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Abstract—The formation of short electron bunches during the passage of a laser pulse of relativistic intensity
through a sharp boundary of semi-bounded plasma has been analytically studied. It is shown in one-dimen-
sional geometry that one physical mechanism that is responsible for the generation of electron bunches is
their self-injection into the wake field of a laser pulse, which occurs due to the mixing of electrons during the
action of the laser pulse on plasma. Simple analytic relationships are obtained that can be used for estimating
the length and charge of an electron bunch and the spread of electron energies in the bunch. The results of
the analytical investigation are confirmed by data from numerical simulations.
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1. INTRODUCTION
Laser-plasma-induced acceleration of electrons in

rarefied plasma has been extensively studied in the
past decade. This research interest is related to the fact
that, according to theoretical estimations, the field
strength in an accelerating plasma wake wave can
exceed 300 GV m–1, which is several orders of magni-
tude greater than the strength of the accelerating elec-
tric field (~0.01 GV m–1) in modern accelerators of
traditional types [1]. Investigations of the laser-plasma
acceleration of electron bunches in various laborato-
ries (see review [2] summarizing the experimental
results) confirmed the validity of the premises under-
lying the idea of laser-plasma acceleration and, despite
some technical difficulties and theoretical problems,
demonstrated a gradual increase in the average energy
of electrons in a bunch up to approximately 1 GeV.
The best result was obtained at Berkeley [3], where a
laser pulse of 300 TW peak power (40 fs duration,
0.815 μm wavelength) in a gas-filled capillary dis-
charge accelerated bunched electrons up to an energy
of 4.2 GeV in a 9-cm long waveguide. Electron
bunches of this energy are of interest in many practical
applications.

At the same time, questions related to the quality of
accelerated electron bunches, including their monoen-
ergeticity, duration, emittance, and charge, are still
not completely clear. As an example, approximately
6% of the relative energy spread of electrons in accel-
erated bunches in the aforementioned experiment [3]
was also among the best achieved results. However,
the degree of electron beam nonmonoenergeticity that
is desirable for practical applications must not exceed

1% and in some cases should even fall within tenths of
a percent [4, 5].

Evidently, the quality characteristics (monoener-
geticity and emittance) of accelerated electron
bunches are determined to a considerable degree by
the method that is used to inject electrons into the
accelerating wake field and by the initial parameters of
the injected bunch. In particular, the shorter the initial
length of injected electron bunch is compared to the
wake field wavelength, the more a monoenergetic
bunch is obtained upon acceleration [6, 7]. Theoreti-
cal estimations show that at a characteristic wake
wavelength of 10–100 μm, high-energy electron
bunches with a small energy spread require accurate
injection of very short (~1–10 μm) initial bunches into
the appropriate phase of an accelerating electric field.
Obtaining electron bunches of such short lengths is a
difficult task.

There are several possible methods of injecting
electrons into the accelerating wake field, each of
which possesses its own disadvantages. The usual pho-
tocathode based high-frequency injector can, in prin-
ciple, generate high-quality electron bunches but with
durations of 100 fs [8] and above, which are too long.
The best modern injectors [9] can generate much
shorter bunches of approximately 5 fs, but only with a
charge of ~1 pC, which is too small. In addition, the
use of external injection in laser-plasma accelerators
encounters the need to solve the quite difficult task of
bunch synchronization in both time and space with a
certain optimum phase of the wake field. Of course,
the external injector requires additional equipment.
Thus, it is evident that an external photocathode based
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high-frequency injector and the general idea of using
external injection of electrons into the wake wave can-
not help in solving the task of creating a compact
accelerator.

Various methods have also been proposed for the
optical injection of electrons into the wake wave. The
essence of these methods is to act upon plasma, in
which a laser pulse that generate the wake field wave
propagates, at an appropriate moment of time. This
can be achieved, e.g., by using one or several auxiliary
laser pulses of lower energy, which act at this special
moment (consistently with the main pulse that gener-
ates the wake wave) on background plasma electrons
in order to favor their trapping in the wake field [10,
11]. Alternatively, a rather powerful auxiliary laser
pulse can also be used to additionally ionize plasma in
a desired phase of a wake wave that propagates in
incompletely ionized plasma. The additional electrons
generated by this auxiliary laser pulse via photoioniza-
tion of incompletely ionized background gas can also
be trapped by the wake wave [10]. However, these
optical methods of electron injection also require
extremely accurate matching of several laser pulses in
both space and time, which presents considerable
technical difficulties.

The above problems can be eliminated using a
scheme with self-injection [12] of electrons into the
wake field, which employs a single laser pulse passing
through inhomogeneous plasma. According to this
scheme, background plasma electrons are trapped due
to the wake-wave breakage in a region of smoothly
decreasing plasma density, whose spatial scale is much
greater than the wake wavelength. When a laser pulse
propagates along a descending plasma-density gradi-
ent, the phase front velocity of the wake potential
gradually decreases and at some moment of time
becomes equal to the oscillatory velocity of the elec-
tron component of plasma, which leads to the wake-
wave breakage, the trapping of background plasma
electrons, and their subsequent acceleration. The
scheme with self-injection of electrons into the wake
wave can be implemented in cases of both a negative
[12, 13] or a positive gradient of inhomogeneous
plasma density [14, 15] with respect to the direction of
laser-pulse propagation.

The method for electron injection into a wake field
wave proposed in [12] was much simpler compared to
other injection schemes, but electrons were trapped
into the wake wave from a relatively large phase vol-
ume, which did not improve the quality characteristics
of the trapped bunch. Evidently, the process of elec-
tron trapping can be either fast or slow depending on
the parameters of the plasma and laser pulse, with the
corresponding change in characteristics of the trapped
bunch quality, in particular, its length and monoener-
geticity. In order to make the injection faster, it is nec-
essary to use the vacuum–plasma density transition or

the density jump inside inhomogeneous plasma with a
steeper gradient between regions.

Recently, Li et al. [16] proposed a promising
method for injecting background electrons into the
wake field wave from plasma with an up-ramp density
profile and performed numerical simulations that
demonstrated that under certain conditions of laser
pulse–plasma interaction electrons are injected from a
narrow region where the up-ramp density profile
attains a plateau. This method is performed essentially
under conditions of one-dimensional (1D) breakage
of the wake field wave. The 1D character of the wake-
wave breakage can be provided by the size of the laser
focal spot being large such that the transverse breakage
of the wake wave is excluded. The resulting length of
electron bunches injected under these conditions can
be very small, on the order of several dozen attosec-
onds at a bunch charge on a level of nanoCoulombs.

It has been pointed out [16] that bunches with these
parameters are appropriate objects for subsequent
acceleration in a multistage laser-plasma accelerator
with the first stage acting as an electron injector that
operates on the proposed principle. However, the the-
oretical analysis of the method for generating short
electron bunches with large charges [16] was not
exhaustive. As an example, the concept proposed for
explaining this phenomenon was rather general and
could not describe the essential details of the process
of background electron trapping by the wake wave.
The physical interpretation was based on the assump-
tion that the phase velocity of the laser-pulse-gener-
ated wake wave in the transition layer (where the
plasma density increases with the pulse propagation) is
greater than the oscillatory velocity of plasma elec-
trons and then (upon attaining the plateau of the den-
sity profile) sharply drops to a level below the electron
velocity, which results in the self-injection of elec-
trons. It was also stated [16] that this change in the
wake-wave velocity occurs not strictly at the point
where the plateau begins, but somewhat later,
although no convincing explanation was provided.

