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Abstract—The phase field crystal model provides a continual description of the atomic density over the dif-
fusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which
are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D struc-
tures is constructed from the analytic solutions of the model using atomic density functionals. The diagram
predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains
of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered
cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed
for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The
expression for the free energy is derived analytically from density functional theory. The specific features of
approximating the phase field crystal model are compared with the approximations and conclusions of the
weak crystallization and 2D melting theories.
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1. INTRODUCTION

The phase field crystal model [1–3] was formu-
lated to describe continual transitions from the homo-
geneous to the periodic state (similar to the Landau–
Brazovskii transition [4–7]) and between different
periodic states over diffusion times [8]. The model is
based on the description of the free energy, which is a
functional of the atomic density field n-periodic in the
solid phase and homogeneous in the liquid state.

Periodicity n of the field takes into account the
elastic properties and multiplicity of crystallographic
orientations of the atomic continuum, which is
described by the equation of motion for the average
value of conservative order parameter n0. This makes it
possible to simulate a wide class of phenomena includ-
ing, e.g., epitaxial growth and ordering of nanostruc-
tures on micrometer scales [8], crystallization and
high-speed regimes of front propagation [9, 10], the
motion of dislocations and plastic f low, the formation
of a disordered amorphous state, premelting of grain
boundaries, crack spreading, rearrangement of micro-
scopic structure of interfaces, and the dynamics of
colloidal systems and polymers (see [11]).

The determination of equilibrium structures and
their coexistence in “average atomic density–tem-
perature” and “average atomic density–transition
driving force” diagrams occupies a special place in the

phase field model. Such diagrams are required for
determining the structures to which unstable or meta-
stable states must evolve. Diagrams of 2D structures
for transitions from an unstable state were constructed
in detail using the atomic density functional and the
Maxwell equal-area rule [2, 12]. The structural dia-
gram for transitions from the metastable state was also
constructed earlier, but in a narrower range of the con-
trol parameter [13]. The dynamics of systems with the
formation of periodic crystalline structures is studied
in a wide range of control parameters [14]. Therefore,
determination of the domains of existence of stable
structures in equilibrium in a wide range of parameters
is a topical problem in phase field theory [13].

In this study, we formulate a method for construct-
ing the diagram of 2D structures for transitions from a
metastable state to a periodic phase for arbitrary values
of the driving force and atomic density. This method
makes it possible to determine the parameter range for
the existence of 3D structures. This is demonstrated
using the phase diagram of a body-centered cubic
(bcc) iron lattice and a homogeneous liquid phase.

2. FREE ENERGY

As the driving force, we choose control parameter
ΔB0 =  – , which determines the difference0B ,

0
xB

SOLIDS 
AND LIQUIDS



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 122  No. 2  2016

ATOMIC DENSITY FUNCTIONAL AND DIAGRAM OF STRUCTURES 299

between compressibility  of the liquid and elastic
modulus  (in dimensionless units, see [8, 14]).
Transition from the metastable state is possible if com-
pressibility  exceeds elastic modulus  so that
ΔB0 =  –  > 0. If, however, compressibility 

becomes smaller than elastic modulus  (i.e., ΔB0 =

 –  < 0), a transition from an unstable state is
possible. For definiteness, we consider only transi-
tions from the metastable to the stable phase (i.e., for
ΔB0 > 0). Finally, for dimensionless atomic density, we
choose parameter n ≡ (ρ – )/ , where  is the local
atomic density and  is the constant atomic density of
the liquid chosen as the reference density. Atomic
density n in the model described below is a conserva-
tive (conserved) order parameter.

For an isothermal one-component system, we
choose the free energy in the form of the functional
[13]

 (1)

where operator Di for i = 1 and i = 2 describes the
one-mode approximation

 (2)
or the two-mode approximation

 (3)
Free energy (1) is a specific (per unit volume) func-

tional normalized to kBT , where kB is the Boltzmann
constant, T is the temperature,  is (as defined above)
the reference density chosen as the constant atomic
density of the liquid, ΔB0 and  are coefficients, and
a and v are phenomenological parameters that can be
selected for certain properties of the material [15–17].
The values of R1, R2, and Q2 in operators (2) and (3)
are calculated in terms of the coefficients of the atomic
density correlation function for the unit cell with lat-
tice vector q1 in the case of the one-mode approxima-
tion or using a second-order cell with lattice vector q2
in the case of the two-mode approximation [18, 19].
With allowance for only one parameter q1 determined
in the first approximation by the two-point correlation
function of atoms [18], one-mode approximation (2)
describes, e.g., a simple cubic or bcc lattice [15]. When
two-mode approximation (3) is used, two characteris-
tic lattice parameters are taken into account, which is
the next approximation of the atomic correlation
function (or of the static structural factor). The two-
mode approximation makes it possible to describe
finer structures (e.g., a face-centered or hexagonal
close-packed crystal lattice) [20, 21]. Thus, 3D opera-
tors (2) and (3) take into account the lowest and higher
approximations, respectively, and describe different
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degrees of complexity of the crystal structure. As a
result of these approximations, the functional makes it
possible to describe systems on the scale of atomic
lengths and on the scale of the diffusion times of atoms
(i.e., it obviously cannot be used in analyzing atomic
systems on the atomic vibration scale) [13]. For this
reason, the periodic states and the dynamics of transi-
tions between them can be predicted with this func-
tional on scales occupying positions between the
scales of standard phenomenological phase-field
models and discrete atomistic models (such as the
molecular dynamics model or density functional the-
ory) [3].

