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Abstract—The works dealing with the theory of e+e– pair production from vacuum under the action of high-
intensity laser radiation are reviewed. The following problems are discussed: pair production in a constant
electric field % and time-variable homogeneous field %(t); the dependence of the number of produced pairs

 on the shape of a laser pulse (dynamic Schwinger effect); and a realistic three-dimensional model of a
focused laser pulse, which is based on exact solution of Maxwell’s equations and contains parameters such as
focal spot radius R, diffraction length L, focusing parameter Δ, pulse duration τ, and pulse shape. This model
is used to calculate  for both a single laser pulse (n = 1) and several (n ≥ 2) coherent pulses with a fixed
total energy that simultaneously “collide” in a laser focus. It is shown that, at n ≫ 1, the number of pairs
increases by several orders of magnitude as compared to the case of a single pulse. The screening of a laser
field by the vapors that are generated in vacuum, its “depletion,” and the limiting fields to be achieved in laser
experiments are considered. The relation between pair production, the problem of a quantum frequency-vari-
able oscillator, and the theory of groups SU(1, 1) and SU(2) is discussed. The relativistic version of the imag-
inary time method is used in calculations. In terms of this version, a relativistic theory of tunneling is devel-
oped and the Keldysh theory is generalized to the case of ionization of relativistic bound systems, namely,
atoms and ions. The ionization rate of a hydrogen-like ion with a charge 1 ≤ Z ≤ 92 is calculated as a function
of laser radiation intensity ( and ellipticity ρ.
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1. INTRODUCTION
The basic relativistic quantum mechanics equa-

tion—the Dirac equation—was discovered in 1928 [1,
2] and was applied by Gordon [3] and Darwin [4] in
that year to explain the fine structure of a hydrogen-
like atom [5]. Three years later, Sauter [6] discussed
the production of e+e– pairs from vacuum in an elec-
tric field in relation to the so-called Klein paradox
(see, e.g., [7]). In the presence of a constant and
homogeneous field %, the probability of vacuum–
vacuum transition differs from unity: Heisenberg and
Euler were the first to calculated it in a principal
approximation [8], and exact formulas were derived by
Schwinger [9] for particles with spin s = 0 and s = 1/2
and by Vanyashin and Terent’ev [10] for the case of
vector bosons at s = 1 (also see [11]).

Until recently, the pair production in a strong field
was considered to be of only theoretical interest, since
its detection needs the electric fields that are compara-
ble with the “critical” field of quantum electrodynam-
ics [8] (see Eq. (1) below), which is higher than the

experimentally achievable fields by many orders of
magnitude. Nevertheless, rapid progress in laser phys-
ics and engineering led to a substantial increase in
available laser radiation intensity (. Ultrahigh fields
can be reached upon the compression (shortening) of
laser pulses, the duration of which τ becomes compa-
rable with the optical period (τ ~ 10–15 s for femtosec-
ond pulses from the infrared wavelength range) and
the shape of which is far from an ideal sinusoid.

Ultrahigh-intensity pulses are generated using
solid-state lasers with near-infrared and optical wave-
lengths: neodymium (wavelength λ = 1064 nm) and
titanium–sapphire (λ ≈ 800 nm) lasers and their sec-
ond harmonics are most widely used. Modern laser
facilities can generate pulses with an intensity up to
( ≈ 2 × 1022 W/cm2 (electric field strength in this case
(%0 ≈ 1012 V/cm) is higher than the atomic field
strength by 2–3 orders of magnitude, and the duration
of pulses of such an intensity is several tens of femto-
seconds) [12]. The appearance of powerful free elec-
tron lasers (FELs) opened up fresh opportunities for
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experiments on nonlinear interaction of laser radiation
with a substance in the ultraviolet and X-ray wave-
length ranges. Such laser are used in Germany [13],
Japan [14], and the United States [15, 16]. The record
laser pulse intensities achieved in FELs are 1016 W/cm2

at a wavelength λ ≈ 13 nm (DESY laboratory, Ger-
many), 1014 W/cm2 at λ ≈ 50 nm (SPRING-8 laser,
Japan), and 1018 W/cm2 at λ ≈ 1.2 nm (SLAC-based
FEL, United States). The nonlinear character of inter-
action of powerful electromagnetic radiation with a
substance manifests itself at much lower intensities.

The modern technically grounded projects of cre-
ating new lasers [17–20] suggest an increase in the
maximum achievable intensity by several orders of
magnitude, up to 1025–1026 W/cm2 [20–23]. New
experimental possibilities quickened interest in theo-
retical investigations of particle production from vac-
uum in an intense electromagnetic field (e.g., see [22–
26] and references cited therein). This fact justifies the
appearance of this article, which continues review [27]
and mainly covers our works.

In conclusion of this section, we present the inten-
sities and electromagnetic fields that characterize
vapor production from vacuum and the nonlinear ion-
ization of atomic systems and some other quantities to
be used in this work. Here, we use the designations
from [27–33]. The critical field of quantum electrody-
namics [8] and the corresponding intensity of a lin-
early polarized plane wave are

 (1)

where m is the electron mass, e is the elementary
charge, and c is the velocity of light. The critical field
is determined from the condition e%crlC = mc2, where

 (2)

is the Compton wavelength. The atomic field and the
corresponding intensity are expressed as

 (3)

where α = e2/  ≈ 1/137 is the fine structure constant.

2. IMAGINARY TIME METHOD IN 
RELATIVISTIC QUANTUM MECHANICS
An analytical description of the ionization of

atoms, ions, and solids under high-intensity laser radi-
ation is based on fundamental work by Keldysh [34],
the 50th anniversary of which caused review [27] and
special issue of Journal of Physics B [35]. The
approach proposed in that work led to the develop-
ment of several effective methods of an analytical cal-
culation of the probabilities of the nonlinear quantum
effects induced a strong electromagnetic field, such as
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the ionization of atoms and ions, the generation of
laser radiation harmonics, and electron–positron pair
production by a laser field from vacuum.