The present work was aimed at elucidating and jus-
tifying a particular mechanism of electron bunch self-
injection into the wake wave, the properties of which
would explain (under conditions of the phenomenon
considered in [16]) where and when the self-injection
of background electrons begins, as well as when and
why this mechanism ceases to operate. These details of
the self-injection process are quite important, since
they determine the charge of a bunch trapped in the
wake wave. In this work, the problem is considered in
1D geometry, but the domain of physical parameters
that characterizes the generation of electron bunches
by laser pulse passing through a boundary of inhomo-
geneous plasma corresponds to conditions for which
the 2D modeling [16] proved the adequacy of the 1D
setting.
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2. TRAJECTORIES OF BACKGROUND 
ELECTRONS INITIATED BY A LASER PULSE 

PASSING THROUGH INHOMOGENEOUS 
PLASMA

Consider semi-bounded plasma in the absence of
external static fields. Let us describe it in the frame-
work of a model in which only the electron component
is mobile (with neglect of the intrinsic thermal motion
of electrons) while ions constitute the immobile, pos-
itively charged homogeneous background. For the
sake of simplicity, the problem is considered in the 1D
geometry and the plasma–boundary interface is
assumed to be sharp.

Let a short laser pulse be normally incident on the
plasma boundary, as a 1D packet of circularly polar-
ized electromagnetic waves with frequencies much
greater than the plasma frequency (i.e., plasma can be
treated as rarefied). For certainty, the laser pulse prop-
agates at group velocity Vgr left to right in the positive
direction of the z axis with origin at the plasma bound-
ary. Each electron in the plasma that interacts with the
laser pulse rapidly oscillates in the transverse direction
to the z axis and moves along this axis under the action
of a ponderomotive Miller force caused by the pres-
sure of the electromagnetic field of the laser pulse.

In the 1D geometry with the circularly polarized
electromagnetic waves of the laser pulse that acts on
the plasma electrons, their longitudinal motion along
the z axis has no high-frequency component and is
described by the following equations:

(1)

(2)

where A(z, t) is the amplitude of the envelope of the
laser-pulse vector potential; ϕ(z, t) is the scalar poten-
tial of the charge-separation field; P and u are the elec-
tron momentum and velocity, respectively; and –|e|
and m are the electron charge and mass, respectively.
The charge-separation field occurs due to the laser-
pulse action on electrons, which leads to their shift
from the initial equilibrium position z0.

At the initial moment, the motion of an electron
coincides with the direction of laser-pulse propaga-
tion; when the laser pulse outruns an electron, the
electron moves in the reverse direction. As a result of
the occurrence of the charge-separation field, plasma
electrons perform a longitudinal oscillatory motion
about the oscillation center z0.

A laser pulse that propagates in the depth of plasma
acts sequentially on every electron. In a physically
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analogous problem [14], numerical simulations have
shown that a laser pulse that penetrates into and then
propagates in a semi-bounded rarefied plasma virtu-
ally retains its initial shape, so that the temporal
dynamics of the laser pulse in this case can be ignored.
This corresponds to a quasi-static approximation, in
which the wake-wave driver evolves over a time scale
that is much greater than the scale of the plasma elec-
tron response. Therefore, at a constant group velocity
Vgr of laser pulse propagation in homogeneous plasma,
the pulse action on every next electron is fully analo-
gous to that upon all of the preceding electrons. For
this reason, all electrons that are located near the
plasma boundary have similar motions upon interac-
tion with the laser pulse. The difference between the
trajectories of electrons that occur initially at a dis-
tance of Δz0 from each other is only determined by the
time delay Δz0/Vgr of the laser-pulse action.

The similarity of electron trajectories is retained as
long as (i) the initial arrangement of electrons relative
to each other is not modified and (ii) electrons that
perform reverse motion upon interaction with a laser
pulse do not travel outside of the ion background to
the region of z < 0. Let us assume that the longitudinal
size of a laser pulse is sufficiently small so that elec-
trons leave the region of interaction with the pulse
before crossing the vacuum–plasma boundary. Esti-
mates show that at a relativistic oscillatory velocity of
electrons in the longitudinal direction of rarefied
plasma in which the laser-pulse group velocity is close
to the velocity of light (Vgr ≈ c); this assumption is
readily satisfied provided that the laser pulse width
does not exceed the amplitude of electron oscillations.
The charge separation field Ez that acts on a given
electron under the condition of a retained initial
arrangement of electrons (i.e., that prior to the onset
of laser-pulse action) depends on the shift of this elec-
tron relative to its initial position z0. Unless the elec-
tron travels outside the region z < 0 of a constant ion
background, the charge separation field Ez according
to the Gauss theorem can be expressed as

(3)
where n0 is the plasma density and z is the current
position of the electron on the z axis.

Thus, each electron is a relativistic oscillator that
performs oscillatory motion relative to its oscillation
center, which coincides with the initial position z0
prior to the laser-pulse action. The equation of motion
of this oscillator at the termination of the action of the
laser pulse can be written as

(4)

and has the following integral that corresponds to the
law of energy conservation:

(5)
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where Eos is the oscillator energy.
Using relationship (5), it is possible to write the tra-

jectory of any electron in the integral form for a time
interval that begins at the moment of termination of
the action of the laser pulse. This description will be
valid as long as the given electron occurs within the ion
background and the initial arrangement relative to
neighboring electrons is retained. As will be shown
below, violation of the order of electrons (or their mix-
ing) can take place over a part of the trajectory where
the electron (after reverse motion upon termination of
the laser-pulse action) moves behind the pulse in the
direction of its propagation. In this region, the trajec-
tories of all electrons that did not cross the vacuum–
plasma boundary are described by a general expression
that takes the delay of the laser-pulse action on various
electrons into account:

(6)

where

ct0 = I(–Am, Am), and Am =  is
the amplitude of electron oscillations.

The integration constant in Eq. (6) that describes
the set of trajectories is determined from the condition
that an electron with an oscillation center that occurs
initially at the origin would pass it at t = 0 with the
velocity vector directed from the plasma to the vac-
uum.

As can be seen from the form of expression (6), the
characteristics of the set of trajectories of plasma elec-
trons that do not travel in the vacuum are determined
prior to their mixing by the plasma density, the group
velocity of the laser pulse, and the energy Eos of oscil-
lators excited in plasma by the laser pulse. The same
value of the plasma oscillator energy can be excited by
laser pulses with various combinations of their maxi-
mum amplitude and duration. However, this issue is
insignificant regarding the character of the trajectories
of oscillating plasma electrons. Of the characteristics
of laser pulses, only the group velocity Vgr explicitly
enters into formula (6) and determines the phase shift
between neighboring oscillators and the phase velocity
Vph = Vgr of the plasma wave that lags behind the laser
pulse that propagates in plasma.