Functional (1) has the form which was used in the
formulation and development of the “weak” crystalli-
zation theory [6] for describing a system with the con-
served order parameter, as well as for convective insta-
bility according to the Swift–Hohenberg theory [9, 13]
in analysis of the evolution of nonpersistent order
parameters. In the general case, free energy (1) pro-
vides a description of a stable or metastable system that
can experience a first-order phase transition precisely
due to the presence of the cubic term in its integrand
[4, 22, 23]. A second-order phase transition can also
be described in the phase field crystal model, but for
a = 0 (i.e., without the cubic term in free energy (1)).
E.g., analysis of marginal instability and the selection
of the structural parameter of lamellas in diblock
copolymers [10] are associated with precisely a sec-
ond-order phase transition with a = 0 in the free
energy. Let us now demonstrate analytically the differ-
ence in the description of the second- and first-order
phase transitions in the phase field model.

Considering the integrand in functional (1), we can
write free energy density f(n, T) in the form

 (4)

where f0(T) is the Helmholtz free energy density for
the high-temperature phase (n = 0, ρ = ). Free
energy density (4) for the homogeneous high-tem-
perature phase in which Din = 0 determines the equa-
tion of state from the condition ∂f/∂n = 0 in the form

 (5)

Provided that ΔB0m =  –  is the difference

between the critical value of compressibility  and
elastic modulus  required for the formation of a
metastable liquid, the roots of Eq. (5) are given by

 (6)
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The real-valued solution from the set of densities (6)
can be determined from the physically admissible con-
dition n2 = n3, i.e., for

 (7)

If  > , only one homogeneous state is stable
for n = 0. For  < , a metastable minimum
appears for n ≠ 0.

The phase transition point is determined by the
condition of equality of energies f(n, T) = f0(T). Then
expression (4) gives the equation

 (8)

with the roots

 (9)

where ΔB0k =  –  is the difference between the

critical value of compressibility  and elastic modu-
lus . The real values of density (9) are observed for
n2 = n3, which leads to the conditions
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Here,  is the critical compressibility value
required for crystallization of the metastable liquid
phase.

Expressions (7) and (10) show that to initiate crys-
tallization, the compressibility of the liquid phase
must be lower than the compressibility required for the
occurrence of metastability (i.e.,  < ). This
means that upon cooling of the high-temperature
phase, a metastable liquid appears first, and only then
the phase transition point is attained at which, under
condition (10), we obtain the equality  =  and
two stable states for density: n = n0 and n ≠ 0.

The condition  <  leads to a discontinuous
(jumpwise) variation in density at the phase transition
point. Indeed, using expressions (6), (9), and (10), we
obtain

 (11)

Figure 1 shows density jump (11) at the phase tran-
sition point. The jumpwise variation in density is one
of the basic characteristics of a first-order transition
[4, 22, 23], which is due to the presence of the cubic
term in free energy density (4). For a = 0, the contri-
bution of the cubic term in free energy density (4) van-
ishes, and we then obtain  =  (see expressions
(7) and (10)). In this case, the density at the transition
point varies continuously (without a jump): n( ) =
n( ) (see expression (11) for a = 0). Such a contin-
uous variation in density is one of the basic character-
istics of a second-order transition [4, 22, 23], which is
due to the cubic term in energy (4). The continuous
variation in density (11) for a = 0 is also shown in
Fig. 1.

For specific crystalline structures and liquids,
physical parameters , , a, and v in functional (1)
can be determined, e.g., from the atomic distribution
functions and atomic density distribution functions
obtained using the molecular dynamics method [18].
In this study, we use molecular dynamics simulation
data to determine the physical parameters of the free
energy and construct the structural diagram of iron
(see Section 5).

