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Abstract—We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally
symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of
the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and phys-
ical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity
models are reported. Second, the energy conditions for the model under consideration are discussed using
graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those
with f(G) = G1/2 do not favor the current expansion.
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1. INTRODUCTION
Recent study of Planck data for models of dark

energy shows that modified gravity may be a useful
approach to analyze the cosmic expansion of the uni-
verse [1]. The equation-of-state (EoS) parameter ω =
p/ρ can be used to describe the dark energy, where ρ
and p represent the energy density and pressure of dark
energy. Modified gravity has gained much popularity
in the recent years; f(R) and f(R, T) theories of gravity
have been investigated by many researchers in the last
decade [2–7]. In particular, f(R) gravity is proved to be
equivalent to the scalar-tensor theory of gravity [8].
The cosmic acceleration can be justified just by adding
the term 1/R, which is required at small curvature.
Reviews [9–11] help to get a deeper understanding of
why modified theories are important in discussing
expansion of the universe. The f(T) theory of gravity
[12–14] is another alternate theory that generalizes
teleparallel gravity. The interesting feature of the the-
ory is that cosmic acceleration can be justified without
involving dark energy. Modified Gauss–Bonnet (GB)
gravity is another theory that has gained popularity in
the last few years [15–17]. It is also known as the f(G)
theory of gravity, where f(G) is a generic function of
the GB invariant G. The GB term plays an important
role because it may allow avoiding ghost contributions
and is helpful in regularizing the gravitational action
[18]. It has been suggested that this theory may
describe the late-time cosmic acceleration. Moreover,
the theory also passes the solar system tests for some
specific choices of f(G) gravity models. Some interest-
ing work has been done so far in this theory.

The investigation of exact solutions in f(G) gravity
is not only important but also challenging due to the
involvement of higher-order derivatives in the equa-
tions of motion. Nevertheless, many interesting
achievements have been reported so far. Spherical
symmetry has been used to find noncommutative
static wormhole solutions in modified GB gravity in
[19]. Anisotropic power-law solutions in f(G) gravity
were explored in [20], where Bianchi type I power-law
solutions were proved to be valid only for some special
cases of f(G) gravity models. Cylindrical symmetry in
f(G) gravity has been investigated and it was shown that
only three choices of f(G) models are compatible with
the exact solutions [21]. Exact cylindrically symmetric
solutions of GB-modified field equations recovered
the cosmic string space-time [22]. Noether f(G) sym-
metries for the Friedmann–Robertson–Walker
(FRW) metric were recently discussed in [23]. The
same authors [24] studied the role of the GB term in
the late-time accelerated phases of the universe. The
f(G) theory of gravity is used to discuss warm inflation
for the FRW universe model [25]. A further general-
ized version of GB gravity, the f(R, G) gravity, has also
been proposed recently. Spherically symmetric exact
solutions in this theory were investigated in [26]. The
cosmological inflation in f(R, G) gravity has been
studied in [27]. Stability criteria for Schwarzschild
solutions with metric perturbations were given in [28].
In [29], finite-time singularities in modified f(R, G)
gravity were investigated and it was concluded that sin-
gularities could be avoided in the f(R, G) theories of
gravity using higher-order curvature corrections.

The energy conditions have been used considerably
to discuss some important issues in cosmology. The1 The article is published in the original.
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energy conditions can be categorized as the null energy
condition (NEC), weak energy condition (WEC),
strong energy condition (SEC), and dominant energy
condition (DEC). These are helpful in studying the
validity of the second law of black-hole thermody-
namics and Hawking–Penrose singularity theorems
[30]. In particular, the SEC is important because its
violation indicates cosmic expansion [31]. Energy
conditions using metric f(R) gravity were studied in
[32]. The authors of [33] investigated energy condi-
tions to find the stability and viability of cosmological
models in f(R) gravity. In [34], the charged black hole
metric was constructed such that the WEC was satis-
fied. These conditions were explored in [35] to analyze
the viability of some f(G) gravity models. The f(R, G)
gravity energy conditions have been recently explored,
where the WEC was used along with the recent esti-
mated values of cosmological parameters to determine
the viability of some specific choices of f(R, G) gravity
models [36]. Thus, it seems interesting to explore
modified theories of gravity, and the f(G) gravity in
particular.