3. THE MECHANISM 
OF THE SELF-INJECTION OF BACKGROUND 
PLASMA ELECTRONS INTO THE WAKE WAVE

A laser pulse that interacts with plasma on crossing
its boundary and initiates the motion of background
electrons plays essentially only the role of a factor that

− − =0
0 0

gr

( , ),czct ct I z z
V

=
− − π −∫

0

0 2 4 2 2 2
os 0 0

( , ) ,
1 /[ 2 ( ) ]

z

z

dzI z z
m c E e n z z

− π2 2
os 0( )/(2 )E mc e n

excites the system of plasma oscillators and determines
their energy and phase delay relative to each other. All
the subsequent physical phenomena that involve
plasma electrons, including the generation of electron
bunches, are determined entirely by the properties of
these nonlinear relativistic oscillators.

As is known [13], one of these properties is that the
mutual arrangement of oscillators can be violated
during electron oscillations, which implies the inter-
section of their trajectories Z = Z(z0, t), i.e., the mixing
of electrons. The mixing of electrons violates the reg-
ular structure of a plasma wave (wake field wave)
excited by a laser pulse in plasma, which leads to
breakage of this wave. All these processes are accom-
panied by the self-injection of electrons into the wake
field of a laser pulse, which can trap these electrons
and involve them in acceleration.

The condition of the mixing of electron trajecto-
ries, which can be written as dZ/dz0 = 0 and occurs at
some critical moment of time tcr, determines the phase
of oscillations at which the trajectories intersect. In
the case of unbounded plasma, in which the motions
of oscillators are not affected by boundaries, relation-
ship (6) can be differentiated to show that the intersec-
tion of trajectories of electrons that oscillate with equal
amplitudes determined by their energy and with the
phase delay determined by the phase velocity Vph of a
plasma wave is only possible provided that the energy
of oscillators excited by the laser pulse reaches a

threshold value of Eos,th = mc2γph = mc2/ .

The phase at which the trajectories intersect for the
threshold oscillator energy Eos = Eos,th corresponds to
the moment of passage of an electron through its oscil-
lation center, at which point the electron possesses the
maximum velocity in the direction of laser-pulse
propagation. This is consistent with the well-known
fact [17] that a plasma wave in homogeneous plasma
has a limiting value of the amplitude that occurs in the
case when the maximum velocity of the electron com-
ponent in the direction of wave propagation coincides
with the phase velocity.

If the energy of the oscillators excited by the laser
pulse exceeds the threshold value Eos,th, the arrange-
ment of oscillators is partly violated at some time and
formula (3), which determines the restoring force Fz =
–|e|Ez driving electron toward the equilibrium posi-
tion, is no longer valid. However, if only a small frac-
tion of the electrons change their mutual arrangement,
the influence of small violations in the order of elec-
trons on their motion can be ignored and the electron
trajectories can be considered unchanged and are
described by formula (6). Then, the condition
dZ/dz0 = 0 for an electron with the oscillation center at
z0 determines its critical coordinate zcr where the elec-
tron trajectory intersects with that of the neighboring
electron:

− 2 2
ph1 /V c
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(7)

According to integral relationship (5), it turns out
that at the point of intersection of the trajectories, the

energy of electron motion is  = mc2γph;
thus, the electron velocity is equal to the phase velocity
of the wake wave.

The conditions under which formula (7) was
obtained, which ignored the influence of the changes
in the mutual arrangement of electrons on their
motion, implicitly assumed that the mixing of elec-
trons had a certain starting point. This allows the
assumption that the effect of electron mixing on their
motion is small for some period of time and can be
ignored. This is impossible in unbounded plasma,
where no any special region or point in space exists
from which the process of electron mixing can start,
while the presence of boundaries provides this possi-
bility.

The vacuum–plasma boundary significantly influ-
ences the trajectories of electrons that cross it after
interaction with the laser pulse. When the pulse
approaches the plasma boundary and starts to pene-
trate into its volume, plasma electrons are initially
pressed inward, while their mutual arrangement
remains unchanged. The order of electrons is also
retained when electrons perform the reverse motion
after being overtaken by the laser pulse. During the
reverse motion, some part of the electrons escape into
the vacuum (z < 0), while still retaining their mutual
order. However, their motion differs from that of elec-
trons that remain within the ion background (z > 0)
and is not described by the set of trajectories that cor-
respond to formula (6). This is related to the fact that
the charge-separation force in the region that contains
no ions is not as large and escaped electrons perform a
slower oscillatory motion at a lower frequency com-
pared to that of electrons that do not cross the bound-
ary. As a result, for Eos > Eos,th, the intersection of elec-
tron trajectories or their mixing begins with an elec-
tron that initially occurred at point z0 = Am at a
distance from the plasma boundary that is equal to the

oscillation amplitude Am =  of
the oscillator excited by the laser pulse.

Figure 1 shows the results of numerical simulations
of the interaction of plasma with the incident pulse of
circularly polarized laser radiation with wavelength
λ0 = 2πc/ω0 = 1 μm and envelope type a =
a0cos2[t/τ]sign(πτ/2 – |t|), where a0 = |e|A0/mc2 = 4.95
is the dimensionless vector potential amplitude and τ
is the laser pulse duration that corresponds to the full
width at the half maximum τFWHM = 1.143τ = 12 fs.
The group velocity of laser pulse propagation in

plasma corresponds to γph = 1/  = 5. The
plasma density corresponds to ω0/ωp = γph = 5, where
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ωp =  is the plasma frequency, which yields

τ = 3.96 . It should be noted that the adopted
approximation of ω0/ωp = γph does not take small non-
linear corrections to the group velocity of the laser
pulse that generates the wake wave into account [18];
these corrections, related to the relativistic amplitude
of a laser pulse, do not qualitatively change the physi-
cal picture of this phenomena.

A relativistic (a0 ≫ 1) laser pulse excites plasma
oscillators up to the energy Eos = 5.04mc2, which is
above the threshold value (Eos,th = 5mc2). Figure 1
shows the plots of the vector potential |e|A/mc2 of the
laser pulse (dashed curve) and the laser-induced wake
potential |e|ϕ/mc2 (solid curve) versus the dimension-
less coordinate kpz, where kp = ωp/c. The points pres-
ent the current values of coordinates and momenta of
a selected family of plasma electrons, which were ini-
tially arranged in positions spaced at a step of kpΔz0 =
0.15 prior to the laser-pulse action.

Figure 1 illustrates the moment of time at which
the initial arrangement of electrons is still retained,
although it is close to the onset of the intersection of
electron trajectories, which leads to breakage of the
wake wave. The black circle represents an electron that
is initially positioned at a distance equal to the oscilla-
tion amplitude Am (shown by the black square) from
the plasma boundary. This electron will be called the
“leader.” As can be seen from Fig. 1, electrons that
occur initially on the right from the leader tend to
approach it and form an accumulation point by the
moment of the onset of the intersection of trajectories
and the wake-wave breakage, which corresponds to an

π 2
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p

Fig. 1. The distribution of electrons (points) on the phase
plane (z, P) at the onset of electron self-injection. The
dashed and solid curves show the positions of the laser
pulse and wake potential, respectively, on the z axis.
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increasing density of the electron component. No
accumulation point of comparable intensity is formed
by electrons that escaped into the vacuum on the left
from the electron leader. Therefore, the intersection of
trajectories begins with the electron leader and devel-
ops predominantly for electrons that occur initially on
the right from it. Numerical simulations showed that
these electrons constituted the majority of electrons
trapped by the wake wave and determined the charac-
teristics of the injected bunch. In what follows, the
main attention will be devoted to the motion of these
electrons.