At present, the imaginary time method (ITM) is
widely used in the physics of strong laser fields. This
method was likely to be developed for the first time in
the theory of multiphoton atom ionization by high-
intensity laser light [36–38]. It is the generalization of
the well-known method of complex classical Landau
trajectories to the case of time-variable fields (see [39;
40, Sections 51, 52]). Examples of using ITM in quan-
tum mechanics and the field theory, including the
problem of e+e– pair production by laser radiation
from vacuum, are given in [28, 29, 41, 42]. This
method and its applications were described in detail in
reviews [27, 31, 43]. In particular, in [27] we discussed
the use of the imaginary proper time method (Fock
method) to solve the problem of vapor production
from vacuum by constant and homogeneous mutually
perpendicular electric and magnetic fields. ITM uses
classical equations of motion but with imaginary
“time” (t → it), and their solutions make it possible to
determine the subbarrier particle (electron) trajectory
along which tunneling occurs. Taking into account the
Feynman relation Ψ ∝ exp(iS/ ), where S is the clas-
sical action accumulated by a particle moving along a
subbarrier trajectory, an calculating ImS, we find the
probability of tunneling (in this case, the ionization of
an atomic level or pair production from vacuum by a
strong laser field).

Due to the development of laser physics and tech-
nology in recent years, intensities [12] of about ( ≈
2 × 1022 W/cm2 were reached and they are going to be
increased by several orders of magnitude. The electron
motion (including subbarrier motion) in such strong
fields becomes relativistic, which calls for a modifica-
tion of ITM and the Keldysh theory of ionization.
These problems were considered and some results are
presented below (we mainly follow works [42, 43]).

2.1. Relativistic Theory of Tunneling

We now consider the application of ITM to the
problem of the ionization of the relativistic bound state
of a hydrogen-like ion. In the case of a monochro-
matic wave with frequency ω and ellipticity ρ moving
in vacuum along axis x, we have

 (4)

where %0 is the wave amplitude and θ is the variable of
the light front (  = c = 1).
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The application of ITM gives the subbarrier trajec-
tory that relates the initial state of electron in a discrete
spectrum to its final state in continuum in the form

 (5)

where η = –iθ and

 (6)

is the integral of motion [44]. As is seen from Eq. (5),
variables x and z (and py) are purely imaginary under a
barrier; therefore, such a trajectory is impossible in
classical mechanics. However, it is this trajectory that
determines the tunneling probability, i.e., rate w of
atom ionization by laser radiation, in quantum
mechanics.

The calculation of the truncated action function
[43, 45] along trajectory (5),

 (7)

where A is the vector potential of field (4), v is the elec-

tron velocity, m  ≡ E0 = m  is the initial
energy of the level, yields the probability of ionization
of relativistic level s
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provided that ω ≪ m. The values of parameters η0 and
J that correspond to the time when an electron leaves
the barrier can be found from the boundary conditions
of ITM and are determined by the equations presented
in [42]. As a result, we obtain

 (9)

where F = %/%ch is the reduced field; %ch is the char-
acteristic field,

 (10)

which is close to the electric field in the Kth shell of a
hydrogen-like atom (ion) with charge Z; γR is the rela-
tivistic analog of the Keldysh adiabaticity parameter,

 (11)

ξ is convenient auxiliary variable that naturally
appears in ITM,

 (12)

and κ = . The physical meaning of parameters
γR and γr and the relation between them are discussed
in Appendix B. The atoms known to date have Z < 137
and 1 >  > 0, or 0 < ξ < 1, and the point nuclear
charge approximation can be used in this case. For-
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Table 1. Ionization rate wr for the 1s1/2 level of a hydrogen-like atom with charge Z

log( F ⋅ 100 wr log( F ⋅ 100 wr

Z = 20,  = 0.989, %ch = 4.13(13) Z = 40,  = 0.956, %ch = 3.38(14)
20.5 1.18 1.5(−4) 22.0 0.81 –
21.0 2.10 6.4(6) 22.5 1.44 12
21.5 3.73 5.4(12) 23.0 2.56 6.2(9)
22.0 6.63 1.0(16) 23.5 4.55 4.3(14)
22.5 11.8 6.4(17) 24.0 8.09 2.1(17)

Z = 60,  = 0.899, %ch = 1.19(15) Z = 92,  = 0.741, %ch = 4.82(15)
23.5 1.30 0.120 24.5 1.01 4.7(−8)
24.0 2.30 6.0(8) 25.0 1.80 1.6(5)
24.5 4.10 1.6(14) 25.5 3.20 1.8(12)
25.0 7.29 1.6(17) 26.0 5.68 1.7(16)
25.5 9.72 6.5(18) 26.5 10.1 2.9(18)

0e 0e
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mula (9) determines the ionization rate of the relativ-
istic sth level to an accuracy of a preexponential factor
at any values of  and ρ.

For optical and infrared lasers, we have /mc2 ≈
10–5; therefore, function g in Eq. (9) can be expanded
into a series in parameter γr ! 1,

 (13)

Equations (9)–(13) yield a relativistic generaliza-
tion of the Keldysh theory of ionization. The preexpo-
nential and Coulomb factors were calculated in [46,
47]. In the nonrelativistic limit, we have  =

 → 1, ξ → 0, and γr → γ (where γ is the
Keldysh parameter [27, 34]). Equation (13) coincides
with the results obtained in [36, 37, 48] for the case of
linear (ρ = 0) or circular (ρ = ±1) polarization. In con-
clusion, we present the results of the numerical calcu-
lations performed using a model of a hydrogen-like
atom (ion) with charge Z < 137.

As is seen from the values given in Table 1, the
dependence of the ionization rate on intensity ( and
charge Z is an extremely sharp function of the laser
radiation intensity: when the intensity increases by two
orders of magnitude, the ionization probability
increases by 20–25 orders of magnitude; when the
nuclear charge increases from 20 to 40 at a fixed inten-
sity, this probability decreases by more than 16 orders
of magnitude.

2.2. Constant and Low-Frequency Fields

ITM can be used to solve the problem of ionization
of the sth level bound by short-range forces in constant
and homogeneous fields % and *. In the nonrelativistic
limit, we have  = 1 – α2κ2/2 → 1 and κ =  ≈ 1;
the following well-known formulas for the ionization
rate of negative ions (H–, Na–, etc.) are obtained in
this case [49]:

 (14)

where Aκ is the asymptotic (for r → ∞) coefficient of
the wavefunction of the bound state in zero field.

In the case of mutually perpendicular fields % ⊥ *,
we obtain [48]

 (15)

which gives the ionization probability of negative ions
with allowance for corrections on the order of α2.
Finally, in the limit  → 1 (i.e., when binding energy
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E0 approaches the boundary of lower continuum), we
obtain [46]

 (16)

which agrees with the first term of the Schwinger
expansion for the imaginary part of the effective action
function in scalar electrodynamics [9]. In particular, at
* = 0, Eq. (16) gives the probability of e+e– pair pro-
duction from vacuum in constant electric field %,

 (17)

where m–4 = τC = 7.35 × 10–53 cm3 s is the relativis-
tically invariant 4-volume and τC = lC/c = 1.3 × 10–21 s.