In this paper, we are interested in f(G) gravity in an
anisotropic background. We consider a locally rota-
tionally symmetric (LRS) Bianchi type I space-time.
The paper can be divided into two parts. The first part
is devoted to finding the exact solutions of the LRS
Bianchi type I field equations in the f(G) theory of
gravity. Some exact solutions with a well-known form
of f(G) model are explored. One general solution is
discussed using a power-law f(G) gravity model and
physical quantities are calculated. In particular, Kas-
ner’s universe is recovered and the corresponding f(G)
gravity models are reported. In the second part, the
energy conditions for the model under consideration
are discussed using graphical analysis. Two cosmolog-
ical models are discussed in detail and it is concluded
that solutions with f(G) = G5/6 support expansion of
the universe while those with f(G) = G1/2 do not favor
the current expansion. The paper is organized as fol-
lows: Section 2 gives a brief introduction into f(G)
gravity and the corresponding field equations. Exact
solutions of the field equations for a specific choice of
the f(G) model are investigated in Section 3. Section 4
is used to discuss the validity of solutions using energy
conditions. The last section gives the summary and
conclusion of the work.

2. FIELD EQUATIONS IN f(G) GRAVITY
Modified GB gravity is described by the action

(1)

where κ is the coupling constant, g is the determinant
of the metric tensor gμν, and SM(gμν, ψ) is the matter
action, in which matter is minimally coupled to the
metric tensor and ψ denotes the matter fields. This
coupling of matter to the metric tensor suggests that

μν= − + + ψ
κ ∫

41 [ ( )] ( , ),
2 MS d x g R f G S g

f(G) gravity is a purely metric theory of gravity. The
f(G) is an arbitrary function of the GB invariant G:

(2)

where R is the Ricci scalar and Rμν and Rμνσρ denote
the Ricci and Riemann tensors. Gravitational field
equations are obtained by varying the action in Eq. (1)
with respect to the metric tensor:

(3)

where ∇μ denotes the covariant derivative and fG rep-
resents the derivative of f with respect to G.

The line element for a spatially homogeneous,
anisotropic and LRS Bianchi type I space-time is
given by

(4)
where L and M are cosmic scale factors. The corre-
sponding Ricci scalar and GB invariant turn out to be

(5)

(6)

where the dot denotes the derivative with respect to t.
Here, we assume that the universe is filled with a dark
energy f luid and hence the energy–momentum tensor
is taken as

(7)

where ρ denotes the energy density of the f luid and px,
py, and pz are the pressures along the x, y, and z axes.
The anisotropic f luid is characterized by the EoS p =
ωρ, where ω is not necessarily constant. From Eq. (7),
it follows that

(8)

where ωx, ωy, and ωz are the directional EoS parame-
ters along the x, y, and z axes; ω is a deviation-free EoS
parameter of the f luid. We parameterize the deviation
from isotropy in such a way that ωx = ω and introduce
the skewness parameter δ as the deviation from ω
along the y and z axes. In this case, the energy–
momentum tensor takes the form

(9)
The average scale factor a and the volume scale factor
V are defined as

(10)
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The average Hubble parameter H, the expansion sca-
lar θ, and the shear scalar σ are given in the form

(11)

With Eqs. (4) and (9), field Eqs. (3) now take the form

(12)

(13)

 (14)

These are complicated and highly nonlinear differen-
tial equations. We use a physical condition that the
expansion scalar θ is proportional to the shear scalar σ,
which leads to

(15)

where n is an arbitrary real number and we consider
n ≠ 0, 1 for nontrivial solutions. The physical reason
for this assumption is justified because the observa-
tions of the velocity red-shift relation for extragalactic
sources suggest that the Hubble expansion of the uni-
verse may achieve isotropy when σ/θ is constant [37].
Collins [38] provided the physical significance of this
condition for a perfect f luid with a barotropic EoS. In
the literature [39–44], many authors have proposed
this condition in order to find exact solutions of the
field equations. With Eq. (15), field Eqs. (12)–(14)
take the form

(16)

(17)

(18)

We now investigate the solutions of these field equa-
tions.

3. DARK UNIVERSE
WITH A POWER-LAW f(G) MODEL

We consider the f(G) model with

(19)

where α and m are arbitrary constants. This model has
already been proposed in [16] and it is interesting
because the Big Rip singularity may not appear. Also,
power-law f(G) models are compatible with the obser-
vational data and predict the unification of the early-
time inflation with late-time acceleration [45]. The
viability of this model has already been shown in cos-
mological contexts [46–48]. Moreover, this model
belongs to the general class of models without irregular
spin-2 ghosts [49]. It follows from Eq. (19) that

(20)

For simplicity and without any loss of generality, we
choose α = 1/(m + 1) for the further analysis. We con-
sider the power-law form for the metric coefficient