The results of modeling show that during motion
after interaction with the laser pulse, electrons situated
initially on the right of the leader enter one by one
(strictly in the initial order) the process of trajectory
intersection between neighboring electrons and are
found on the left of the leader at the end of this pro-
cess. As was indicated above, the energy of all these
electrons at this time is close to γphmc2. Accordingly,
their velocities are close to the phase velocity of the
wake wave. The negative charge on the right of the
leader decreases upon this change in the arrangement
of electrons and hence, the force that acts on the
leader from the wake field increases. As a result, the
wake wave begins to accelerate this electron and its
energy increases above γphmc2.

An analogous process develops for all of the other
electrons after the onset of the intersection of their tra-
jectories with those of the neighboring electrons; they
follow the leader and their energies increase above
γphmc2. Thus, the mixing of trajectories leads to the
self-injection of electrons into the first period of the
wake wave and their possible trapping by the wake
field, since their velocities are close to the wake-wave
velocity.

The length of the self-injected electron bunch turns
out to be very small compared to the wake wavelength.
This is due to the fact that the motion of an electron that
initially occurs at point z0 in front of the leader (having
the initial coordinate z0, ld) proceeds with a delay that is
proportional to the initial spacing (z0 – z0, ld)/Vph.
Therefore, the moment of time at which the trajectory
of this electron intersects with the neighboring trajec-
tories is also delayed by the same time relative to the
moment of self-injection of the electron leader.

On the other hand, the velocities of the electrons at
the instant of intersection of their trajectories are close
to the phase velocity Vph of the wake wave. With this
velocity electrons are injected into the wake field of the
laser pulse and move in this field during the entire pro-
cess. According to formula (7), which determines the
coordinates of the electron self-injection, each elec-
tron enters the process of mixing (self-injection)
exactly at the moment when it is close to the electron
leader and previously injected electrons in the wake
wave.

On the whole, it appears as if an imaginary point
(called the self-injection point) exists that moves
behind the laser pulse at a velocity close to its group
velocity, in which electrons that precede the leader
enter the mixing process. Due to the specific features
of the trajectories of previously trapped electrons and
electrons that enter the process of mixing, spatial
grouping of electrons occurs in the vicinity of the self-
injection point, where a group of background plasma
electrons that were initially situated on the right of the
leader accumulates in a dense short bunch. All of the
electrons in this bunch have a velocity that is close to
the phase velocity of the wake wave and can be trapped
by this wave.

It should be emphasized that this grouping of elec-
trons does not occur because different forces act on
various electrons in the bunch and collect them
together. The grouping has a purely kinematic nature.
On the contrary, the difference in the forces with
which the electric field acts on various electrons in the
trapped bunch leads to the termination of self-injec-
tion into the wake wave.

The length of the segment of background plasma
electrons that are involved in the self-injection process
and are eventually trapped by the wake wave can be
estimated as follows. Formula (7) is exactly valid for
the electron leader, from which the process of self-
injection into the wake wave begins. Then, formula (3)
can be used to determine the electric field at a point
where the leader occurs at the onset of the self-injec-
tion of background plasma electrons into the wake
wave:

(8)

It follows from expression (8) that at the moment of
self-injection of the electron leader, the integral
charge on the right from the self-injection point is
positive. As the laser pulse propagates and the self-
injection point moves behind, the charge on the right
decreases because an increasing number of electrons
pass through the self-injection point and join the neg-
atively charged electron bunch situated in front of this
point. This accumulation process (i.e., self-injection
of background electrons into the wake wave) ceases
when the charge of the trapped bunch is such that the
electric field that acts on the last trapped electron at
the moment of its self-injection becomes zero. This
condition yields the following formula for estimating
the length of a plasma layer from which all electrons
are self injected and trapped in the wake wave:

(9)

In the case with a sharp plasma boundary, the layer
of trapped electrons occurs under the surface of the
plasma at a depth on the order of the oscillation ampli-
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tude of a laser-pulse-excited plasma oscillator, which
depends on its energy. The thickness of the layer of
background plasma electrons trapped in the wake
wave is also determined by the energy of the plasma
oscillator and the group velocity of the exciting laser
pulse. It should also be noted that according to the
adopted mechanism of self-injection of background
plasma electrons into the wake wave, all electrons from
this layer are trapped by the wake wave and involved in
the acceleration process. This conclusion is confirmed
by the results of numerical simulations.

Figure 2 presents the results of numerical simula-
tions that show how the thickness of the layer of
trapped electrons depends on the energy of plasma
oscillators excited by the laser pulse. The circles and
squares show the results of simulations for the thresh-
old energies of electron self-injection and wake-wave
breakage Eos, th = 5mc2 and 7mc2, respectively. The
solid curves present the results of analytic calculations
by formula (9), which show good agreement with the
data of numerical modeling.

A more detailed analysis of Fig. 2 shows that the
accuracy of formula (9) somewhat decreases for a
lower threshold energy of plasma oscillators. As will be
shown below, this is related to the fact that the initial
assumption, according to which the injected bunch
consists entirely of background plasma electrons that
were initially situated in front of the electron leader, is
not quite correct. A small fraction of electrons from
behind the leader are also involved in self-injection
and this fraction increases with decreasing threshold
energy Eos, th.

The data presented in Fig. 2 clearly demonstrate
that the square-root dependence in formula (9) on the
energy of oscillators excited by the laser pulse in a
semi-bounded plasma leads to a rather fast growth in
the thickness of the trapped electron layer, even for a
relatively small excess of the oscillator energy over the
threshold Eos, th (i.e., to a sharp increase in the charge
of the trapped bunch per unit cross-sectional area).

The dashed curves in Fig. 2 show the results of cal-
culations using a formula proposed by the authors of
this method for the injection of an electron bunch into
the wake wave [16] for estimating the charge of a
trapped bunch (as recalculated for the thickness of the
corresponding layer of background plasma electrons).

4. THE CHARACTERISTICS OF A BUNCH
OF TRAPPED ELECTRONS

The length of a bunch generated by a laser pulse on
crossing the plasma boundary and the energy spread of
the electrons in the bunch are determined primarily by
the fact that electrons are injected into the wake wave
from various points of space, at various moments of
time, and with different initial velocities. In addition,
during self-injection and subsequent acceleration in
the field of the wake wave, different electrons are

accelerated by the different accelerating forces, which
depend on the position of the electron in the bunch.
For this reason, the characteristics of the bunch, in
particular, its length and electron energy spread, are in
the general case variable quantities that are dependent
on the time of determination.

Figure 3 presents the results of numerical simula-
tions of an electron bunch generated by a laser pulse
with the parameters indicated above, which show the
temporal variation of the length of the trapped elec-
tron bunch Lb, rms = 2σL, rms (circles), the relative
energy spread of the trapped electrons ΔE/〈E〉 =
2σE, rms/〈E〉 (rhombs), and their average energy 〈E〉
(squares) during acceleration, where σL, rms and σE, rms
are the mean-square characteristics of the distribution
of the corresponding values in the bunch. As can be
seen from these data, as the average electron energy in
the bunch that is trapped and accelerated by the wake
wave increases, the length of the bunch tends to a cer-
tain asymptotic value, while the relative electron
energy spread at large distances varies rather slowly
and can also be considered approximately constant.

