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Abstract—We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within
the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homoge-
neous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attrac-
tive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity
is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semi-
elliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and
B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at
the superconducting transition, is of a universal nature at any strength of the attractive interaction and is
related only to the general widening of the conduction band by disorder. In general, disorder growth increases
the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the
weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior
actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the
superconducting transition temperature Tc, is also controlled only by disorder widening of the conduction
band (density of states).
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1. INTRODUCTION
The problem of superconductivity in the BCS–

BEC crossover region (and up to the strong coupling
limit) has a long history, starting with early works by
Leggett and Nozieres and Schmitt-Rink [1, 2]. Prob-
ably the simplest model to study this crossover is the
Hubbard model with attractive interaction. The most
successive approach to the studies of the Hubbard
model (both repulsive and attractive) is the dynamical
mean field theory (DMFT) [3–5]. The attractive
Hubbard model was already studied within DMFT in
a number of papers [6–10]. However, up to now there
are only a few works where disorder effects were taken
into account, either in normal or in superconducting
phase of this model. Qualitative analysis of disorder
effects on the critical temperature Tc in the BCS–BEC
crossover region was presented in [11], which claimed
the validity of the Anderson theorem in this region in
the case of s-wave pairing. A diagram analysis of disor-
der effects on Tc and the properties of the normal state
in the crossover region were recently presented in [12].

We have developed the generalized DMFT+Σ
approach to the Hubbard model [13–16], which is
quite convenient for including various “external”

interactions, such as disorder scattering [17, 18]. This
approach is also well suited to the studies of two-par-
ticle properties, such as dynamic (optical) conductiv-
ity [17, 19]. In recent paper [10], we used this
approach to analyze the single-particle properties of
the normal phase and optical conductivity in the
attractive Hubbard model. Subsequently, the
DMFT+Σ approximation was combined with the
Nozieres–Schmitt-Rink approach to study the inf lu-
ence of disorder on the superconducting critical tem-
perature Tc in the BCS-BEC crossover and strong-
coupling regions [20, 21], demonstrating the validity
of the generalized Anderson theorem. Disorder
effects on Tc are essentially due to only the general
widening of the conduction band by random scatter-
ing. This was demonstrated exactly (for the whole
range of attractive interactions) in the case of a semi-
elliptic density of states of the conduction band
(three-dimensional case) at any disorder level and is
also valid in the case of a f lat band (two-dimensional
case) in the limit of strong enough disorder.

The Ginzburg–Landau (GL) expansion in the
BCS–BEC crossover region was derived in a number
of papers [22–24], but no effects of disorder scattering
on the GL expansion coefficients were considered.
Here, we derive the microscopic coefficients of a1The article is published in the original.
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(homogeneous) GL expansion for the attractive Hub-
bard model and study disorder effects on these coeffi-
cients including the BCS–BEC and strong-coupling
regions, as well as on the specific heat discontinuity at
the superconducting transition, demonstrating a cer-
tain universality of disorder behavior of these charac-
teristics.

2. DISORDERED HUBBARD MODEL
IN THE DMFT+Σ APPROACH

We consider the disordered attractive Hubbard
model with the Hamiltonian

 (1)

where t > 0 is a transfer integral between the nearest
neighbors and U is the onsite Hubbard attraction,
niσ = aiσ is electron number operator at site i, and aiσ

( ) is the annihilation (creation) operator of an elec-
tron with spin σ. Local energy levels ei are assumed to
be independent random variables on different lattice
sites. We assume the Gaussian distribution of ei at each
site for the validity of the standard “impurity” scatter-
ing diagram technique [25]:

 (2)

Here, Δ is the measure of disorder scattering.
The generalized DMFT+Σ approach [13–16] sup-

plies the standard DMFT [3–5] with an additional
“external” self-energy (in general, momentum depen-
dent) due to any interaction outside the DMFT, which
provides an effective method to calculate both single-
and two-particle properties [17, 19]. The additive form
of the total self-energy preserves the structure of the
self-consistent DMFT equations [3–5]. The “exter-
nal” self-energy is recalculated at each step of the stan-
dard DMFT iteration scheme, using some approxima-
tions corresponding to the form of the additional
interaction, while the local Green’s function (central
for DMFT) is also “dressed” by the additional interac-
tion.