(21)

where β is an arbitrary constant. Using this in
Eqs. (16)–(18), we find the energy density and pres-
sure components
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(24)

Thus, the solution metric takes the form [50, 51]

(25)

The Ricci scalar and the GB invariant for this solution
turn out to be

(26)

The average Hubble parameter, the average scale fac-
tor, and the volume scale factor of the universe take
the form

(27)

The redshift for a distant source is directly related to
the scale factor of the universe at the time when the
photons were emitted from the source. The scale fac-
tor a and the redshift z are related as

(28)

where a0 is the present value of the scale factor. Using
Eq. (27), we obtain

(29)

where H0 is the present value of Hubble’s parameter.
Therefore, the value of Hubble’s parameter in terms of
the redshift parameter turns out to be

(30)
The deceleration, jerk, and snap parameters become

(31)
The expansion scalar and the shear scalar turn out
to be

(32)

The isotropy condition σ2/θ → 0 as t → ∞ is also sat-
isfied in this case. It is also observed from Eqs. (27)
and (32) that the spatial volume is zero at t = 0 while
the expansion scalar is infinite, which suggests that the
universe starts evolving with zero volume at t = 0 (a Big
Bang scenario). It is further observed that the average
scale factor is zero at the initial epoch t =0 and the
model becomes singular at t = 0 for n < –2. To have a
better analysis of isotropy, graphical behavior of the
isotropy condition is shown in Fig. 1. It is evident that
σ2/θ → 0 for small values of n even if t is not very large.
This indicates that isotropy can be quickly recovered
for some suitable values of n and t (other than ∞).
With Eqs. (16)–(18), the EoS and the skewness
parameters turn out to be

(33)

(34)

Many solutions can be reconstructed from
Eq. (25). However, we here discuss only one special
case to justify the physical relevance. Putting n = –1/2
in Eq. (25), we have

(35)

After redefining the parameters, it is exactly the same
as the well-known Kasner metric [52]. Here, the EoS
parameter takes the form
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For m = –1/6, we have ω = –1, which describes
accelerated expansion of the universe [53–55]. More-
over, when m = –1/2, the EoS parameter has the pos-
itive value ω = 1 corresponding to a stiff-f luid uni-
verse. It has been shown that the EoS parameter can
be positive due to classical and quantum mechanical
contributions [56]. It is observed from Eqs. (22)–(24)
that expressions for the energy density and pressure
components are defined for –∞ < n < –2 and –2 <
n < 0 when m = –1/6, –1/2. We hence choose –2 <
n < 0 for graphical analysis. The behavior of the energy
density of the universe and pressure (x-component)
can be seen from Figs. 2, 3. Both models give a positive
energy density for –2 < n < 0. Figure 4 shows the
behavior of the EoS parameter ω and Fig. 5 shows the
behavior of the skewness parameter δ. It can be seen
that ω takes negative values as well. It is worthwhile to

mention here that the phantom-like dark energy is
found to be in the region where ω < –1. The universe
with phantom dark energy ends up with a finite-time
future singularity known as the cosmic doomsday or
Big Rip [57, 58].

4. EXACT SOLUTIONS 
AND ENERGY CONDITIONS

In modern-day cosmology, the energy conditions
are considered useful to establish some important the-
orems about black holes. The viability of some import-
ant cosmological models is linked to the energy condi-
tions. The energy conditions are reflected by the term
Rμνv

μvν ≥ 0 in the Raychaudhuri equation for the
expansion of the universe

(37)

where θ, σμν, and ωμν respectively denote the expan-
sion, shear, and rotation, while vμ is a null vector.
Because the Raychaudhuri equation is valid for any
geometrical theory of gravity, this can also be used to
investigate the energy conditions for modified theo-
ries, the f(G) gravity in particular. The NEC, WEC,
SEC, and DEC are as follows:

(38)

We now analyze both f(G) models.
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Fig. 1. (Color online) Behavior of the isotropy parame-
ter σ2/θ.

0

−0.5

−1.0

−1.5

10

5

0
0

0.5
1.0

1.5
σ2/θ

t

n

Fig. 2. (Color online) Behavior of the energy density for m = –1/6 (a), –1/2 (b).