The asymptotic value of the length of the bunch is
attained quite rapidly because electrons that were
injected into the wake wave field at the relativistic
energy Einj ~ γphmc2 and subsequently accelerated in
the wake field to reach ultrarelativistic values that sig-
nificantly exceed the initial energy (E ≫ γphmc2).
When the velocities of all of the electrons in the bunch
become very close to the velocity of light, the mutual
arrangement of electrons in the accelerated bunch

Fig. 2. The thickness of the layer of background plasma
electrons vs. energy of plasma oscillators for threshold val-
ues Eos, th = 5mc2 (circles) and 7 mc2 (squares). The solid
curves show the results of calculations by formula (9); the
dashed curves are calculated by the formula from [16].
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ceases to change and the length of the bunch remains
almost constant.

In order to find this asymptotic value of the length
of the bunch, let us use the conventional approach
[19–21], which allows the characteristics of acceler-
ated electron bunches to be determined provided that
electrons in the bunch have the integral of the equa-
tion of motion in the accelerating field. In this case,
this integral in the frame of reference related to the
wake wave for trapped electrons that initially occur in
the front of the electron leader has the following form:

(10)

Here, ϕ'(ξ) is the potential of a stationary wake wave
that propagates in plasma at a constant phase velocity
Vph without changing shape; ξ = kp(z – Vpht) is the self-
similar variable (wake-wave phase); z0, ld and z0 are the
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centers of oscillations of the electron leader and a par-
ticular electron trapped in the bunch, respectively,
which is injected into the wake wave (during its break-
age) with energy  and then accelerated to energy
E '(ξ); ξinj is the wake-wave phase in which the electron
is self-injected, determined by its spatial position zinj
at time tinj by the formula ξinj = kp(zinj –Vphtinj); the
prime quantities here and below denote values in the
frame of reference related to the wave.

The form of integral (10) is the ordinary energy
conservation law [21] for an electron accelerated in the
field of a stationary wake wave, where the additional
term

corresponds to the repulsion of charges in the trapped
bunch. This approach to allowance for the influence
of the intrinsic charge on the acceleration of trapped
electrons in the wake wave is valid as long as the cor-
rection term is small compared to the wake-wave field.
This corresponds to the approximation in which the
mixing of electrons weakly distorts the wake wave and,
hence, can be acceptable with sufficient accuracy, at
least for the head part of the trapped electron bunch.

In deriving integral (10), the fact was taken into
account that trapped electrons that initially occurred
in front of the electron leader changed their order to
the opposite during the injection process. Numerical
simulations showed that other electrons that were ini-
tially behind the electron leader were also trapped in
the wake wave but in a much smaller quantity that con-
stituted a small fraction of the total number of trapped
electrons, provided that the energy of laser-pulse-
excited oscillators was not much greater than the
threshold oscillation energy (Eos – Eos, th ≤ Eos, th). In
qualitative analysis of the formation of a bunch of
trapped electrons to obtain an estimate of the length of
the bunch, this small fraction can be ignored.

Using the energy-conservation integral (10), it is
possible to write the following general expression in
quadratures for electron trajectories in a trapped
bunch:
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where β = Vph/c.
In the general case, determining the exact time tinj

of injection in the wake field of a laser pulse, the exact
coordinate of injection zinj, and the energy Einj at this
moment for each trapped electron is a difficult task,
which requires allowance for the mutual influence of
electrons and mixing of their trajectories during self-

injection in the wake wave. However, at the initial
stage of mixing of electron trajectories, where the
influence of a change in the arrangement of electrons
on their motion is insignificant, it can be assumed for
electrons that initially occur in the front of the electron
leader that the time of injection tinj is determined by
the distance from the electron oscillation center to that

Fig. 3. The temporal variation of the length of the trapped
electron bunch Lb, rms (circles), relative energy spread of
trapped electrons ΔE/〈E〉 (rhombs), and their average
energy 〈E〉 (squares) during acceleration of a bunch gener-
ated in plasma by a laser pulse with the parameters a0 =
4.95, τFWHM = 12 fs, γph = 5, and λ0 = 1 μm.
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of the electron leader and, hence, is related to the
moment of injection of the electron leader (tinj,ld) as

(12)

The energy of injected electrons and the injection
phase ξinj are the same as those of the electron leader,
so that Einj = γphmc2. This assumption must be quite
good for electrons that occur in the head of the
trapped bunch, for which the process of self-injection
begins upon breakage of the wake wave.

Now let us take the fact into account that the tra-
jectories of trapped electrons (except for their small
fraction that lag behind the accelerated bunch) remain
close during the entire period of acceleration in the
wake wave. This implies that expression (11) can be
expanded at any time relative to the trajectory of the
electron leader in terms of small perturbations δξ and
δtinj of the variables ξ and tinj that describe the trajecto-
ries of other electrons in the bunch, with allowance for
an additional parameter of the first order of smallness
~δz0 = z0 – z0, ld.

Taking the variation of relationship (11) with
respect to δξ, δtinj, and δz0, we eventually obtain as a
first approximation that the deviation of an electron in
a trapped bunch relative to the electron leader at an
arbitrary moment of time is linearly related to its dis-
tance from the leader Δz0 = z0 – z0, ld in plasma prior to
the laser-pulse action. The deviation can be approxi-
mately estimated as

(13)

where

(14)

Δξacc is the wake-wave phase interval measured from
the phase of the injection of the electron leader ξinj, ld,
for which acceleration of the bunch of trapped elec-
trons occurs.

Formula (13) clearly shows that electrons that ini-
tially occur in front of the electron leader prior to being
trapped occur behind the leader after self-injection
into the wake wave such that their order is retained but
is opposite to the order in the plasma before the laser-
pulse action. In addition, it follows from formula (13)
that electrons in the trapped bunch are arranged more
densely that in the initial plasma unperturbed by the
laser pulse. Depending on γph, the density of electrons
in the trapped bunch can be several orders of magni-
tude higher than their initial density in unperturbed
plasma.
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In order to determine of the coefficient of propor-
tionality in formula (13), it is necessary to calculate the
value of the integral I(γph). For this purpose, it is nec-
essary to know how the wake potential ϕ(ξ) depends
on the wave phase. In the context of deriving formula
(13), this integral is calculated over the trajectory of
the electron leader, which is the first particle that was
trapped and accelerated in the laser pulse wake field
that was not disturbed by mixing with the trajectories
of trapped electrons that occurred behind it. This wake
field is described by an equation that coincides in form
(at distances sufficiently large to neglect the direct
influence of a laser field on the motion of plasma elec-
trons) with an equation that describes a plasma wave as
a mode of longitudinal plasma oscillations that propa-
gate at constant velocity in unbounded plasma [17].