For the disordered Hubbard model, we take the
“external” self-energy entering the DMFT+Σ loop in
the simplest form of a self-consistent Born approxi-
mation, neglecting the “crossing” diagrams due to
disorder scattering:

 (3)

where G(ε, p) is the complete single-particle Green’s
function.

To solve the effective Anderson impurity model of
DMFT, we here use the effective algorithm of the
numerical renormalization group (NRG) [26].
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In what follows, we consider the model of a “bare”
conduction band with the semi-elliptic density of
states (per unit cell and spin projection)

 (4)

where D determines the half-width of the conduction
band. This is a good approximation in the three-
dimensional case.

In [21], we have shown analytically that in the
DMFT+Σ approach, within these approximations, all
the disorder influence on the single-particle proper-
ties reduces to the simple effect of band widening by
disorder scattering, D → Deff, where Deff is the effective
band half-width in the presence of disorder (in the
absence of correlations, i.e., for U = 0):

 (5)

and the conduction band density of states (in the
absence of U) “dressed” by disorder is given by

 (6)

preserving its semi-elliptic form.
For other models of the “bare” conduction band

density of states, besides band widening, disorder scat-
tering changes the form of the density of states, and
hence the complete universality of disorder influence
of single-particle properties, strictly speaking, is
absent. But in the limit of strong enough disorder, the
“bare” band density effectively becomes elliptic for
any reasonable model, and the universality is thus
restored [21].

All calculation below were performed for the quar-
ter-filled band (n = 0.5 per lattice site).

3. GINZBURG–LANDAU EXPANSION
The critical temperature of the superconducting

transition Tc in the attractive Hubbard model was ana-
lyzed using direct DMFT calculations in a number of
papers [6, 7, 9]. In [10], we determined Tc from the
instability condition of the normal phase (instability of
the DMFT iteration procedure). The results obtained
in this way were in good agreement with the results in
[6, 7, 9]. Additionally, in [10], we calculated Tc using
the approximate Nozieres–Schmitt-Rink approach in
combination with DMFT (used to calculate the chem-
ical potential of the system), demonstrating that being
much less time consuming, it provides a semi-quanti-
tative description of the Tc behavior in the BCS–BEC
crossover region, in good agreement with direct
DMFT calculations. In [20, 21], the combined
Nozieres–Schmitt-Rink approach was used to study
the detailed dependence of Tc on disorder. Below, we
use this combined approach to derive the GL expan-
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sion including the disorder dependence of the GL
expansion coefficients.

We write the GL expansion for the difference of
free energies of superconducting and normal phases in
the standard form

 (7)

where Δq is the spatial Fourier component of the
amplitude of the superconducting order parameter.
Microscopically, this expansion is determined by dia-
grams of the loop expansion for the free energy of an
electron in the “external field” of (static) supercon-
ducting order parameter f luctuations with a small
wave vector q, shown in Fig. 1 (where f luctuations are
represented by dashed lines) [25]. Below, we limit our-
selves to the case of a homogeneous expansion with
q = 0 and calculations of its coefficients A and B, leav-
ing the (much more complicated) analysis of the gen-
eral inhomogeneous case of finite q and calculations of
the coefficient C in (7) for the future work.

Within the Nozieres–Schmitt-Rink approach [2],
we use the weak-coupling approximation to calculate
loop diagrams with two and four Cooper vertices
shown in Fig. 1, dropping all corrections due to the
Hubbard U, while including “dressing” by disorder
scattering.2 However, the chemical potential, which
essentially depends on the coupling strength U and
determines the BEC condition in the strong-coupling
region, is calculated via the full DMFT+Σ procedure.