In the problem of electron motion in a constant or
low-frequency crossed field (% = *, % ⊥ *, ω ≪ κ2),
an extremum subbarrier trajectory is analytically
determined.1 At the initial time t = t0 of subbarrier
motion, “time” is purely imaginary,

 (18)

and r(t0) = 0 according to the fact that the electron is
inside an atom. At the exit from the barrier (t = 0), we
have

 (19)

and the barrier width is r(0) ≫ 1/m and momentum
p(0) is perpendicular to fields % and * (in contrast to
the one-dimensional quasi-classical case, the point of
exit from the barrier is no longer the point of particle
stop). The ionization rate of the relativistic sth level is
(to an accuracy of preexponential factor)

 (20)

Since the crossed field does not generate pairs, proba-
bility wR  differs from zero because there exists a pre-
ferred reference system in which the atom is at rest.

1See, e.g., Eqs. (2.2)–(2.8) in [47]. The formulas for the general 
case of a monochromatic electromagnetic wave with frequency
ω and electric polarization ρ are more complex [42, 50].
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3. PAIR PRODUCTION FROM VACUUM 
IN AN APPLIED ELECTROMAGNETIC FIELD

3.1. Pair Production in a Constant Electric Field
Pair production can be clearly interpreted as the

tunneling of an electron from an occupied level lying
in the lower continuum (“Dirac sea” filled with elec-
trons with negative energy [1]) through gap 2mc2 to
one of the vacancy states in the upper continuum (path
A1A2 in Fig. 1). In constant electric field %, energy E =
(p2 + m2)1/2 – e%x and momentum p' transverse to the
applied field are retained. Figure 1 shows the spectrum
of possible values of E.

The motion of a relativistic charged particle is
described by the formulas [44]

 (21)

 (22)

where S is the action function. Electron energy (p2 +
m2)1/2 is –m at point A1 and +m at point A2. Time ray
(0, +∞) in Fig. 2 corresponds to outcoming electrons,
ray (0, –∞) corresponds to positrons (which move in
the opposite time direction, according to the Dirac
theory), and subbarrier trajectory segment between
points A1 and A2 corresponds to a change in “imagi-
nary time” t along loop C enveloping point of branch-
ing t0 of the action function (p(t0) = ±im).

The increment of the imaginary part of action
along C is

 (23)
(only the logarithm-containing term in Eq. (22) con-
tributes to ΔS). As a result, we obtain the following
well-known estimate for the tunneling probability,
i.e., the generation of an e+e– pair from vacuum by a
constant electric field [8, 9]:
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At % ≪ %cr, the barrier width (i.e., the distance
between points A1 and A2) is

 (25)
therefore, probability (24) is exponentially small.
Once e+ and e– leave the barrier at points A1 and A2,
respectively, they are accelerated by an electric field in
opposite directions,  = – .

3.2. Pair Production in an Alternating Electric Field
It is unlikely that the constant electric fields com-

parable with %cr will be ever created under laboratory
conditions. Therefore, the authors of many theoretical
works [28, 29, 32, 51] considered pair production in a
linearly polarized alternating field of the form

 (26)

where, in particular, φ(θ) = cosθ in [28, 29, 51] and
φ(θ) = 1/cosh2θ in [52]. Here, %0 is the field ampli-
tude, t is the time, θ is the dimensionless time, ω is the
characteristic frequency, and function φ(θ) specifies a
laser pulse shape.

To calculate probability w in model (26), it is con-
venient to use ITM. In the case of field (26), the sub-
barrier electron trajectory in vacuum that connects the
upper and lower continua is obtained in quadratures.
Using this trajectory, we can easily find the probability
of production of an e+e– pair with momenta ±p [28,
29],
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where  = %0/%cr is the reduced electric field and γ0 is
the relativistic adiabaticity parameter, which is analo-
gous to the Keldysh parameter in the nonrelativistic
theory of ionization,

 (28)

Here, ωt ~ 1/Tt and Tt ~ b/c are the characteristic
electron frequency and tunneling time. Function (γ)
and pulsed spectrum coefficients  and  of are
determined by pulse shape φ(θ), and the correspond-
ing formulas are given in [27–29, 32]. Let us present
them for several simplest cases.

1. For a monochromatic field with linear polariza-
tion %(t) = %0cosθ, we have

 (29)

 (30)

where K and D are the complete elliptic integrals of the
first and third kind [53]. The total production of pair
production in invariant Compton 4-volume, /c ~
10–53 cm3 s–1, is obtained by the integration of Eq. (27)
with respect to d3p and pulse duration τ with allowance
for the preexponential factor and the law of conserva-
tion of energy in n photon absorption [31].

For optical (and even X-ray) lasers, we have  ≪
mc2; therefore, pair production is possible only in the
adiabatic range γ0 ≪ 1, where the formulas are simpli-
fied and close to the case of a constant field,

 (31)

The opposite case (γ0 ≫ 1) can take place only after
the creation of γ lasers (which is likely not to be the
case of the near future). In this case, we have (γ0) =
4(ln4γ0 – 1) and the pair production probability is rep-
resented as the sum of the probabilities of n-photon
processes,
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2. For pulsed field %(t) = %0(1 + θ2)–3/2, we have

 (33)

where

 (34)

3. Another example allowing for an analytical solu-
tion with ITM is “soliton-like” momentum φ(t) =
1/cosh2θ [52], where

 (35)

 (36)

Note that Eqs. (35) and (36) derived using ITM
agree with the exact solution to the Dirac equation
[54] in the quasi-classical limit

 (37)
Other examples of calculating the functions enter-

ing into Eq. (27) can be found in [32]. In the examples
under study, function (γ0) decreases with increasing
γ0 and probability w increases sharply (at a fixed field
amplitude % ≪ %cr). As in the case of multiphoton
atom ionization, this effect manifests itself at high fre-
quencies ω ≫ ωt, which is explained by a decrease in
the effective barrier width in terms of ITM. On the
whole, the model case of alternating fields of type (26)
can be considered in detail.

Let us present some estimates for model (26) with
φ(θ) = cosθ, i.e., in the case of a monochromatic field.
The number of pairs formed in volume2 V = λ3 for
pulse duration τ is N = wλ3τ, were w is probability (24).
Figure 3 shows the electric fields required to produce
one pair. Here, curves 1 and 5 correspond to a pulse
duration τ = 2π/ω (one field period) and τ = 1 s,
respectively, and the values of λ cover the range from
10 600 nm (  = 0.11 eV, CO2 laser) to 13 nm (  =
95 eV, free electron laser). For infrared and optical
lasers, the pair production threshold is reached at % ≈
(0.7–1) × 1015 W/cm, which is lower than %cr by one
and a half order of magnitude. Figure 4 shows the
number of pairs produced in volume V = λ3 as a func-
tion of the titanium–sapphire laser field amplitude.