It is clear that for the conditions under consider-
ation with the energy of electron oscillations Eos >
Eos, th = γphmc2, this wave cannot exist in unbounded
plasma because of the mixing of electron trajectories.
Accordingly, the equation for a wake field behind the
laser pulse in this case has no solution that has a phys-
ical meaning in the entire infinite space. However, a
solution of this equation up to the point of wake-wave
breakage exists and can be found. For numerical cal-
culation of the wake potential, it is more convenient to
use the following equation:

(15)

which is the integral of the equation of plasma wave
and corresponds to the law of energy conservation in
the system of plasma with charged particles. Here,
Ppl is the momentum of a background plasma electron
in front of a trapped bunch, which can be expressed via
the wake potential by the following formula [22]:

(16)

Equation (15) must be solved with the initial con-
ditions determined for the phase at which the wake-
wave breakage begins and self-injection of the electron
leader occurs. At the moment of injection, the energy
of the electron leader is exactly known to be Einj, ld =
γphmc2. Then, formula (16) yields the following initial
condition for the integration of Eq. (15):

(17)

Once the function ϕ(ξ) is numerically calculated, it
is possible to determine the integral for the coefficient
of proportionality in formula (13). It should be noted
that the integrand function in I(γph) quite rapidly
decreases to zero with increasing upper integration
limit Δξacc. For this reason, the integral weakly
depends on the upper limit for sufficiently large Δξacc
values. This behavior physically corresponds to the
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fact that the longitudinal size of a bunch ceases to
depend on the electron acceleration length provided
that electrons are sufficiently far from the phase of
injection to the wake wave. The results of calculations
show that in the range of γph and Eos values that corre-
spond to Fig. 2, the value of I(γph) in formula (13) does
not exceed unity, while for Eos/mc2 ≫ γph this value is
much smaller than unity and can be ignored.

Figure 4 shows the numerically simulated distribu-
tion of electrons in a bunch trapped and accelerated in
the wake wave of a laser pulse with the parameters pre-
sented above for an acceleration length that corre-
sponds to the average electron energy 〈E〉/mc2 ≈ 200.
The circles show the arrangement (left ordinate axis)
of trapped electrons (relative to the electron leader
positioned at the origin) in the bunch for electrons that
occur initially in plasma at a step of kpΔz0 = 0.1 in front
of the electron leader. The solid line shows the same
dependence calculated by formula (13) and plotted as
Δz0(Δz).

As can be seen from Fig. 4, the results of simula-
tions for electrons from the head of the trapped bunch
satisfactorily agree with theoretical formula (13) and
reveal the accumulation of a large fraction of trapped
electrons near the electron leader. The electrons from
the tail of the bunch lag significantly behind the elec-
tron leader, which is related to the fact that their self-
injection into the wake wave is significantly influenced

by the field of the charge of the previously trapped
electrons. However, the fraction of electrons trapped
in the tail of the bunch is relatively small, which is
shown in Fig. 4 by the curve with squares, which cor-
responds to the electron-density distribution function
n(kpz) normalized to unity.

The results of numerical simulations showed that a
dense group of self-injected electrons near the elec-
tron leader determines the retention of a qualitative
dependence of type (13) for the mean-square length
Lb, rms of the bunch of trapped electrons in which the
initial length of the bunch should be replaced by the
corresponding thickness Δztr of their layer in plasma:

(18)

where α is the fitting numerical coefficient.
The results of the simulations presented in Fig. 5

(in the same notation as that in Fig. 2) show the
dependence of the mean-square length of the bunch
Lb, rms on the energy of oscillators excited by the laser
pulse for different values of the threshold energy Eos, th.
The statistical length of the bunch Lb, rms = 2σL, rms was
determined from the distribution function of all of the
electrons in the trapped bunch, including those that
occurred initially in the plasma behind the electron
leader. The solid curves show the approximation of the
data in the range of oscillator energies Eos/mc2 – γph <
0.5γph by functions of type (18), where the fitting coef-
ficient α in all cases turns out to be close to unity.

As can be seen from Fig. 5, the results of simula-
tions for oscillator energies for Eos/mc2 – γph ≥ 0.5γph
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Fig. 4. The initial arrangement of self-injected electrons in
plasma prior to their trapping by the wake field (left ordi-
nate axis) depending on their position in the trapped
bunch (the electron position is determined relative to that
of the electron leader) for the bunch acceleration length
corresponding to the average electron energy 〈E〉/mc2 ≈
200. The circles show the results of numerical simulations;
the solid line is calculated by formula (13); the squares
show the distribution of the electron density (right ordi-
nate axis) in the trapped bunch behind the electron leader.
The laser-pulse parameters are the same as in Fig. 3.
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Fig. 5. The asymptotic length Lb, rms of an electron bunch
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mula (18).
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significantly deviate from dependence (18). This is
related to the fact that under these conditions an
increase in the oscillator energy Eos is accompanied by
a gradual increase (up to approximately one-third) in
the trapped bunch of a fraction of electrons that ini-
tially occurred behind the electron leader. The condi-
tions of self-injection into the wake wave for these
electrons differ from those for electrons that initially
occurred in front of the electron leader, for which the
effect of kinematic grouping described above is absent.
As a result, the function of the electron density distri-
bution in the trapped bunch becomes more smeared,
provided that the number of electrons is large. Accord-
ingly, the characteristic length of a trapped electron
bunch also increases.

Nevertheless, the estimate of the length of the
bunch by formula (18) remains quite satisfactory with
respect to the order of magnitude. A comparison of
Figs. 2 and 5 shows a large decrease in the length of the
bunch as compared to the size of the plasma region
occupied by electrons before trapping into the wake
wave. This significantly influences the spread of elec-
tron energies in the accelerated bunch.

Estimation of the energy spread between electrons
in the bunch can be obtained by variation of the inte-
gral of equation (10) of their motion in the wake field,
by analogy with determining the trapped length of the
bunch at the acceleration stage. As is known [6, 19–21,
23], the electron-energy spread in an accelerated
bunch is determined by the initial spread that is pres-
ent at the moment of injection and by factors that favor
the accumulation of the energy spread in the course of
acceleration. In the general case without the use of
special methods [19–21, 23, 24] for the minimization
of the energy spread that accumulated in the bunch
during its acceleration the initial spread can be ignored
in the case of a large length of acceleration. This is
related to the fact that the electron-energy spread that
accumulated over large distances is much greater than
the initial spread that is present at the moment of
injection.

The spread of electron energies in the accelerating
bunch arises due to a difference of the wake field forces
that act on electrons trapped in the head and tail of the
bunch. This effect depends on the longitudinal size of
the bunch [6, 21] and on its charge [23, 24]. In this
case, the influence of the first factor is insignificant
due to the small length of the bunch. The second fac-
tor is related to the repulsion of electrons in the bunch
as determined by its charge. The repulsion is propor-
tional to the charge and acts over the entire period of
acceleration; thus it is proportional to the acceleration
length. In the frame of reference related to the wake
wave, the energy spread between the electron leader
and last electron trapped in the bunch can be esti-
mated by the formula 

  = γph(ξ – ξinj, ld)kpΔztr,
Δ

2
'E

mc

where ξinj, ld and ξ are the phase of the injection of the
electron leader into the wake wave and the phase in
which the acceleration of this electron ceases.

Thus, the energy spread of trapped electrons in an
accelerating bunch continuously increases in magni-
tude. However, an increase in the acceleration length
leads to growth of the average electron energy in the
bunch. This value can be estimated by taking the fact
into account that an electron bunch that is accelerated
over a large length quite rapidly leaves the wake-wave
phase region in which electrons are injected and shifts
toward the region of phases for which the accelerating
fields are close to the maximum values Ez, max, which
can also be expressed via the plasma oscillator energy:

Taking the fact into account that under the condition
that Eos/mc2 > Eos, th/mc2 = γph ≫ 1, the wake field is
strongly nonlinear and the nonlinear plasma wave-
length is much greater than the linear one, there is a
large interval of wake-wave phases in which the accel-
erating field is close to its maximum (for estimation
purposes, this value can be considered constant).