3. STRUCTURAL STATES
Analogously to the results obtained in [12], we

assume that using free energy (1) to determine stable
structural states in the 2D space, we can find the
allowed domains of existence of the states of a
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Fig. 1. Variation in the conservative order parameter
(atomic density n) in the phase field crystal model. Contin-
uous variation in n in the second-order transition (dashed

curve beginning from  and transformed into the solid
curve) is demonstrated; discontinuous (jumpwise) variation
in n in the first-order transition (solid line beginning from

). Density jump Δn is determined by expression (11) for
a ≠ 0, and continuous variation in n is also determined by

Eq. (11), but for a = 0 and for  = .
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(i) homogeneous structure (liquid);
(ii) triangular structure;
(iii) striped structure;
as well as the domains of existence of
(iv) a homogeneous–triangular structure;
(v) triangular–striped structure.
We construct the structural diagram in an arbitrary

range of control parameters 0 ≤ ΔB0 ≤ 0.9 according to
the calculations performed below. It should be noted
for comparison that the structural diagram for first-
order transitions is constructed in the limited range
0 ≤ ΔB0 ≤ 0.12 (see Figs. 8.12 and 8.13 in [13]).

In static equilibrium, the solutions to the equation

 (12)
ensure the minimization of free energy (1). The gen-
eral solution to Eq. (12) for atomic density n can be
written in the form

 (13)

where the 3D crystalline structure is characterized by
the vector

 (14)
required to reproduce low-order wavevectors for the
given symmetry. Vectors q1, q2, and q3 are the recipro-
cal lattice vectors; k, l, and m are the Miller indices;
ηklm is the complex amplitude;  is a function com-
plex-conjugate to ηklm; n0 is the average atomic den-
sity; and “c.c.” is the contribution from complex-con-
jugate functions. Although the densities of the crystal
and the liquid are different, we assume for simplicity
that n0 is a constant. Indeed, to determine the exact
compliance with the solutions in equilibrium, we must
use all integer values of k, l, and m; however, in the
vicinity of the liquid–crystal transition temperature,
disregard of the difference in densities of the phases is
an admissible approximation for the model in which
only low-order contributions are taken into account.
The specific representation of each phase in accor-
dance with expression (13) and its substitution into the
general expression (1) for the free energy make it pos-
sible to determine the specific form of the functional
by minimization in the amplitude and the reciprocal
crystal lattice parameter. Then the diagram of the
regions of coexistence of the structures can be con-
structed from the condition of the equality of the
chemical potentials in thermodynamic equilibrium
using the Maxwell equal-area rule [2, 12]. In our cal-
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culations of free energy (1) for a specific atomic struc-
ture, only the one-mode approximation $i = $1 in
accordance with expression (2) is used.

3.1. Homogeneous Structure
Liquid as a homogeneous structure is a system

without a long-range order of interaction, in which the
structural disorder is defined by zero reciprocal lattice
vectors:

 (15)

The solution to Eq. (12) in the form of the ampli-
tude representation (13) and (14) in the entire domain
of existence of the liquid degenerates to the average
atomic density n0; i.e.,

 (16)
To determine the free energy of the liquid, we sub-

stitute this expression into free energy functional (1).
The resultant expression should be integrated over the
unit cell volume; however, since the unit cell for the
homogeneous phase does not exist as such, its size can
be defined arbitrarily. Therefore, for a characteristic
scale of aeq = 2π/q with wavenumber q, we obtain the
specific free energy of the liquid in the form

 (17)

where subscript “h” indicates the homogeneous struc-
ture (viz., liquid).

3.2. Triangular Structure
In the 2D case, the triangular structure is the cross

section of a body-centered crystal in the {110} plane
(see Fig. 2), or the cross section of triangularly packed
rods (Fig. 3). Using lattice parameter aeq and lattice
wavenumber q = 2π/aeq, we write the reciprocal lattice
vectors for the triangular structure:

 (18)

where i1 and i2 are unit vectors. Vector Gklm defined by
expression (14) for the 2D space has the form mq3 = 0
for the lowest order of the coefficients of the reciprocal
lattice vectors:

 (19)

Assuming for convenience of calculations that
amplitudes ηklm = 4η, we can reduce general wave
solution (13) and (14) for the triangular structure to
the form

 (20)
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Comparing this expression with the analogous
form of the amplitude representation of the triangular
structure (expression (40) from [12]),

we see that these expressions are identical if the fol-
lowing substitution is used: q = 2qt/  and At = 4η.

Taking into account the amplitude representa-
tion (20) of the triangular structure, we can write free
energy (1) for the spatial region corresponding to the
unit cell volume in the triangular structure:

 (21)

The choice of integration limits in this expression is
determined by the sizes of the unit cell of the periodic
structure. It should also be noted that operator ∇ has
already been scaled to coefficient R1.