2The diffraction limit for the focusing of laser light with wave-
length λ.
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Note that these estimates are based on the simplest
model of a laser pulse (Eq. (26)) and have a qualitative
character.

A comparison of Eq. (27) with Eq. (4.4) from [31]
demonstrates that they are analogous and functions g
and  analytically differ substantially (therefore, the
functions entering into Eq. (27) are denoted by tilde).
This difference is explained by different forms of dis-
persion law ε(p) in Newtonian mechanics and relativ-
istic mechanics. Adiabaticity parameters γ and γ0 in
these two cases also have different orders of magni-
tude.

Note that, apart from the ionization of atoms and
atomic ions, Keldysh [34] also developed a theory for
the multiphoton ionization of semiconductors. The
dispersion law was chosen as ε(p) = Δ(1 + p2/ Δ)1/2,
where p is the quasi-momentum,  is the reduced
electron or hole mass, and Δ is the energy gap separat-
ing the valence and conduction bands. The expression
for ε(p) coincides with the dispersion law ε(p) =

 in the relativistic quantum mechanics of a
free particle up to designations; therefore, the formu-
las for probability w(p) in these two cases have an anal-
ogous form. In this connection, let us also note the
Franz–Keldysh effect [55, 56], which consists in a
shift in the fundamental absorption edge of light with
frequency ω in a semiconductor placed in applied
electric field %. Due to electron tunneling from the
valence band to the conduction band, the continuum

g�

*m

*m

2 2p m+

boundary diffuses; light with frequency ω < ω0 = Δ/
can be absorbed; and absorption coefficient α(%, ω)
has the same form as the tunneling probability
(Eq. (24))3 with an exponential accuracy,

 (38)

3.3. Pair Production in the Field 
of a Focused Laser Pulse

Alternating electric field of type (26) with * ≡ 0 is
an idealization, which overestimates the number of
formed pairs . A real electromagnetic wave
always has the magnetic field that decreases 
(pairs are known not to be produced in vacuum in a
pure magnetic field, as in a plane wave of an arbitrary
intensity, polarization, and spectral composition [9,
11]). The authors of [57] considered a realistic three-
dimensional model for a focused laser pulse. This
model is based on an exact solution to Maxwell’s
equations in vacuum and contains the following
parameters: focal spot radius R, focusing parameter
Δ = c/ωR = λ/2πR (which characterizes the difference
of a laser pulse from a plane wave), and diffraction

3 See, for example, Section 8, Part VIII in the book by
A.I. Anselm Introduction to the Theory of Semiconductors
(Nauka, Moscow, 1978).
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Fig. 3. Reduced electric field  = %0/%cr that is necessary for
the production of one e+e– pair in volume V = λ3. The curves
(in an ascending order) correspond to a pulse duration of
2.6 fs, 0.01 ps, 1 ps, 100 ps, and 1 ns. An adiabaticity region is
above the dashed line (for which γ0 = 1) [32].
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(or Rayleigh) length L = R/Δ = kR2 (k = 2π/λ is the
wavevector). Note that Δ is a small parameter: in any
case, Δ ≲ 1/π. Explicit expressions for the electric field
of such a pulse are presented in Appendix C.

To calculate the number of pairs , we take into
account that formation length lf in pair production by
a field with a near-critical strength is determined by
the Compton length lC = /mc [11], which is shorter
than the laser radiation wavelength by many orders of
magnitude (lC ≪ λ). Therefore, we may locally use the
formula [11] for the average number of pairs produced
by a constant electromagnetic field per unit volume
and unit time, and the integral of this formula over
focal region volume V and pulse duration T gives the
total number of produced pairs,

 (39)

Here, (r, t) = E(r, t)/%cr and η(r, t) = H(r, t)/%cr
are the local values of invariants E and H normalized
by %cr and having the meaning of the electric field and
the magnetic field in the frame of reference where they
are parallel to each other,4

4 It is known [44] that such a system always exists except for the
case of crossed fields (in this case, however, ^ = & = 0 at every
point and no pair production takes place.
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Explicit expressions for invariants ^ and & and
fields % and * for this model are given in [57] (see
Eqs. (2.1)–(2.12) here).

Note that formation length lf depends on the field
strength as lf ~ lC(%cr/%)3/2 [11]. The locally constant
field (LCF) approximation, which serves as the basis
of Eq. (39), holds true provided lf ≪ λ, where λ is the
laser pulse wavelength. For a peak field strength, this
condition looks like %0 ≫ %cr(lC/λ)2/3. This means that
the intensity for a optical laser (λ ~ 1 μm) should be
much higher than 1021 W/cm2. In other words, the
LCF approximation is applicable in advance for any
field producing pairs.

We now estimate the number of laser-pulse-pro-
duced pairs on the assumption that invariant  has a
single maximum at the very center of the focal region
and magnetic field η vanishes at this point. A similar
situation takes place for a focused laser pulse of an
electric type (see Appendix C). Then, the main contri-
bution to integral (39) is made by the vicinity of the
center of the focal region, where normalized invariants

(r, t) and η(r, t) can be written in the form

 (40)

where parameters R and L were determined above and
τ is the pulse duration. After simple calculations per-
formed for the total number of produced pairs in this
particular case, we obtain

 (41)

At R ~ λ ~ 1 μm, L ~ 3λ, and τ ~ 10 fs, the number
of pairs  is seen to become on the order of unity
at %0 ≈ 5.6 × 10–2%cr. This means that one pair is pro-
duced in one shot at an intensity ( ≈ 1.5 × 1027 W/cm2.
This intensity is taken to be the threshold intensity and
it is at least two orders of magnitude lower than critical
intensity (1).