The increment of the average electron energy in an
accelerated bunch can be estimated in its order of
magnitude from the change in the energy of the elec-
tron leader. In the frame of reference related to the
wake wave, the average energy of electrons over the
phase interval of ξ – ξinj, ld can be estimated as

From this result it follows that for sufficiently large
acceleration lengths the average energy of the elec-
trons in the bunch grows in proportion to the acceler-
ation length in agreement with the results of numerical
simulations presented in Fig. 3. On the other hand, as
the acceleration length increases, the contribution of
the initial (at the moment of injection) spread of the
electron energy in the bunch decreases in comparison
to the energy spread that accumulated in the course of
acceleration, which also depends linearly on the accel-
eration length. As a result, the relative electron energy
spread in the bunch gradually attains an approximately
constant value (see Fig. 3). Under the condition that
E/mc2 ≫ γph, this provides the following estimate of
the relative energy spread in the accelerating bunch:

(19)

The results of the simulations presented in Fig. 6
(in the same notation as that in Fig. 2) show the rela-
tive energy spread ΔE/〈E〉 in the electron bunch,
where ΔE = 2σE, rms and σE, rms is the mean-square
deviation of the electron energy in the bunch. The
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solid curves show the energy spread calculated by for-
mula (19). Note that this formula provides the correct
vales of the energy spread in the bunch as long as the
accelerating electrons are within the region of wake-
wave phases in which the accelerating field is close to
the maximum value Ez, max. During further accelera-
tion, the absolute spread increases at the same rate,
while the average energy grows more slowly; as a
result, the relative energy spread tends to increase.

All of the preceding formulas were obtained in the
approximation of 1D motion of electrons trapped in
the wake wave, i.e., the wake wave was assumed to be
infinitely wide. However, the wake wave of a real laser
pulse has a finite transverse size. Let us estimate the
conditions under which the dynamics of motion of the
majority of trapped electrons can be considered as
approximately one dimensional and the transverse
motion of electrons can be ignored. For this purpose,
let us treat the transverse motion of an electron per-
pendicular to the z axis as a small nonrelativistic cor-
rection to its motion along the z axis.

First, it is necessary to compare the fields that act
on the electron at the moment of its self-injection into
the wake wave. For electrons from the head of the
trapped bunch, the electric field that acts along the z
axis can be estimated using formula (8) as

The field that acts on the electron in the transverse
direction depends on the characteristic transverse size
w0 of the wake wave, which can be estimated by the
formula
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where ξ is the current position of an electron relative
to the z axis.

At the moment of the self-injection of an electron,
the wake potential can be estimated using formula (17)
as ϕ(ξinj) ≈ ϕmin = (1/γph – 1)mc2/|e | < 0, from which it
follows that the electron is self-injected into a defocus-
ing region of the wake-wave phase; thus, it will be
repulsed away from the z axis. For the transverse
motion of an electron to be weak, a necessary condi-
tion is

(20)

During acceleration in the wake field, a trapped
electron moves from the defocusing to the focusing
phase region. It should be noted that the boundary
between these regions for a nonlinear wake wave dif-
fers from the analogous boundary in the case of a lin-
ear wave because of a significant decrease in the size of
this region. The above assumption that the boundary
between the defocusing and focusing phase regions
crosses the z axis in the same way as in the linear wake
wave (i.e., at a point where the wake potential van-
ishes) significantly increases the influence of defocus-
ing forces on the motion of electrons.

The above formulas for the length of the bunch (18)
and electron energy spread (19) correspond to a stage
of the process of electron bunch acceleration in the
wake field of a laser pulse for which the energies of
trapped electrons become ultrarelativistic (E ≫ Einj =
γphmc2) and the velocities of electrons approach the
velocity of light. The rate of energy gain by electrons
trapped in the wake wave depends on the accelerating
field, whose magnitude increases as the trapped elec-
tron phase deviates from the injection phase and
reaches the maximum in the region where the wake
potential ϕ(ξ) crosses the zero level. For this reason,
accelerating electrons mostly reach ultrarelativistic
energies while moving near and after crossing the
boundary of the focusing region of the wake wave.

For further estimates, let us consider the position of
the boundary of the focusing region in the wake wave
as an indicator for approximately (in its order of mag-
nitude) determining the distance from the point of
injection over which trapped electrons reach an ultra-
relativistic energy. The force that drives an electron
away from the z axis must be sufficiently weak such
that the electron would not leave the wake field before
falling into the focusing phase region. The equation
for the motion of an electron in a transverse field can
be written in the following form:

(21)
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Fig. 6. The relative energy spread ΔE/〈E〉 in the electron
bunch vs. plasma oscillator energy for various values of the
threshold energy (in the same notation as that in Fig. 2).
The solid curves show the results of calculations by for-
mula (19).
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where E(ξ) and ϕ(ξ) are the electron energy and wake
potential, respectively, on the z axis, and ξ and r are
the current coordinates. The values of E(ξ) and ϕ(ξ)
vary when an electron moves along the z axis. The change
of the wake potential up to the boundary of the focusing
region amounts to Δϕ = |ϕmin| = (1/γph – 1)mc2/|e|, the
electron energy over this potential drop varies from
Einj = γphmc2 up to E ≈ 2 mc2. In order to estimate
the characteristic time Δt⊥ for an electron to leave the
wake field in the transverse direction, let us replace its
energy in Eq. (21) by the average value E(ξ) ≈ mc2

on this interval and substitute ϕ(ξ) = ϕmin/2.
Equation (21) then yields the following estimate:

provided that γph ≫ 1.
Let us now estimate the time that is necessary for

an electron to reach the boundary of the focusing
phase region while moving along the z axis for the
electron leader. For this purpose, it is necessary first to
estimate the phase distance Dξ of the wake wave
between the injection phase of the electron leader and
the boundary of the focusing phase region. By solving
Eq. (15), which determines the phase dependence of
the wake potential to within the major terms, we
obtain the following representation for ϕ(ξ):

(22)

This formula leads to the following estimate of the
order of magnitude for the interval of wake-wave
phases in which the electron leader is accelerated up to
ultrarelativistic energies:

Then, using an equation analogous to Eq. (11) but free
of the term that describes the influence of the intrinsic
charge of a bunch on the motion of electrons, the
interval of time Δtacc (in the laboratory frame of refer-
ence) that is necessary for an electron to pass over the
phase difference Δξacc in the wake wave can be esti-
mated as

(23)

where χ = γph|eEz, inj|/mcωp. Under the condition of
χΔξacc ≫ 1, Eq. (23) yields a simpler formula for esti-
mating the time that is necessary for the electron
leader to achieve ultrarelativistic energy:
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In order that the electron does not leave the wake
field in the defocusing region during this period of
time, it is necessary that Δtacc ≪ Δt⊥. Eventually, with
a retained condition of χΔξacc ≫ 1, we arrive at the fol-
lowing inequality:

(24)

For a sufficiently large characteristic width w0 of
the wake field, the relationships (20) and (24) can be
valid with a large margin. In this case, forces that act
on an electron in the transverse direction relative to
the z axis produce a weak action and the electron
motion has a nearly 1D character during acceleration
to ultrarelativistic energies. Subsequently, the 1D
character is favored by the “relativistic” mass gain of
an electron accelerated in the focusing phase region of
the wake wave. Estimates (20) and (24) were verified
by numerical simulations of the acceleration of test
electrons.