The coefficient A before the square of the order
parameter in the GL expansion is given by the dia-
grams in Fig. 1a with q = 0 [25]:

 (8)
where

2In the absence of disorder, this approach just coincides with that 
used in [22–24], involving the Hubbard–Stratonovich transfor-
mation in the functional integral over f luctuations of the super-
conducting order parameter.

2 2 2 4| | | | | | ,
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 (9)

is the two-particle loop in the Cooper channel
“dressed” only by disorder scattering, while Φpp' (εn) is
the disorder-averaged two-particle Green’s function
in the Cooper channel (εn = πT(2n + 1) is the corre-
sponding Matsubara frequency). Subtraction of the
second diagram in Fig. 1a, i.e., that of χ0(q = 0, Tc)
in (8), guarantees the validity of A(T = Tc) = 0, which
necessarily holds in any kind of Landau expansion [25].

To obtain (εn), we use the exact Ward
identity derived in [19]:

 (10)

Here, G(εn, p) is the disorder-averaged single-par-
ticle Green’s function (not “dressed” by Hubbard
interaction!). With the symmetry ε(p) = ε(–p) and
G(εn, –p) = G(εn, p), we use Ward identity (10) to
obtain

 (11)

whence we obtain Cooper susceptibility (9)

 (12)

Performing the standard summation over Matsub-
ara frequencies [25], we now obtain

 (13)

where (ε) is the “bare” (U = 0) density of states
“dressed” by disorder scattering, which in the case of
a semi-elliptic band takes the form (6). In Eq. (13), the
origin of ε is at the chemical potential. Replacing ε →
ε – μ to shift the origin of energy to the center of con-
duction band, we finally write
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Fig. 1. Diagram representation of the Ginzburg–Landau
expansion.
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 (14)

The Cooper instability of the normal phase, deter-
mining the superconducting transition temperature
Tc, is written as

 (15)
We then obtain the following equation for the crit-

ical temperature:

 (16)

Using (15) to determine χ0(q = 0, Tc) and (14) for
χ0(q = 0, T), we obtain the coefficient A in (8):

 (17)

The chemical potential for different values of U and
Δ is to be determined here from direct DMFT+Σ cal-
culations, i.e., from the standard equation for the total
number of electrons (band filling), defined by the
Green’s function obtained in the DMFT+Σ approxi-
mation. This allows us to find both Tc and GL expan-
sion coefficients in a wide range of parameters of the
model, including the BCS–BEC crossover region and
the limit of strong coupling, for different disorder lev-
els. Actually, this is the essence of the Nozieres–
Schmitt-Rink approximation in the weak-coupling
region, transition temperature is controlled by the
equation for Cooper instability, while in the strong-
coupling limit, it is defined as the temperature of Bose
condensation, which is controlled by the equation for
the chemical potential. The joint solution of Eqs. (16)
and (17) with the DMFT+Σ equation for the chemical
potential provides the correct interpolation for Tc and
GL coefficient A from the weak-coupling region via
the BCS–BEC crossover towards the strong coupling.

For T → Tc, the coefficient A(T) is written as

 (18)
where in the case of a temperature independent chem-
ical potential,

 (19)

In the BCS approximation with the conduction
band of an infinite width with a constant density of
states (0), we obtain the standard result a =

(0)/Tc from (19) [25]. However, in the BCS–BEC
crossover region, the temperature dependence of μ is
essential and we have to use the general expression (17)
in conjunction with the equation for μ to calculate a.
At the same time, it is clear from Eq. (17) that disorder
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scattering influences a only through the changes of the
density of states (ε) and the chemical potential μ,
which is a typical single-particle property. Thus, in the
case of a semi-elliptic “bare” conduction band, the
dependence of a on disorder is due to only the band
widening by disorder, with the replacement D → Deff.
Therefore, in the presence of disorder, we expect the
universal dependence of a(2Deff)2 on U/2Deff (all ener-
gies are to be normalized by the effective bandwidth
2Deff), which is confirmed by the results of direct
numerical computations in the next section (cf.
Fig. 4a).

