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Abstract—The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied
using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the
transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M – 1 (M is
the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero
values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that corre-
spond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of
the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of
periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numer-
ical results are interpreted with an analytic theory constructed by representing the solution in the form of a
linear combination of counterpropagating Floquet modes in a periodic structure.
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1. INTRODUCTION

The manufacturing of composite dielectric and
semiconductor materials with controllable optical
properties is an important problem of present-day
physics. One-dimensional layered structures with
periodically alternating refractive indices n1 and n2 are
of great interest. Such media that contain a rather large
number of layers are called one-dimensional photonic
crystals [1–4]. Periodic layered structures with peri-
ods comparable to visible-spectrum wavelengths
(0.4–0.8 μm) are of the most interest. The spectra of
such crystals exhibit so-called stop bands, regions of
strong reflection of light. The spectral position of stop
bands depends on the refractive index of the layers, the
period of the corresponding crystal lattice and the
angle of incidence of radiation on the crystal surface.
By changing these parameters, it is possible to control
the optical properties of such materials. Theoretical
analysis predicts a considerable change in the param-
eters of electromagnetic waves due to a drastic slowing
of their group velocity and a corresponding increase in
the spectral energy density.

Opal matrices are one important example of nano-
composite photonic crystals, viz., artificial opals con-
structed from densely packed silicone oxide globules
[5–9]. The structure of artificial opals belongs to the
face-centered cubic crystal lattice. The [111] direction
of such a lattice corresponds to the growth direction
and is characterized by the most perfect periodic

structure. The optical properties of an opal matrix in
the [111] direction are close to these of a one-dimen-
sional photonic crystal. In this case, the fraction of a
three-dimensional photonic crystal filled with air is
0.26. The period of the corresponding one-dimen-
sional photonic structure typically lies in the range
from 200 to 400 nm and is retained for many layers
(more than 100).

The technology has also developed for manufac-
turing one-dimensional mesoporous photonic-crystal
films based on the anode etching of doped silicon or
aluminum [10, 11]. As a result, photonic-crystal films
are formed that contain layers with different porosities
that retain the periodicity of the corresponding one-
dimensional crystal lattice. In this paper, we obtain the
quantitative characteristics of electromagnetic waves
near the edges of stop bands of one-dimensional pho-
tonic crystals and find conditions for the amplification
of electromagnetic waves depending on the structure
period and the values of the refractive indices in the
alternating layers.

2. TRANSFER-MATRIX METHODS
FOR A LAYERED PERIODIC STRUCTURE
It has been shown [12] that pulsed laser annealing

of CdS produces a layered periodic structure in the
disturbed surface region of the CdS in which the elec-
tric-field strength can considerably increase, resulting
in an increase in the annealing efficiency during sub-
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sequent laser pulses. In this case, the modulation
period of the refractive index n is determined by the
excitation wavelength. It was shown that for a weakly
modulated refractive index, the system is found near
the edge of the forbidden zone (stop band). In this
case, the interaction of counterpropagating Flouqet
modes leads to the field amplification in the structure.

In this paper, we analyze the possibility of obtain-
ing such effects when an electromagnetic wave is inci-
dent on a one-dimensional photonic crystal or a finite
photonic-crystal film with the periodic modulation
n(x). Maxwell’s equation for the electric vector of a
normally incident electromagnetic wave has the form

(1)

where λ is the radiation wavelength in a vacuum, n(x)
is a periodic function with period d for a region
restricted by the interval [0, L] (L = Md, and M is the
number of periods). Consider the function n(x) in the
step form

(2)

where the period number i = 0, 1, …, M – 1, l1 is the
width of a region with the refractive index n1, and l2 =
d – l1 is the width of a region with the refractive index
n2. In each region with a constant n, the solution of (1)
can be written in the form

(3)

where xj is the left boundary of the jth layer. Below, we
restrict ourselves to the normal incidence when kj =
2πnj/λ. When the wave is incident from the left in the
region x < 0 the field has the form

(4)

while for x > L,

(5)

We will find the coefficients Aj and Bj, as well as the
reflection and transmission coefficients r and t, using
the transfer-matrix method.