It has long been thought that the pair production
probability is completely determined by the so-called
Schwinger exponent exp(–π%cr/%) and, hence, is
exponentially small at % < %cr. However, as is seen
from Eq. (41), the Schwinger exponent for the number
of produced pairs is accompanied by preexponential
factor Vτ/ . This means that the Schwinger exponent
determines the pair production probability in the
Compton 4-volume . Since the 4-volume Vτ occu-
pied by an electric field is much larger than the Comp-
ton volume in any realistic situation, this probability
acquires a huge preexponential factor. This factor
turns out to be on the order of 1025 for an optical laser
pulse with a wavelength λ = 1 μm and a duration of
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Table 2. Average number of pairs  produced by a single
laser pulse of an electric type vs. intensity ( and focusing
parameter Δ

(, 10–28 
W/cm2

 × 100 Ne, Δ = 0.1 Ne, Δ = 0.05

0.4 0.160 0.093 –
0.5 0.179 2.4(1) –
0.7 0.211 3.8(4) –
0.8 0.23 5.3(5) 6.4(−11)
0.9 0.240 4.7(6) 4.1(−9)
1.0 0.252 3.0(7) 1.4(−7)
1.5 0.309 1.7(10) 0.023
2.0 0.357 8.0(11) 32
2.5 0.399 1.2(13) 4.6(3)
3.0 0.438 8.4(13) 1.9(5)
5.0 0.565 1.0(16) 1.3(9)
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10 fs that is focused to the optical limit. This factor is
so high that it can compensate for the smallness of the
Schwinger exponent even at %0 ≪ %cr.

Table 2 gives the results of numerical calculations of
the number of pairs  produced by a single focused
laser pulse of an electric type as a function of intensity (
and focusing parameter Δ (see Appendix C). As would
be expected, the number of produced pairs at the same
intensity depends very sharply on the focusing param-
eter: as it increases twofold, the number of produced
pairs increases by more than ten orders of magnitude.
The main point, however, is the sharp dependence on
the intensity: as the peak intensity grows, the number
of produced pairs increases so fast that their rest
energy  ≈ 2mc2  becomes comparable with

laser pulse energy WL. Moreover, energy 
becomes much higher than WL at %0 ~ %cr. This means
the following. First, since pairs form at the expense of
the laser pulse energy, the process of their production
exhausts the laser pulse. Second, the calculation
method where a laser field is considered as a given
classical external field becomes self-contradictory,
since it becomes necessary to take into account the
reverse effect of pair production on pulse focusing.
Third, the analysis directly indicates that the electric
fields on the order of %cr cannot be achieved for the
field that produces electron–positron pairs. The last
result is a cogent argument for this statement, which
was made by Bohr as early as the 1930s (see, e.g., [5],
p. 232).

The threshold intensity can be decreased by using a
multibeam technology. As a result of the interference
of colliding coherent pulses, the resulting field
acquires a spiking space–time structure, which can
lead to the fact that the peak field increases and the
total field-occupied 4-volume decreases. As the peak
field increases, the number of produced pairs grows
exponentially; as the field-occupied volume, it
decreases but according to a power law. This behavior
explains why the threshold intensity decreases. For
example, two identical linearly polarized laser pulses
can “collide” so that the electric fields are summed up

e eN + −

r
e eW + − e eN + −

r
e eW + −

at the antinodes of the forming standing wave and the
magnetic fields compensate each other there.

The number of pairs produced in the field of two
colliding pulses was estimated and given in Table 2 in
[58]. The aperture of the laser beams limits the num-
ber of such pairs in the group consisting of the beams
focused onto one point so that their propagation
directions lie in the same plane to a certain number
n/2, where n is the total number of colliding pulses. In
this case, the peak strength at the focus increases by a
factor of . The authors of [59] proposed an opti-
mum configuration for an experiment in which three
groups of eight pulses colliding in one plane were used.
The propagation direction of the pulses of each group
makes an angle π/4 with the planes of other groups.
Figure 5 shows the distribution of invariant electric
field  as a function of coordinate in one of the plans
passing through the focus for 2, 8, and 24 colliding
pulses. According to calculations, the total threshold
energy of 24 pulses that is required for the production
effect to be detected in this configuration is about 5 kJ
for pulses with λ ≈ 1 μm and a duration of 10 fs. This
energy corresponds to the total power of abut 500 pW,
which is likely to be achieved in the ELI and XCELS
plants [17, 18].

3.4. Dynamic Schwinger Effect

We now consider the influence of pulse shortening
on the pair production probability and the pulse spec-
trum of pairs. To this end, it is sufficient to determine
the quantities entering into Eq. (27). In particular, we
have

 (42)

where χ(u) is the auxiliary function unambiguously
determined from laser pulse shape φ(θ) and having the
form that is identical to that in the theory of multipho-
ton atomic ionization (see, e.g., section 3 in review
[27]) and adiabaticity parameter γ0 is determined by
Eq. (28) (also see Appendix B). If function χ(u) is
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Fig. 5. (Color online) Invariant electric field distribution as a function of the coordinates in plane xy passing through a laser focus
for 2, 8, and 24 colliding pulses of an electric type. The total beam power is assumed to be the same in all three cases [58].
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known, the calculation of the pair production proba-
bility and the pulse spectrum of pairs is reduced to
quadrature. The calculation results are shown in
Fig. 6. Curves 1–5 belong to the fields of the following
types: (1) φ = cosθ (monochromatic pulse), (2) φ =
exp(–θ2) (Gaussian), (3) φ = 1/coshθ2 (soliton-like
pulse [52]), (4) φ = (1 + θ2)–1 (Lorentzian pulse), and
(5) φ = (1 + θ2)–2. In all cases, function (γ0)
decreases monotonically with increasing adiabaticity
parameter, and probability w grows sharply (at a fixed
field % ≪ %cr) and depends substantially on the laser
pulse shape at γ0 ≳ 1. This phenomenon appears at
high frequencies ω ≳ ωt, is analogous to the behavior
of the probability of multiphoton atomic ionization as
a function of Keldysh parameter γ, and was called
dynamic Schwinger effect [32].

For modern lasers, we have  ≪ mc2; therefore,
we present the expansions of the functions entering
into Eq. (27) at γ0 ≪ 1. In the adiabatic region, the
probability is mainly determined by the behavior of the
field near the maximum. Without loss of generality, we
assume that the maximum of field %(θ) is reached at
θ = 0 and φ(0) = 1, so that

 (43)

and obtain

g�
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2 42 4
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Along with Eqs. (27) and (31), these expressions
determines the pair production probability in the low-
frequency limit.

4. GROUP-THEORETICAL ASPECT 
OF THE PROBLEM OF PAIR PRODUCTION

4.1. Boson Case (s = 0)
In the calibration A = 0 and A0 = –%(t) ⋅ r, the

Klein–Fock–Gordon equation has the solution

 (45)
where p is the momentum of a classical particle in field
%(t),

 (46)

and function ξ(t) satisfies the oscillator equation

 (47)

The electric field vanishes at infinity, which makes
it possible to formulate the problem of pair production
from vacuum mathematically correctly.