The coefficient B is determined by a “square” dia-
gram with four Cooper vertices with q = 0, “dressed”
in an arbitrary way by disorder scattering, which is
shown in Fig. 1b [25]:

 (20)

where 〈…〉 denotes averaging over disorder, and G(iεn;
p1, p2) (and other similar expressions) represent exact
single-particle Green’s functions for a fixed configu-
ration of the random potential. Performing standard
summation over Matsubara frequencies, we obtain

 (21)

Due to the zero momentum q = 0 in Cooper verti-
ces and the static nature of disorder scattering, we can
now use a certain generalization of Ward identity (10)
to obtain (at T = Tc)

 (22)

A detailed derivation is presented in Appendix A.
In the BCS approximation, using the conduction
band of an infinite width with a constant density of
states (0), we immediately obtain the standard

result from Eq. (22): B = (7ζ(3)/8π2 ) (0) [25].

Again, replacing here ε → ε – μ to shift the origin
of energy to the middle of the conduction band, we
can write

0N�

1 2 3 4

1 2 2 3

3 4 4 1

1 ( ; , ) ( ; , )
2

( ; , ) ( ; , ) ,

n n

n

n n

B T G i G i

G i G i

= 〈 ε − ε − −

× ε − ε − − 〉

∑ ∑
p p p p

p p p p

p p p p

1 2 3 4

1 2 2 3

3 4 4 1

1 tanh
2 2 2

( ; , ) ( ; , )

( ; , ) ( ; , ) .

R A

R A

dB
i T

G G

G G

∞

−∞

ε ε=
π

× 〈 ε ε − −

× ε −ε − − 〉

∫

∑
p p p p

p p p p

p p p p

∞

−∞

⎛ ⎞εε ε= − ε⎜ ⎟ε ε⎝ ⎠
∫ �

03 2
/2tanh ( ).

24 cosh /2
c

c c

TdB N
T T

0N�
2

cT 0N�



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 122  No. 2  2016

ATTRACTIVE HUBBARD MODEL: HOMOGENEOUS 379

 (23)

It follows that the disorder dependence of the coef-
ficient B (similarly to A) is also determined only by the
disorder-widened density of states (ε) and the
chemical potential, and hence in the case of a semi-
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elliptic “bare” conduction band, it reduces to the sim-
ple replacement D → Deff, leading to a universal
dependence of B(2Deff)3 on U/2Deff, which is con-
firmed by the results of direct numerical computations
presented in the next section and shown in Fig. 4b.

We stress that Eqs. (17) and (23) for the GL coeffi-
cients A and B were obtained with the use of exact
Ward identities, and are therefore valid also in the limit
of strong disorder (beyond Anderson localization).

The universal dependence on disorder, related to
the conduction band widening by disorder scattering,
is also valid for the specific-heat discontinuity at Tc,
because it is completely determined by the coefficients
a and B:

 (24)

Appropriate numerical results are also given in the
next Section (cf. Fig. 5b).

The coefficient C before the gradient term of the
GL expansion is determined essentially by two-parti-
cle characteristics (in particular, due to a nontrivial q-
dependence of the vertex, which is obviously changed
by disorder scattering). In particular, the behavior of C
is significantly changed at the Anderson transition
[27], and therefore no universality of the disorder
dependence is expected in this case.

4. MAIN RESULTS
We now discuss the main results of our numerical

calculations, directly demonstrating the universal
dependences of the GL coefficients A and B and the
specific heat discontinuity at Tc on disorder.