By joining the fields and their derivatives at the
boundary of the layers j and j + 1, we obtain the rela-
tionship of the coefficients Aj + 1 and Bj + 1 with Aj and Bj:
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(6)

where hj is the thickness of the jth layer. In the matrix
form, we have

(7)

By applying (7) successively to all of the boundaries,
beginning from the first one and taking into account
the fact that according to (4), (5), A0 = 1, B0 = r (semi-
infinite layer x < 0), A2M + 1 = t, B2M + 1 = 0 (semi-
infinite layer x > L), we obtain

(8)

Here,

(9)

is the transfer matrix of the structure. The reflection
and transmission coefficients are obtained in the form

(10)

Here,

Thus, by determining r from (10) and using (6), we
can calculate the electric-field distribution in the
entire structure.
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3. THE NUMERICAL ANALYSIS
OF THE FIELD DISTRIBUTION

We consider the simplest model of a one-dimen-
sional photonic crystal with alternating silicon oxide
and air layers corresponding to the parameters of an
opal matrix. We assume that n1 = 1.46, n2 = 1, and n0 =
n2M + 1 = 1.

Figure 1 shows the typical dependence of the struc-
ture transmission T = |t|2 on the period for the number
of periods M = 30 and l1/d = 0.3 obtained by the trans-
fer-matrix method. The inset presents an enlarged
region that contains the three first transmission max-
ima to the left of the first forbidden zone. The charac-
teristic features of dependences T(d) are the presence
of a series of interference transmission maxima with
T = 1 and regions with zero transmission (forbidden
bands). The position of the boundaries of forbidden
bands corresponds well to the values from the disper-
sion relationship for an infinite periodic structure [12,
13]:

(11)

where k is the Floquet wave vector. The reflection
regions of the electromagnetic wave correspond to
parameters for which the modulus of the right-hand
side of (11) exceeds unity. The boundaries of the stop
band satisfy the condition cos(kd) = ±1, which gives
kd = πq (q = 1 is the first band, q = 2 is the second
band, etc.). The number of unit transmission maxima
in each allowed band is M – 1 under the condition
2n1l1 < λ. If in the range of the parameters d and λ
under study the condition 2n1l1 = λ is fulfilled, for
which the unit transmission takes place for a structure
that contains one period, then additional unit trans-
mission maxima occur for d/λ = (2n1l1/d)–1.

The calculations show that the electromagnetic-
field distribution in the structure for parameters that
correspond to the transmission maxima is the most
interesting. Figure 2 shows the dependences of the
electric-field modulus E on the coordinate x for the
first four maxima of T(d) to the left of the first forbid-
den band (stop band).

The distribution E(x) has a characteristic shape
with field oscillations in each of the periods and a
smooth envelope, with the number of maxima of the
envelope Emax being equal to the number p of the max-
imum of T(d) counted from the forbidden-band
boundary. The dependences E(x) for the transmission
maxima to the right of the forbidden band and for the
second and subsequent forbidden bands behave simi-
larly. The most important issue is that the value of Emax
exceeds the incident radiation amplitude (equal to
unity) and decreases with the increasing number p of
the maximum. i.e., with the distance from the forbid-
den band boundary.
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To illustrate the field distribution outside the trans-
mission maxima, Fig. 3 presents dependences E(x) at
the boundary of the zero-transmission band and at the
first minima of the transmission T(d). The maximum
field strengths in this case are of the order of unity and
weakly depend on the minimum number.

It is interesting to observe the behavior of the sys-
tem with changing structure parameters. Figure 4
shows the dependences of the maximum amplitude
Emax in the structure on the degree of filling l1/d for the
first maxima of T(d) to the right and left of the first
two forbidden bands for M = 50. One can see that the
type of dependences Emax(l1) is determined by the
number of the nearest forbidden band. The depen-
dence for the first band has one maximum at l1 ~ 0.4d
and for the second band two maxima at l1 ~ 0.2d and
l1 ~ 0.65d and a deep minimum at l1 ~ 0.4d. The field
amplitude Emax for optimal values of l1 is an order of
magnitude higher than the incident field (two orders
of magnitude for the electromagnetic energy density of
the field).