When passing from the Schrödinger to the Heisen-
berg representation, we have

 (48)

Here, the Bogoliubov canonical transformation

 (49)

holds, and its coefficients can be expressed in terms of
the solution to oscillator equation (47). For example,
at t → –∞, we have

 (50)

The conservation of the commutator between
Heisenberg operators in time,

imposes the condition

 (51)
which demonstrates that canonical transformation
(49) belongs to quasi-unitary group SU(1, 1). n pairs of
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bosons can be in the given quantum state (with
momentum p = p(t → +∞), and the distribution over
the number of pairs has the form

 (52)
where

 (53)

4.2. Fermion Case (s = 1/2)
For fermions with spin s = 1/2, from the Dirac

equation we obtain

 (54)
where ξ(t) is a bispinor and α and β are Dirac matrices,
instead of Eq. (47). The quantized spinor field opera-
tor has the form

 (55)

where  and  are the Heisenberg annihilation opera-
tors for a particle and the antiparticle, respectively,
and spinors u and v satisfy the Dirac equations with
variable p(t) and ε(t),

 (56)

As in Eq. (49), the time dependences of operators 
and  are expressed in terms of canonical transformation,

 (57)

where U and V are second-order matrices.5 Here, we
have U†U + V†V = 1 and

 (58)

where

and σ = ±1/2 is the projection of spin. In the nonrela-
tivistic limit, the expression for N changes into the

5 Here, we omit the details of calculations (see Chapter 4 in [60]
for details).
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well-known formula for the Thomas precession, N =
(v ⋅ )/2.

According to the Pauli principle, 0, 1, or 2 e+e– pairs
can be in a certain state (p, σ) with the probabilities

 (59)

where νi are the eigenvalues of the matrix V†U (t → ∞).
In the case of a homogeneous magnetic field %(t),

charged-field oscillators have a time-variable fre-
quency but remain independent. Therefore, only
operators (p, t) and (–p, t) (and (p, t) and b(–p,
t)) are mixed during evolution, which significantly
simplifies the solution of the problem.

4.3. The theory of group representations can be
used to find the solution in a short and elegant man-
ner. In the problem of pair production from vacuum,

 is obviously a raising operator. Here,  is the
particle production operator and  is the antiparticle
production operator (indices p and σ of operators 
and  are omitted here). For bosons, we assume

 (60)

where [ , ] = [ , ] = 1; for the case of fermions
(where anticommutators are { , } = { , } = 1), we
have

 (61)

We can easily show that

 (62)

where η = –1 in the case of bosons and η = 1 in the
case of fermions. Therefore, operators (60) and (61)
are seen to be the generators of groups (more specifi-
cally, algebras) SU(1,1) and SU(2), and the Casimir
operator (“angular momentum” squared per group) is

 (63)

In the vacuum state, we have  =  = 0; there-
fore, we have
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for fermions. The vacuum–vacuum transition proba-
bility is the Wigner function squared for the corre-
sponding representation,

 (66)

where β and θ are the “angles of rotation” (0 < β < ∞
for SU(1, 1) and 0 < θ < π/2 for SU(2).

4.4. As an example that allows an analytical solu-
tion, we choose the pulse

 (67)
which corresponds to the well-known Eckart potential
[61]. In this case (for fermions with s = 1/2), we have

 (68)

where κ = e%0/Ω2. In this case, we have [30, 60]

 (69)

where ν+ + ν– = π(ω+ + ω–)/Ω and σ = ν+ – ν–. Substi-
tuting this expression into the relation ρ = |R+|, we find

 (70)

where ν± = πω±/Ω and ν = 2πe%0/Ω2. Analogous for-
mulas take place for scalar particles (s = 0),

 (71)

The formulas that are equivalent to Eqs. (70) and
(71) were derived in [54] and were used to find the
exact solution to the Dirac and Klein–Fock–Gordon
equations for field (67) and to calculate the probability
of pair production from vacuum. In our approach, the
problem is reduced to the calculation of the transmis-
sion coefficient through a one-dimensional potential
barrier, and some exact and approximate solutions to
this problem can be found in [60]. Note that ITM can
be applied to the solution of the problem of pair pro-
duction by field %(t) when the conditions

 (72)

are met.
If conditions (72) are met, we have

When expanding

− −
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into a series in powers of p/m, we can transform
Eqs. (70) and (71) to the form

 (73)

where γ0 is the adiabaticity parameter (see Eq. (28))
and the preexponential factor is

 (74)

At ω ≫ m , we have parameter ν ≫ 1 and

 (75)

In this case, the probability is almost independent
of spin and coincides with the result of the quasi-clas-
sical calculation (Eq. (27)), including the preexpo-
nential factor.

In conclusion, note that, in the specific case of
homogeneous electric field %(t) that retains its direc-
tion in space, the calculation of the probability of pair
production from vacuum is reduced to the problem
[62] of excitation of a one-dimensional oscillator with
variable frequency ω(t) [30, 60],

 (76)

with the oscillator frequency being real in the case of
bosons and imaginary in the case of fermions.
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APPENDIX A
Adiabatic Expansion

The frequency dependence of the tunneling proba-
bility during the ionization of an atomic level by laser
radiation or during the production of e+e– pairs from
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vacuum by field %(t) is determined by functions g(γ)
and (γ0). To within a preexponential factor, we have

 (A.1)

where [47, 50]

 (A2)

γ (Keldysh parameter [34]) and γ0 are the adiabaticity
parameters for these problems, respectively,

 (A.3)

I is the ionization potential, and function χ(u) is deter-
mined by laser pulse shape φ(ωt) (see [31, section 4]).

In the case of a low-frequency field (γ, γ0 ≪ 1), it is
natural to use the adiabatic expansions

 (A.4)

The relation between the coefficients of these
expansions (at any pulse shape) is found from
Eq. (A.2),

 (A.5)

for n = 0, 1, 2, …. In the case of monochromatic radi-
ation, we obtain

and, with allowance for Eq. (A.5), we have adiabatic
expansion for the probability of pair production by
field φ(t) = cosωt,

 (A.6)

In the general case, we assume that pulse function
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and obtain

 (A.7)

A similar expansion takes place for g(γ).

APPENDIX B
Parameters γr and γR

In the nonrelativistic Keldysh theory of ionization
[34], the adiabaticity parameter has the form γ =
ωκ/%0 (  = m = e = 1). The process of ionization is
tunneling at γ ≪ 1 and is multiphoton at γ ≫ 1. The
choice of a proper adiabaticity parameter in the rela-
tivistic case needs explanation.