0

−0.5

−1.0

−1.5

10

5

0
0

2

4

ρ ρ

t

n

(a)

0

−0.5

−1.0

−1.5

10

5

0
0
2
4
6
8

t

n

(b)



612

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 123  No. 4  2016

SHAMIR

4.1. Case I. Cosmological model f(G) = G5/6

This model corresponds to m = –1/6. Figure 6
shows the region where the NEC is satisfied. It can be
seen that the NEC involving the x-component of pres-
sure is satisfied at an initial epoch and is violated as
time increases and n decreases from 0 to –2. In partic-
ular, the NEC is satisfied for our solutions with n =
‒1/2. Moreover, the WEC is also satisfied for this
model (Figs. 2a and 6). It is observed from Fig. 7 that
the SEC is satisfied at an initial epoch, but is violated
as the time progresses. This is an indication of the
presence of dark energy responsible for accelerated
expansion of the universe. The DEC is also satisfied
(Fig. 8) and hence this model is viable in the context
of energy conditions, and it also justifies the physical
importance of exact solutions of modified field equa-
tions.

4.2. Case II. Cosmological model f(G) = G1/2

This model corresponds to m = –1/2.The NEC is
satisfied for –2 < n < 0 as shown in Fig. 9. The WEC is
also satisfied for this model (Figs. 2b and 9). It is
observed from Fig. 10 that the SEC is satisfied even as
the time progresses. Therefore, this model does not
represent accelerated expansion of the universe.
Moreover, the DEC is also violated here and hence
this model does not support accelerated expansion of
the universe for –2 < n < 0 (Fig. 11).

5. CONCLUDING REMARKS
f(G) gravity with an anisotropic background is dis-

cussed in this paper. The LRS Bianchi type I space-
time is chosen for this purpose. We have given exact
solutions for the LRS Bianchi type I space-time. With

Fig. 3. (Color online) Behavior of the pressure (x-component) for m = –1/6 (a), –1/2 (b).
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Fig. 4. (Color online) Behavior of ω for m = –1/6 and m = –1/2.
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Fig. 5. (Color online) Behavior of δ for m = –1/6 and m = –1/2.
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Fig. 6. (Color online) Plots of the NEC for f(G) = G5/6.
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Fig. 8. (Color online) Plots of the DEC for f(G) = G5/6.
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Fig. 9. (Color online) Plots of the NEC for f(G) = G1/2.
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a highly nonlinear and complicated nature of the field
equations, we restrict ourself to the assumption that
the shear scalar σ is proportional to the expansion sca-
lar θ. The energy conditions for the model under con-
sideration are discussed using graphs. The parameters
for graphical analysis are assumed such that the valid-
ity of the exact solutions can be checked. A brief sum-
mary and conclusion of the work is as follows.

• An important power-law f(G) gravity model
already available in the literature [16] is considered.
This model is interesting because the chances for a Big
Rip singularity to appear vanish. Moreover, it is com-
patible with the observational data predicting the exis-
tence of a transient phantom epoch. The viability of
this model has already been shown in cosmological
contexts [46–48].

• The metric coefficients involve the anisotropy
parameter n for the power-law solution. In particular,
two f(G) gravity models are discussed in the context of
the solution. The first model f(G) = G5/6 gives ω = –1,
which describes accelerated expansion of the universe
[53–55]. However, the second model involves a
square root of the GB invariant, which leads to a viable
inflation in the presence of a massive scalar field [59].
The graphical analysis indicates that the EoS parame-
ter ω also takes negative values for –2 < n < 0. It is
worthwhile to mention that the phantom-like dark
energy is found to be in the region where ω < –1.

• One general power-law solution is reported using
a power-law f(G) gravity model and some important
physical quantities are calculated. In particular, Kas-
ner’s universe has been recovered as a special case
where the anisotropy parameter is n = –1/2. Expres-
sion for the skewness parameter δ is calculated and
graphical behavior is shown in Fig. 5. The first model
shows both positive and negative values of δ. For Kas-
ner’s universe, the skewness parameter has the value
δ = 2.5. The second model gives δ = 0 corresponding

to perfect-fluid solutions without any deviation in the
y or z axis.

• The energy conditions are developed for the con-
sidered f(G) gravity model. Long expressions involving
inequalities are not easy to analyze directly. Thus, to
check the viability of the model, present-day values of
cosmological parameters are assumed. The graphical
analysis is given that shows that the NEC, WEC, and
DEC hold, while the SEC is violated for the first
model f(G) = G5/6. This violation supports the phe-
nomenon of expansion of the universe. However, the
NEC, WEC, and SEC are satisfied for the second
model f(G) = G1/2 while the DEC is violated here and
hence this model does not support accelerated expan-
sion of the universe for –2 < n < 0.

The author acknowledges the National University
of Computer and Emerging Sciences (NUCES) for a
research reward program.
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