We will show below that the field amplification at
the center of the structure is caused by the interference
of counterpropagating Floquet modes. In fact the
strength of the interaction of the electromagnetic
fields with a periodic structure determines the forbid-
den-band width in an infinite system. In this connec-
tion it is of interest to compare the dependence
Emax(l1) with the change in the forbidden-band width
Δ(l1). Figure 5 shows the dependences of the position
of the edges of the forbidden band (d/λ)c on the frac-
tion of regions with the refractive index n1 for the first
two forbidden bands obtained from (11) and the corre-
sponding widths of the first and second forbidden
bands. The characteristic feature is the presence of one
maximum for the width of the first forbidden band and
two maximums for the second forbidden band. For

Fig. 1. The dependence of the transmission T on the
period d for n1 = 1.46, M = 30, l1/d = 0.3.
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l1/d = 0.407, the width of the second forbidden band
vanishes. For this value, the condition k1l1 = k2l2 is ful-
filled and the right-hand side of (11) does not exceed
unity. As a result, the even forbidden bands deter-
mined by the condition coskd = 1 contract to a point.
By comparing Figs. 4 and 5, we see that the maximum
field amplitude for a finite structure is observed for
parameters that correspond to the maximum widths of
the corresponding forbidden band, while the mini-
mum of Emax for l1 ~ 0.4d corresponds to the elimina-
tion of the width of the second forbidden band.

Figure 6 shows the dependences of Emax on the
number M of periods in the structure. The character-
istic feature is a linear increase in the amplitude with
the structure size. The increase in the amplitude is
caused by the interference of waves ref lected from
interfaces and sample boundaries. The interference
pattern is formed due to multiple propagations of a
wave in the structure, i.e., the previous consideration
is correct if the coherence length considerably exceeds
the sample length. In addition, as M increases, the dis-
tance T(d) between the maxima decreases and, for a
finite linewidth of exciting radiation, the total pattern
is obtained due to averaging over the wavelengths. This

will stop the growth for some length of the structure.
The field amplification is also suppressed by absorp-
tion in the system. The influence of absorption will
increase with increasing M and the field maximum
will decrease with increasing M.

Along with the field strength at the maxima, the
field distribution over the period in regions of the
envelope maxima is of interest for particular applica-
tions of this phenomenon. Figure 7 shows such a dis-
tribution for the first transmission maxima to the right
and left of the first two forbidden bands. The general
characteristics are as follows. The number of the local
maxima of |E| within one period is equal to the number
of the nearest forbidden band; for the first stop band,
for the left maximum of T, in each of the periods the
maximum of |E| is located in a dielectric layer; for the
left one it is located in a vacuum. For the second and
third bands, one of the maxima behaves similarly, but
additional maxima located in a vacuum occur (for the
given filling degree). Thus, by choosing the value of
the period (or the wavelength), we can provide the
required position of the field-intensity maximum in
the structure. As noted above, variations in the field
modulus at the maxima considerably depend on the
degree of period filling with a dielectric l1/d.

Fig. 2. The field-modulus distributions for M = 30 and l1 = 0.3d for the first four transmission maxima to the left of the first for-
bidden band (a, 1; b, 2; c, 3; d, 4); d/λ = 0.387, 0.382, 0.373, and 0.363, respectively.
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We studied the dependences of the maximum field
strength Emax in the structure on the refractive index
n1. The type of these dependences is determined by the
value of l1 and can be substantially different for the
transmission extrema nearest to the first and second
bands. Figure 8 presents dependences Emax(n1) for two
values of l1. For maxima located near the first forbid-
den band, these dependences either monotonically
increase, tending to saturation for large n1 both for the
right and left maxima of T (curves 5, 6 in Fig. 8), or
monotonically increase (curve 1) for the left maxima
of T, and curves with a weak maximum for the left
maxima (curve 2). The former situation occurs for
small l1 and the latter occurs for large l1.

For the T maxima to the right and left of the second
forbidden band, the regularities are more complicated.
For large l1 > 0.5d, the behavior of Emax(n1) is quite
similar to the case of the maxima located near the first
forbidden band (curves 3 and 4). For smaller l1, a deep
minimum is observed for some value of n1 at which
Emax ~ 1 (curves 7 and 8). The position of this mini-
mum corresponds to the vanishing of the width of the
second forbidden band. As n1 changes from 1 to 3, the
value of l1/d changes from 0.5 to 0.25. The deep min-

ima of Emax(n1) are observed in this range of l1. For
l1 < 0.25d, a minimum is absent and dependences
Emax(n1) for the right and left T maxima have a weak
maximum of the type of curve 4 in Fig. 8. The position
of this maximum correlates with the width of the for-
bidden band.