γ0 determined in Eq. (28) can be used as a relativis-
tic generalization of this parameter. However, this
quantity is independent of the level energy in an atom;
therefore, it is inconvenient to describe the process of
relativistic ionization (in the case of pair production,
rest energy mc2 is the measure of energy and parameter
γ0 appears naturally). The expression

 (B.1)

could be a level-energy-dependent relativistic general-
ization of the Keldysh parameter: this expression
transforms into the expression for γ in the nonrelativ-
istic limit  = E0/mc2 → 1 – I/mc2. However, we have
γr → 0 at  → –1 when a level approaches the bound-
ary of the lower continuum and Eq. (B.1) loses its
meaning. This is related to the fact that, at level ener-
gies  < 0, the path of integration in the complex time
plane changes its form (see Fig. 2).

In terms of ITM, it is natural to take |t0|, where t0 is
the total (purely imaginary) time of subbarrier motion,
as the electron tunneling time. In the case of crossed
low-frequency fields (% = *, % ⊥ *, ω ≪ κ2), a sub-
barrier trajectory is analytically found. In particular,
we have

 (B.2)

where variable ξ = ξ( ) was determined in Eq. (12).
As a result, we obtain

 (B.3)

At low frequencies, ω → 0 (and  > 0), the values
of γr and γR are close to each other. For example, in the
model of a hydrogen-like atom (ion) with charge Z <

α–1 = 137, we have  =  = 0.926, 0.899,
0.741, and 0 and
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respectively, at Z = 30, 60, 92, and 137. On the other
hand, at  → –1, we have γr → 0 while γR differs from
parameter γ0 = mcω/e%0, which appears in the theory
of pair production from vacuum in an alternating elec-
tric field, only in a numerical factor of 1.224. Figure 7
shows the dependence of function g in the exponent in
Eq. (9) on parameter γR. The transition from a constant
field (γR = 0) to the case of γR ≫ 1 leads to a sharp
increase in the tunneling probability (as in the theory of
multiphoton ionization of atoms), and the numerical
values of g(γR, ) are almost independent of level
energy . Therefore, the choice of a relativistic adiaba-
ticity parameter in form (B.3) seems to be preferable.

APPENDIX C

Three-Dimensional Model of a Focused Laser Pulse

A plane electromagnetic wave with linear polariza-
tion is specified by the 4-potential

 (C.1)

where % = * = %0da(φ)/dt, φ = ω(t – z) is the light front
variable, and axis z is chosen along the wave propagation
direction. Function a(φ) determines a pulse shape. For
example, a(φ) = sinφ corresponds to monochromatic
laser radiation, a(φ) = tanhφ corresponds to a soliton-
like pulse %(t, z) = %0/cosh2φ, and so on.

The authors of [57] found exact solutions to Max-
well’s equations in vacuum, which are characterized
by parameters R (focal spot radius), L (diffraction

0e

0e

0e

0
0( ),0,0 , 0,a A⎛ ⎞= ϕ =⎜ ⎟ω⎝ ⎠

A %

length), and Δ (focusing parameter) and describe
time-stationary focused laser pulses. They also found
approximate solutions, which describe pulses of finite
time τ and are characterized by envelope g(τ).

The electric field in a stationary focused laser pulse
of an electric type (where a magnetic field has a non-
zero projection on the pulse propagation direction and
an electric field lies in plane xy) has the form [57]

 (C.2)

where functions F1 and F2 are determined from the
solution of the equations

 (C.3)

where χ = z/L, ξ = ρ/R, ρ = , and exp(iϕ) =
(x + iy)/ρ. At ξ, |χ| → ∞, we have F1,2 → 0. Focal spot
radius R in plane xy, diffraction (Rayleigh) length L,
and focusing parameter Δ are related as follows:

 (C.4)

The magnetic field of pulse *e is described by anal-
ogous and more awkward expressions [57].

If a laser pulse is focused to the diffraction limit
(R ~ λ), we have Δ ~ 1/2π ~ 0.1; therefore, we assume
Δ ≪ 1, In this case, functions F1 and F2 entering into
Eq. (C.2) have the form

 (C.5)

Pulses of this type are usually called Gaussian
beams.

Another solution to Maxwell’s equations is an h-
polarized wave, the electric and magnetic fields of
which are expressed in terms of the fields of an e-
polarized wave according to the equations

 (C.6)

The superscript corresponds to the left and the sub-
script, to the right circular polarization of the wave. In
this case, the magnetic field is transverse.

To generalize this expression to the case of a nonsta-
tionary laser pulse of duration τ, envelope g(φ/ωτ),
which meets the conditions g(0) = 1 and g → 0 at |φ| ≫
ωτ, is introduced into Eq. (C.1). Strictly speaking, such
functions are not exact solutions to Maxwell’s equa-
tions: they approximately satisfy them at ωτ ≫ 1. For
detailed models of a focused laser pulse, see [57–59].

2
0 1 2{( ) ( ) },e i i

x y x yi e i F e i F− ϕ φ= ± −e e e e∓%%

2
21 1 1

2

2 1 12

0

12 0,

2 ' ' ( '),

F F Fi
x

F F d F
ξ

∂ ∂ ∂∂ ⎛ ⎞+ Δ + ξ =⎜ ⎟
⎝ ⎠∂χ ξ ∂ξ ∂∂χ

= − ξ ξ ξ
χ ∫

2 2x y+

2 2, .RL kR k π= = =
Δ λ

−

−

⎛ ⎞ ⎛ ⎞ξ ξ= + χ − −⎜ ⎟ ⎜ ⎟+ χ + χ⎝ ⎠ ⎝ ⎠

⎛ ⎞ξ= −ξ + χ −⎜ ⎟+ χ⎝ ⎠

2 2
2

1

2
2 3

2

(1 2 ) 1 exp ,
1 2 1 2

(1 2 ) exp .
1 2

F i
i i

F i
i

, .h e h ei i= ± = ∓% * * %

Fig. 7. Function g vs. adiabaticity parameter γR. At a given
radiation ellipticity ρ, the curves correspond to  = 1, 0,
and –1 (from top to bottom) [50].