In Fig. 2, we show the universal dependence of the
critical temperature Tc on the Hubbard attraction U for

2
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Fig. 2. Universal dependence of the superconducting crit-
ical temperature on disorder for different values of the
Hubbard attraction.
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different levels of disorder, which was obtained and
discussed in detail in [20, 21]. A typical maximum of
Tc at U/2Deff ~ 1 is characteristic of the BCS–BEC
crossover region.

In Fig. 3, we present disorder dependences of the
GL coefficients a (Fig. 3a) and B (Fig. 3b) for different
values of the Hubbard attraction. We can see that a in
general increases with an increase in disorder. Only in
the limit of a strong enough coupling U/2D > 1.4
(curves 4 and 5) in the region of weak disorder do we
observe weak suppression of a by disorder scattering.
The coefficient B grows sufficiently fast with disorder
in the region of weak coupling (curve 1 in Fig. 3b),

while in the region of strong coupling, this growth
becomes more moderate (curves 4, 5 in Fig. 3b), such
that the dependence of B on disorder in this region
becomes almost independent of the value of U
(curves 4 and 5 practically coincide).

However, this rather complicated dependence of
the coefficients a and B on disorder is determined
solely by the growth of the effective conduction band-
width with disorder, given by Eq. (5). In Fig. 4, we
show the universal dependences of the GL coefficients
a and B, normalized by appropriate powers of the
effective bandwidth, on the strength of Hubbard
attraction. In the absence of disorder (the dashed line

Fig. 4. Universal dependence of the GL coefficients (a) a and (b) B on the Hubbard attraction for different values of disorder.
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of the Hubbard attraction U and (b) universal dependence of this discontinuity on U for different values of disorder.
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with squares), the coefficients a and B decrease fast as
U increases. Other symbols in Fig. 4 show the results of
our calculations for different levels of disorder. It is
clearly seen that all the data ideally fit the universal
curve obtained in the absence of disorder.

The coefficients a and B determine the specific
heat discontinuity at the critical temperature,
Eq. (24). Because these coefficients and Tc [20, 21]
depend on disorder in a universal way due only to the
growth of the effective bandwidth (5), the same type of
universal dependence is also valid for the specific heat
discontinuity. In Fig. 5a, we show the dependence of
the specific heat discontinuity dC ≡ Cs – Cn on disor-
der for different values of the Hubbard attraction U. It
is seen that in the region of weak coupling (curve 1),
the specific heat discontinuity is suppressed by disor-
der; for intermediate couplings (curves 2 and 3), weak
disorder leads to an increase in the specific heat dis-
continuity, while further increasing the disorder sup-
presses this discontinuity. In the region of strong cou-
pling (curves 4 and 5), the increase in disorder leads to
a significant increase in the specific heat discontinu-
ity, which is mainly related to the similar increase in Tc
(cf. [20, 21]). However, this complicated dependence
of the specific heat discontinuity on disorder is again
completely determined by the growth of effective
bandwidth (5). In Fig. 5b, we show the universal
dependence of the specific heat discontinuity on U,
normalized by the bandwidth 2Deff. Black squares rep-
resent data in the absence of disorder. Other symbols
in Fig. 5b show the data for different disorder levels.
We see again that all the data precisely fit the universal
dependence of the specific heat discontinuity
obtained in the absence of disorder. The specific heat
discontinuity increases with an increases in U in the
region of weak coupling U/2Deff ≪ 1 and decreases
with an increase in U in the limit of strong coupling
U/2Deff ≫ 1. The maximum of the specific heat dis-
continuity is observed at U/2Deff ≈ 0.55. Actually, this
dependence of the specific heat discontinuity qualita-

tively resembles a similar dependence of the critical
temperature, although its maximum is attained at
smaller values of the Hubbard attraction.

5. CONCLUSION

Using a combination of the Nozieres–Schmitt-
Rink approximation with the generalized DMFT+Σ
approach, we have studied disorder influence on the
coefficients A and B determining the homogeneous
Ginzburg–Landau expansion and specific heat dis-
continuity at the superconducting transition in the
attractive Hubbard model.