4. EXPANSION OF THE SOLUTION IN 
FLOQUET MODES

For the periodic structure considered above, at
least for large enough M and in condinion of T = 1, as
in [12], we can use the Floquet theorem and seek a
solution for 0 < x < L as a combination of counterpro-
pagating Floquet modes:

(12)

where u and v are periodic functions with period d and
k is the wave vector determined from (11). Coefficients
C+, C–, r, and t can be determined from the continuity
of the field and its derivative for x = 0 and x = L. We
will not solve this problem completely and consider
only the situation that corresponds to the transmission
maximum in the previous problem, when |t| = 1,

−
+ −= + v( ) ( ) ( ) ,ikx ikxE x C u x e C x e

Fig. 3. The field distributions for M = 30 and l1 = 0.3 near the zero transition threshold d = 0.39λ (a) and in the first transmission
minima d/λ = 0.385 (b), 0.378 (c), 0.368 (d).
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because it is under this condition that the most inter-
esting results are obtained.

Using (12), the field in the jth period can be written
in the form

(13)

where j is the period number and

The field for x = L is obtained for j = M, x = 0

(14)

The condition |t| = 1 corresponds to |E(Md)| = |E(0)|,
and as follows from (14), it is fulfilled if

(15)

For the first allowed band, kd < π; therefore, relation
(15) will be fulfilled for M – 1 values of m (m = M – 1,
M – 2, …, 1). For the second allowed band, π < kd <
2π and (15) is also fulfilled for M – 1 values of m (m =
M + 1, …, 2M – 1). The same number of unit maxima
will also occur in subsequent allowed bands. This
coincides with the results of the numerical transfer
matrix calculations obtained earlier (see Fig. 1).

It was shown in [14, 15] that expressions for the
transmission T and reflection R for a finite layered
periodic structure can be written in the explicit form
using the unimodularity of the transfer matrix for one
period. The analysis of expressions for T and R showed
[15] that a finite structure in each allowed band of an
infinite lattice contains M – 1 transmission maxima,

−
+ −+ = +( ) ( ) ( ) ,ikjd ikjdE x jd E x e E x e

−
+ + − += = v( ) ( ) , ( ) ( ) .ikx ikxE x C u x e E x C x e

−
+ −= + 2( ) ( (0) (0) ).ikMd ikMdE Md e E E e

= π2 2 .kMd m

with the value of T in the maximum being unity. Thus,
our results are consistent with those obtained in [14].

As shown above, structures with transmission max-
ima nearest to the boundaries of forbidden bands are
of most interest. Therefore, it is convenient to count
the numbers of maxima T from band boundaries and
to introduce quantities p = M – m instead of m for the
states near the first forbidden band at the left, p =
m ‒ M at the right, and p = ±(2M – m) for the second
band. (the plus and minus signs correspond to the

Fig. 4. The dependence of the field modulus maximum
Emax on the region width l1 with n1 = 1.46 for M = 50;
curves 1 and 2 correspond to the first forbidden band,
curves 3 and 4 correspond to the second forbidden band.
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states at the left and right of the forbidden band,
respectively). Then, we obtain from (15) that the sub-
sequent transmission maxima will be observed for

(16)

for the first band and

(17)

for the second band (p = 1, 2, … is the number of the
maximum). By substituting (16) and (17) into disper-
sion equation (11), we obtain the position dc of the
transmission maxima, which coincides with good
accuracy with the positions from numerical calcula-
tions (Fig. 1).

As follows from (12), the total field intensity in the
medium is a combination of oscillating functions with
periods d and d1 = d/(1 – p/M) (for the first allowed
band). The resulting intensity (and the field modulus)
is the beats of two oscillations with close frequencies.
It can be shown that the largest beat period is deter-
mined by the condition D = Md = (M – p)d1 and coin-
cides with the structure length L. For p = 2 and even
M, D/2 is also a period for the intensity. For odd M,
D/2 will not be a strict period, but nevertheless a struc-
ture with D/2 will be distinctly observed in the field
envelope. Similarly, for p = 3 a structure with D/3 will
be observed, etc. These considerations explain the

= π ±(1 / )kd p M

= π ±(2 / )kd p M

dependences E(x) presented in Fig. 2. Thus, simple
considerations based on the Floquet theorem allow us
to explain the main features of the behavior of the field
in a finite layered periodic structure.