ρ = 0

ρ = ±1

0 2 4 6 8 10
γR

0.4

0.6

0.8

1.0
g

0e



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 122  No. 3  2016

ELECTRON–POSITRON PAIR PRODUCTION FROM VACUUM 553

REFERENCES
1. P. A. M. Dirac, Prog. R. Soc. London A 117, 610

(1928), Prog. R. Soc. London A 118, 351 (1928).
2. P. A. M. Dirac, The Principles of Quantum Mechanics

(Clarendon, Oxford, 1958).
3. W. Gordon, Z. Phys. 48, 11 (1928).
4. C. G. Darwin, Prog. R. Soc. London, Ser. A 118, 654

(1928).
5. A. Sommerfeld, Atombau und Spektrallinien (Vieweg,

Braunschweig, 1939), Vol. 2.
6. F. Sauter, Z. Phys. 69, 742 (1930); Z. Phys. 73, 547 (1931).
7. A. Calogeracos and N. Dombey, Contemp. Phys. 40,

313 (1999).
8. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
9. J. Schwinger, Phys. Rev. 82, 664 (1951).

10. V. S. Vanyashin and M. V. Terent’ev, Sov. Phys. JETP
21, 375 (1965).

11. A. I. Nikishov, Tr. FIAN 111, 152 (1979).
12. V. Yanovsky, V. Chvykov, G. Kalinchenko, et al., Opt.

Express 16, 2109 (2008).
13. J. Andruszkow, B. Aunte, V. Ayvazyan, et al., Phys.

Rev. Lett. 85, 3825 (2000).
14. T. Shintake, H. Tanaka, T. Hara, et al., Nature Photon.

2, 555 (2008).
15. P. Emma, R. Arke, J. Arthur, et al., Nature Photon. 4,

641 (2010).
16. L. Young, E. P. Kanter, B. Krässig, et al., Nature 466,

56 (2010).
17. European Project on Extreme Light Infrastructure.

http://www. extreme-light-infrastructure.eu
18. Exawatt Center for Extreme Light Studies (XCELS) on

the Base of Institute of Applied Physics of RAS.
http://www.xcels.iapras.ru

19. International Center for Zetta-Exawatt Science and Tech-
nology (IZEST). http://www.izest.polytechnique.edu

20. G. V. Dunne, Eur. Phys. J. Spec. Top. 223, 1055 (2014).
21. G. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod.

Phys. 78, 309 (2006).
22. A. di Piazza, C. Müller, K. Z. Hatsagortsyan, and

C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).
23. N. B. Narozhny and A. M. Fedotov, Eur. Phys. J. Spec.

Top. 223, 1083 (2014).
24. A. Ringwald, Phys. Lett. B 510, 107 (2001).
25. R. Alkofer, M. B. Hecht, C. D. Roberts, et al., Phys.

Rev. Lett. 87, 193902 (2001).
26. N. B. Narozhny and A. M. Fedotov, Contemp. Phys.

56, 249 (2015).
27. B. M. Karnakov, V. D. Mur, S. V. Popruzhenko, and

V. S. Popov, Phys. Usp. 58, 3 (2015).
28. V. S. Popov, JETP Lett. 13, 185 (1971).
29. V. S. Popov, Sov. Phys. JETP 34, 709 (1971).
30. V. S. Popov, Phys. Usp. 43, 211 (2000).
31. V. S. Popov, Phys. Usp. 47, 855 (2004).
32. V. S. Popov, JETP Lett. 74, 133 (2001); V. S. Popov,

J. Exp. Theor. Phys. 94, 1057 (2002).
33. V. S. Popov, Phys. Lett. A 218, 83 (2002); in I. Ya. Pomer-

anchuck and Physics at the Turn of Centures (World Scien-
tific, Singapore, 2003), p. 496.

34. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1964).
35. Special Issue on 50 Years of Optical Tunneling, J. Phys. B

47 (20) (2015).
36. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev,

Sov. Phys. JETP 23, 924 (1966).
37. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev,

Sov. Phys. JETP 24, 207 (1966).
38. V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov,

Sov. Phys. JETP 26, 222 (1967).
39. L. D. Landau, Phys. Zs. Sowjet. 1, 88 (1932).
40. L. D. Landau and E. M. Lifshitz, Course of Theoretical

Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon,
New York, 1977, 3rd ed.).

41. N. B. Narozhny, S. V. Bulanov, V. D. Mur, and
V. S. Popov, Phys. Lett. A 330, 1 (2004).

42. V. S. Popov, V. D. Mur, B. M. Karnakov, and
S. G. Pozdnyakov, Phys. Lett. A 358, 21 (2006).

43. V. S. Popov, Phys. At. Nucl. 68, 686 (2005).
44. L. D. Landau and E. M. Lifshitz, Course of Theoretical

Physics, Vol. 2: The Classical Theory of Fields (Perga-
mon, Oxford, 1975).

45. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Per-
gamon Press, New York, 1988).

46. V. D. Mur, B. M. Karnakov, and V. S. Popov, J. Exp.
Theor. Phys. 87, 433 (1998).

47. B. M. Karnakov, V. D. Mur, and V. S. Popov, J. Exp.
Theor. Phys. 105, 292 (2007).

48. V. S. Popov, V. D. Mur, and B. M. Karnakov, JETP
Lett. 66, 229 (1997).

49. Yu. N. Demkov and G. F. Drukarev, Sov. Phys. JETP
20, 614 (1964).

50. V. S. Popov, V. D. Mur, B. M. Karnakov, and
S. G. Pozdnyakov, J. Exp. Theor. Phys. 102, 760
(2006).

51. E. Brezin and C. Itzikson, Phys. Rev. D 2, 1191 (1970).
52. L. V. Keldysh, private communication (2001).
53. E. Yahnke, F. Emde, and F. Lösch, Tables of Higher

Functions (McGrawHill, New York, 1960, Nauka,
Moscow, 1977).

54. N. B. Narozhny and A. I. Nikishov, Sov. J. Nucl. Phys.
11, 596 (1970).

55. L. V. Keldysh, Sov. Phys. JETP 6, 763 (1957).
56. W. Franz, Z. Naturwiss. 13a, 484 (1958).
57. N. B. Narozhny and M. S. Fofanov, J. Exp. Theor.

Phys. 90, 415 (2000).
58. S. S. Bulanov, N. B. Narozhny, V. D. Mur, and

V. S. Popov, J. Exp. Theor. Phys. 102, 9 (2006).
59. S. S. Bulanov, V. D. Mur, N. B. Narozhny, et al., Phys.

Rev. Lett. 104, 220404 (2010).
60. V. S. Popov, Doctoral (Phys. Math.) Dissertation (Inst.

Theor. Exp. Phys., Moscow, 1974).
61. C. Eckart, Phys. Rev. 35, 1303 (1930).
62. V. S. Popov and A. M. Perelomov, Sov. Phys. JETP 29,

738 (1969).

Translated by K. Shakhlevich