We have demonstrated analytically that in the case
of a “bare” conduction band with a semi-elliptic den-
sity of states, disorder influence on the GL coeffi-
cients A and B and the specific heat discontinuity is
universal and is controlled only by the general con-
duction band (density of states) widening by disorder
scattering; we illustrated this conclusion with explicit
numerical calculations performed for a wide range of
attractive potentials U, from the weak-coupling
region, where U/2Deff ≪ 1 and the superconducting
instability is described by the usual BCS approach, to
the strong-coupling region, where U/2Deff ≫ 1 and the
superconducting transition is determined by Bose–
Einstein condensation of preformed Cooper pairs.

These results essentially prove the validity of the
generalized Anderson theorem in the BCS–BEC
crossover region and in the limit of strong coupling not
only for Tc [20, 21] but also for the homogeneous
Ginzburg–Landau expansion, determining appropri-
ate thermodynamic effects like the specific heat dis-
continuity at the transition point.
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APPENDIX

The Coefficient B in the Presence of Disorder

The coefficient B is determined by the “square”
diagram with four Cooper vertices with q = 0,
“dressed” by disorder scattering, shown in Fig. 1b.
The corresponding analytic expression is given in
Eq. (20). After the standard summation over Matsub-
ara frequencies, B is written as in (21), i.e., is deter-
mined by the following combination of four Green’s
functions with real frequencies:

 (A.1)
1 2 3 4

1 2 2 3

3 4 4 1

( ; , ) ( ; , )

( ; , ) ( ; , ) ,

R A

R A

G G

G G
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Fig. 6. Diagrams for the coefficient B and the derivation of
a generalized Ward identity.
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where 〈…〉 denotes averaging over disorder and GR(A)(ε;
p1, p2) are the exact retarded (advanced) single-parti-
cle Green’s functions for a fixed configuration of dis-
order.

A typical diagram of the fourth order of disorder
scattering (dashed lines) is shown in Fig. 6a. Arbitrary
diagrams for such a four-particle Green’s function can
be obtained from diagrams for the single-particle
Green’s function of the same order of disorder scatter-
ing by arbitrarily inserting three Cooper vertices into
the “bare” electron Green’s functions, as shown in
Fig. 6a. Taking the static nature of disorder scattering
and the zero transferred momentum q = 0 in Cooper
vertices into account, we can evaluate (A.1) using a
certain generalization of exact Ward identity (10),
derived in [19].

We take the diagram for the single-particle Green’
function, shown in the left part of Fig. 6b, and con-
sider a certain configuration of momenta transferred
by dashed lines. Here, we have nine “bare” electron
Green’s functions with momenta p1, …, p9. In what
follows, we use the short notation

 (A.2)

where (ε; p) = 1/(ε – ε(p) ± iδ) is the “bare”
Green’s function. Inserting a Cooper vertex leads to
the sign change of momenta and frequencies (i.e., to
the replacement Gi ↔ ) in all Green’s functions
standing to the right of the vertex. We assume that the
central of the three Cooper vertices was inserted into
the fourth Green’s function, as shown in the right part
of Fig. 6b. An arbitrary insertion of the first Cooper
vertex into one of the first four of the Green’s func-
tions leads to the result

 (A.3)

whence, using the identify  –  = 2ε, we obtain

 (A.4)

Then  → G4G5G6G7G8G9 and after all
insertions of the last (third) Cooper vertex into one of
the six Green’s functions G4, …, G9, we again obtain
(  – G4G5G6G7G8G9)/2ε.
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We thus obtain

 (A.5)

where we can evaluate the two-particle Green’s func-
tions with q = 0 again using an analogue of Ward iden-
tity (10) for real frequencies. Using (A.5) in (21) and
replacing ε → –ε in terms with 〈GA(–ε)〉 in the integral
over ε, we obtain

 (A.6)

This expression was used in the main part of the
paper.
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