For justified use of the 1D geometry in investiga-
tions of the mechanism of the self-injection of an elec-
tron into the wake field generated by a non-1D laser
pulse with an envelope of the type

it is also necessary to determine the conditions under
which the motion of background plasma electrons can
also be considered as nearly one dimensional. As is
known [25, 26], the transverse size of a laser pulse
determines the character of the dynamics of the
motion of background plasma electrons in the so-
called “bubble” regime of laser pulse propagation in
plasma to a considerable degree. In this case, the pon-
deromotive force of the laser field drives plasma elec-
trons in the transverse direction and leads to the for-
mation of a cavern with a characteristic size w0 as esti-
mated from the condition of equilibrium between the
ponderomotive force and Lorentz force with which
the cavern acts on the electron [26]. This characteristic
size is estimated as kpw0 ~  and is dependent on the
laser-pulse amplitude. Due to the correspondence
between the cavern size w0 and laser pulse width σ,
kpw0 ~ kpσ, the laser pulse amplitude and width in a
stable bubble regime must also be mutually consistent:
kpσ ~ . Numerical simulations [27] have refined
this relationship as kpσ = 2 .

The regime of laser pulse–plasma interaction con-
sidered in this work, which is accompanied by the self-
injection of background plasma electrons into a wake
wave, assumes that slow (not high-frequency) trans-
verse motion of background plasma electrons during
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this interaction can be ignored in comparison to their
longitudinal motion. This implies that in order to
exclude the bubble regime it is necessary that the laser
pulse width at a given pulse amplitude a0 obey the con-
dition kpσ ≫ 2 . In this case, it can be expected that
the 2D motion of background plasma electrons would
be close to one dimensional.

This estimate was checked and successfully con-
firmed by the authors of the proposed method for
electron bunch injection into a wake wave in [16],
where 2D numerical simulations were performed for
plasma that interacts with a linearly polarized laser
pulse. The laser pulse had an envelope a =
a0exp(‒r2/σ2)cos2[t/τ]sign(πτ/2 – |t|) and duration
τFWHM = 12.13 fs at γph = 5–7, λ0 = 1 μm, and charac-
teristic transverse size σ = 20λ0. Under these condi-
tions, a laser pulse of the indicated width meets a lim-
itation on the amplitude, a0 ≪ 4 × 103/ , which has
been demonstrated [16] to provide good coincidence
of the energy characteristics of electron bunches gen-
erated in 1D and 2D geometries by this laser pulse
interacting with semi-bounded plasma. It was pointed
out that although the motion of background plasma
electrons under these conditions is effectively one-
dimensional (in the sense that the electron distance r
from z axis during the interaction with laser pulse
remains unchanged), the character of electron motion
at different radial distances from the axis varies because
the exciting laser-pulse amplitude depends on r.

The charge of an electron bunch trapped in a wake
wave also depends on the width σ of the laser pulse.
Based on the results of 1D calculations, the charge on
an electron bunch generated in plasma by a laser pulse
that has an amplitude distributed in the radial direc-
tion as a = a0exp(–r2/σ2) with characteristic transverse
size σ can be estimated using the following formula:

(25)

where a0,th is the threshold amplitude of a laser pulse
that corresponds to the threshold plasma oscillator
energy Eos,th. Calculations show that for a circularly
polarized laser-radiation pulse with λ0 = 1 μm and
τFWHM = 12 fs at γph = 5, the threshold amplitude value
is approximately a0,th ≈ 4.92. Then, according to esti-
mation using formula (25), a laser pulse with envelope
amplitude a0 = 5.3 (corresponding to Eos/mc2 ≈ 5.48)
and characteristic transverse size σ = 20λ0 (i.e., a
power of P ≈ 0.48 PW) generates an electron bunch
with a charge of Qtr ≈ 167 pC. In asymptotics, the elec-
tron bunch is characterized by a short duration of
approximately 140 as and a relative electron energy
spread of approximately 25%.
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According to formulas (19) and (20), a laser pulse
of smaller amplitude would generate electron bunches
with a smaller spread of relative electron energies, but
their charge will be lower (see also [28]). Therefore, to
obtain bunches with a greater charge, this method for
generating short electron bunches is of interest pri-
marily as an injector to the next stage of a laser-plasma
accelerator, in which the accelerating fields can sig-
nificantly exceed the wake-field strength in the injec-
tor that generates the primary bunch. In this case,
despite a large relative energy spread of electrons at the
moment of bunch injection, the smallness of its length
as compared to the wake wavelength and a large wake
field strength in the accelerating stage of the laser-
plasma accelerator make it possible to provide mon-
oenergetic acceleration of electric bunches with a
charge close to 1 nC up to energies on the level of sev-
eral gigaelectronvolts.

5. CONCLUSIONS
The results of the investigation of the process of the

generation of a short electron bunch by a laser pulse of
relativistic intensity that passes through a sharp
boundary of plasma revealed some principal features
of the physical mechanism that underlies this process.

It has been demonstrated that the process of the
self-injection of an electron into the wake wave is fully
determined by the characteristics of the plasma oscil-
lators that are excited by the laser pulse that passes
through a semi-bounded plasma. A necessary condi-
tion for the self-injection of electrons in the first
period of the wake field is that the energy of plasma
oscillators should exceed the gamma-factor of the
wake wave of the laser pulse.

It has been established that the process of electron
self-injection into the wake wave starts with an elec-
tron that initially occurred in the depth of the plasma
at a distance from its boundary equal to the amplitude
of its subsequent oscillations caused by the interaction
with the laser pulse. In what follows, this electron
becomes a leader, that is, the first particle in the head
part of the bunch trapped in the wake wave. The major
fraction of electrons trapped in the wake wave are elec-
trons that initially (in the plasma that is not disturbed
by the laser pulse) occurred in front of the electron
leader; their order in the trapped bunch is opposite to
that in the undisturbed plasma.

The length of the trapped electron bunch is deter-
mined by the effect of kinematic grouping, which con-
sists in the fact that electron self-injection into the
wake wave occurs at the point of space and the
moment of time when the electron-leader along with
the previously trapped electrons is close to this point.

Subsequently, during acceleration of trapped elec-
trons in the wake wave, the length of the bunch
increases as a result of the initial spread in the condi-
tions of electron injection and the mutual repulsion of
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electrons in the bunch, but tends asymptotically to a
certain limit. The asymptotic value of the bunch length
is determined by the characteristics of the oscillator
excited by a laser pulse in a plasma. 

The spread of energy between electrons in the
bunch due to their repulsion increases monotonically
during their acceleration in the wake wave in propor-
tion to the length of acceleration.

However, the relative electron energy spread in the
bunch over large acceleration lengths can be mini-
mized due to analogous growth in the average energy
of electrons in the bunch.

Estimations show that a laser pulse of relativistic
intensity that interacts with semi-bounded plasma
according to the mechanism that was considered in
this work can generate electron bunches with a dura-
tion below 1 fs and a charge of several hundred pico-
Coulombs.
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