated using the equation of
motion for charge carriers:
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Fig. 2. Projection of electron trajectories onto the pxpy
plane in a magnetic field.
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expression for the thermoelectric field in a strong
magnetic field when max{γ, γ1) ≪ min{w, w'):

(50)

For tanϑ ≫ 1, electron velocity vz along the normal to
the layers often changes its sign, and the main contri-
bution to the period-averaged value of  comes from
small neighborhoods in the vicinity of electron turning
points, where

(51)

Simple calculations using the stationary phase method
lead to the following asymptotic expression (for
tanϑ ≫ 1) for the drift velocity of conduction elec-
trons between two magnetic breakdown events:

(52)

where (t) is the second derivative with respect to t
at the stationary phase points, where pzk(t) is equal to

its minimal value  at t = t1 and to it maximal value

 at t = t2 on the kth FS sheet; k = 1, 2, 3, 4, and

(53)

All remaining charge carriers on the electron trajec-
tory introduce only small corrections proportional to
(tanϑ)–1/2 to .

The distance (  – ) between the stationary
phase points is proportional to tanϑ, and the drift
velocity of charge carriers in a strongly extended tra-
jectory in the momentum space varies periodically as
a function of tanϑ; therefore, the period of these oscil-
lations contains important information on the elec-
tron energy spectrum of charge carriers. With increas-
ing angle ϑ, the electron drift velocity along the nor-
mal to the layers decreases, leading to a decrease in the
electrical conductivity σzz between the layers in inverse
proportion to tan ϑ; the differentiation of the rapidly
oscillating component σzz with respect to μ leads to its
multiplication by tanϑ.

As a result, the amplitude of angular oscillations of
even longitudinal thermoelectric field considerably
exceeds the amplitude of oscillations of the resistivity
in a magnetic field lying in the xz plane, which was cal-
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culated in [23]. In this case, the Nernst–Ettingshau-
sen field experiences giant oscillations upon a change
in tan ϑ, rapidly changing its direction.

The total drift velocity of charge carriers (  + )
on quasi-planar FS sheets and (  + ) in the cylin-
drical FS pocket has the form

(54)

(55)

where  and  are the extremal values of the
momentum projection on a closed cross section of the
cylindrical part of the FS, and

(56)

(57)

(58)

(59)

Using expressions (54) and (55), we can easily calcu-
late tensor component (μ):

(60)
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Here, m1 and m2 are the effective cyclotron masses of
charge carriers on quasi-planar and cylindrical FS
sheets.

It should be borne in mind that the above expres-
sions are valid for a slight deviation of the magnetic
field from the xz plane through angle ϕ, when there
still exist stationary phase points on the trajectory of
electrons moving in quasi-planar regions of the FS.
With increasing ϕ, the stationary-phase points on
each quasi-planar FS sheet gradually approach one
another (see Fig. 3), and for ϕ0 =

arctan(vy(t)/vx(t))max ≤ arctan(vF/ )0, these points
merge at t = t0, where (t0) = (t0) = 0. In this case,
magnetic-breakdown oscillations involving charge
carriers moving over planar FS sheets are absent, and
conventional angular oscillations of electrical conduc-
tivity across the layers at tan ϑ ≫ 1 are contained only
in the first term of expression (60). The period of con-
ventional angular oscillations involving only electrons
on the cylindrical part of the FS contains information
on the extremal diameter of the cylinder along the axis
deflected through angle ϕ from the px axis, and the
amplitude of these oscillations has approximately the
same form as in the absence of magnetic breakdown,
but reduced by a factor of 2(m1 + m2)/m2.

However, the magnetic-breakdown oscillations of
kinetic coefficients are most informative for ϕ = 0. For
example, the contribution to the magnetic-breakdown
oscillation from the kinetic coefficients for conduction
electrons tunneling between cylindrical and planar FS
sheets (the last term in formula (60)),

(61)

contains important information on corrugation of δpx
of quasi-planar FS sheets and minimal distance Δp
between these sheets and the weakly corrugated cylin-
der. Here, αn = (an/ )tanϑ and Dp is the diameter of
the cylinder along the px axis. In the differentiation of

(μ) with respect to μ, there is no need to retain the
derivatives of functions smoothly depending on μ with
respect to μ; it is sufficient to confine analysis to the
differentiation of only trigonometric functions in for-
mulas (60) and (61), the arguments of which are pro-
portional to tanϑ ≫ 1. As a result, oscillations of ther-
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moelectric coefficient αzz are giant by nature for
tanϑ ≫ 1:

(62)

where βn1 and βn4 are equal to nαn1 to within a numer-
ical factor on the order of unity, while βn1 and βn4 are
equal to nαn2.

The detection of magnetic-breakdown angular
oscillations of the thermoelectric field is a direct con-
firmation of the occurrence of the Lifshitz electronic
topological transition. The interest in this problem
continues unabated even today (see, for example, [24–
32]).

Thermoelectric phenomena in low-dimensional
conductors under pressure are being actively studied in
many laboratories. Special attention is paid to organic
charge-transfer complexes based on tetrathiaful-
valene.

We strove to make this research helpful and avail-
able of experimenters. For this reason, we considered
a multisheet FS typical of a large family of organic
conductors including tetrathiafulvalene salts (BEDT-
TTF)2MHg(SCN)4, where M = K, Rb, Tl; there are
indications that quasi-planar sheets are weakly corru-
gated along the py axis also, and the energy spectrum
of charge carriers in these FS sheets is quasi-one-
dimensional [33].

We have confined our analysis to the semiclassical
description of kinetic effects in the conditions of so-
called incoherent magnetic breakdown according to
the Slutskin classification [34, 35], in which tempera-
ture blurring 2π2T of quantized energy levels for elec-
trons in a magnetic field is much larger than the spac-
ing  between these levels, and the complex form of
quantum oscillations of kinetic coefficients does not
prevent the observation of classical angular oscilla-
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Fig. 3. Projection of electron trajectories onto the pypz
plane in a magnetic field for (a) ϕ < ϕ0 and (b) ϕ = ϕ0.
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tions of magnetoresistance and thermoelectric effects.
In this case, we can disregard the wave properties of an
electron located during the magnetic breakdown in
both regions of the magnetic-breakdown trajectory
and confine our analysis to statistical probabilistic
description of the dynamics of electron motion in
magnetic-breakdown trajectories.
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