Let us find the field distribution E(x) at the max-
ima t(d) by the Floquet method. In the interval [0, d],
the solution for each of the Floquet modes can be
written in the form

(18)

Using the Floquet theorem in the form E±(x + d) =
E±(x)e±ikd, we write the solution in the interval d < x <
d + l1 in terms of the coefficients C1 and D1. By joining
the field and its derivatives for x = l1 and x = d, we
obtain the system of linear equations for Ci and Di:

(19)

The equality of the determinant of this system to zero
gives the dispersion equation (11). By using the first
three equations of system (19), we can express the
coefficients in terms of one of them, for example, C1.
However, we will proceed differently, requiring the
fulfillment of the condition E(0) = 1 (this corresponds
to C1 + D1 = 1 and r = 0). In this case, the expressions
for the coefficient have the form
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Fig. 7. The field modulus distributions in a structure with
n1 = 1.46, l1 = 0.3 and M = 30. The solid curves correspond
to the first transmission maximum at the left, the dashed
curves correspond to the first transmission maximum to
the right of the first (a) and second (b) forbidden band.
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(20)

where

(21)

For the second (counterpropagating) Floquet mode,
the coefficients C and D are obtained from (20) by
replacing k with –k. It is easy to see that C1(k) =

(‒k), C2(k) = (–k), i.e., solutions for counter-
propagating Floquet modes are complex conjugate,
E+(x) = (x). The total solution can be written in the
form

(22)

In the case of the unit transmission (r = 0) under
study, expressions for coefficients cf and cb at counter-
propagating Flouqet modes are obtained from the
conditions of conjugation with the incident wave on
one boundary x = 0:

(23)

According to (22), the field at the maximum is propor-
tional to cf. As mentioned above, kd at the transmis-
sion maxima is determined by relationships (16) and
(17). For M large enough and small p, we can expand
sinkd into a series in the denominator of cf in (23) to
obtain

(24)

This explains both a linear increase in the maximum
field in the structure with increasing M (Fig. 6) and a
decrease in the maximum field with an increase in the
number p of the maximum (Fig. 2).

The numerical value of Emax can be determined
from the solution in the interval [0, d]. Let us write E±
in the form

(25)
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where ρ and ϕ are the wave amplitude and phase.
Then, the field in the jth period can be written in the
form

(26)

For large enough M, the phase is ϕ– – ϕ+ ≈ π. There-
fore, the field maximum will be achieved when the
condition

(27)

is fulfilled. For p = 1, we obtain j = M/2. In this case,
the field amplitude in this period has the form

(28)

Thus, it is possible to calculate Emax and the field dis-
tribution in a layer corresponding to the maximum
field based on calculations for one first period.

5. CONCLUSIONS

Based on the numerical solution of Maxwell’s
equations by the transfer-matrix method, the features
of the transmission coefficients and field distribution
in a finite layered periodic structure have been ana-
lyzed. The field-modulus distribution E(x) in the
structure for parameters that correspond to the trans-
mission maxima closest to the boundaries of forbidden
bands has a number of features. It was shown that the
field strength at the center of the structure for the
transmission maximum closest to the forbidden band
can be more than an order of magnitude higher than
the incident field amplitude E0. For the subsequent
transmission maxima p = 2, 3, …, the envelope E(x) is
close to a periodic function with period M/p, while
Emax decreases with the number p (for p = 4, Emax/E0 ~
2). Emax linearly increases with M and for M = 50 the
field excess exceeds ten times (in this case, the electro-
magnetic-field energy density increases more than two
orders of magnitude). The dependence of Emax on the
system parameters has been studied. The amplifica-
tion of the electromagnetic field is maximal for the
filling degree l1/d corresponding to the maximum of
the width of forbidden bands of an infinite structure
(approximately 0.4 for the first and 0.2 and 0.65 for the
second band).

To interpret the numerical results, we constructed
an analytic theory based on the representation of the
solution as a linear combination of counterpropagat-
ing Floquet modes of a periodic structure. In this case,
the total field intensity is a combination of oscillating
functions with similar periods d and d1 = d/(1 – p/M)
(p is the number of the transmission maximum). The
resulting intensity (and field modulus) is the beats of
two oscillations with similar frequencies, which
explains the features of the E(x) distribution.

+ − +ϕ + ϕ −ϕ + π
+ −+ = ρ + ρ( ) [( ) 2 / ]( ) ( ).i kjd i jp ME x jd e e

=2 / 1jp M

+ −+ = −| ( )| | ( ) ( )|.E x jd E x E x
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