Minimizing now free energy (21) in wavenumber q,
we obtain its equilibrium values qeq = 0, 1, –1. Since
only the wavenumber q = qeq = 1 has physical mean-
ing, we substitute it into expression (21) for the free
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energy. As a result, the free energy of the triangular
structure assumes the form

 (22)

where subscript “tr” indicates the triangular structure.
Minimizing further expression (22) in amplitude η, we
obtain

 (23)

This equation has the following roots:

 (24)

From this set of values, we choose only the positive
root (as having physical meaning) and substitute it into
Eq. (22). This gives the final form of free energy func-
tional Ftr(n0, ΔB0) of the triangular structure.
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Fig. 2. Distribution of the atomic density of the body-cen-
tered crystal lattice and its sections in the {111}, {110}, and
{100} planes. Calculations were performed with Eq. (13)
with coefficients (45) corresponding to the vectors of the
body-centered lattice. In the section by the {110} plane, the
triangular structure described by Eqs. (25) for the regions
of triangles in Fig. 4 can clearly be seen.

{111}

{110} {100}

Fig. 3. Atomic density distribution in the form of the rod
structure. Calculations were performed with Eq. (13) with
coefficients (25) corresponding to the reciprocal lattice
vectors of the rod structure. The faces of the cube show the
cross sections with the 2D hexagonal and striped struc-
tures. The striped structure corresponds to the stripe
region in Fig. 4.
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3.3. Striped Structure

The striped structure is a 2D projection of the lay-
ered 3D periodic structure (see Fig. 3). The reciprocal
lattice vectors for the striped structure have the form

 (25)

Using the general wave solutions (13) and (14), we
can write the partial amplitude representation for the
striped structure in the form

 (26)

To determine the free energy of the striped struc-
ture, we write the integration limits and substitute
amplitude representation (26) into functional (1):

 (27)

It should also be noted here that operator ∇ has
already been scaled to coefficient R1. Further, we min-
imize free energy (27) in q and find qeq = 0, 1, –1.
Hence, it follows that for qeq = 1, free energy (27)
assumes the form
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 (28)

where subscript “str” denotes the striped structure.
Minimizing now expression (28) in η, we obtain the
roots

 (29)

Choosing the positive root and substituting it into
free energy (28), we obtain the final form of free
energy Fstr(n0, ΔB0) for the striped structure.

4. DIAGRAM OF 2D STRUCTURES

Having determined the structural states (see Sec-
tion 3), we construct the diagram of the coexistence of
2D structures in terms of the expressions for the free
energies derived above for each phase, viz., Fh(n0,
ΔB0), Ftr(n0, ΔB0), and Fstr(n0, ΔB0). For this, we write
the Maxwell area rule [2, 12] and solve the equations
for the entire range of control parameter values 0 ≤
ΔB0 ≤ 0.9:

 (30)

In this set of equations, the chemical potential of
the given structure is defined as μ ≡ ∂F/ .

The visualization of the solutions to system of
equations (30) is shown in Fig. 4. The figure depicts
the diagram of equilibrium structures to which the
metastable states should evolve for the given values of
control parameter ΔB0 and average atomic density n0.
It can be seen from Fig. 4 that for each chosen interval
of values of parameters (ΔB0, n0), only a certain struc-
ture can exist or two structures can coexist. Indeed, for
a certain fixed value of ΔB0, a gradual increase in aver-
age density n0 leads to a structure with increasing den-
sity in equilibrium: liquid → triangular structure →
striped structure. If we fix density n0 and increase
parameter ΔB0, we obtain a transition to a homoge-
neous state (i.e., liquid). Since parameter ΔB0 charac-
terizes extension in the system (as the difference
between the compressibility and the elastic modulus),
the energetically most advantageous structure for the
highest values of parameter ΔB0 is the structure with
the largest distance between atoms (i.e., the liquid is
ultimately formed). It should also be noted that the
choice of values of coefficients a and v in the free
energy considerably affects the admissible values of
parameters (ΔB0, n0). Therefore, to describe crystals of
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different systems, the determination of these coeffi-
cients is of primary importance [18].

5. DIAGRAM OF 3D STRUCTURES
Using the method for constructing the diagram of

2D structures (see Section 4), we can demonstrate its
applicability for the 3D case of coexistence of a homo-
geneous liquid and a bcc lattice using iron melt and
crystal as an example. It should be noted, in particular,
that the determination of the equilibrium conditions
between the melt and bcc modification of the iron
crystal is a separate specific problem in atomistic sim-
ulation, which can be solved with the help of quantum
molecular dynamics calculations [24]. Using the
model of the phase field crystal, this problem is solved
by analyzing free energy (1) in the one-mode approx-
imation (2):

 (31)

In this functional, we determine the values of coef-
ficients , , and R1, as well as the values of param-
eters a and v for the bcc lattice of iron.

5.1. Parameters of the bcc Lattice of Iron
Let us now apply density functional theory [25–

27], in which Eqs. (1) and (31) can be derived by
expanding the Helmholtz free energy into a Taylor
series in the vicinity of average atomic density  of the
melt. Indeed, for the sum of potentials of the liquid
and the crystal,

 (32)

we can use the expansion

 (33)

in which the coefficients are chosen so that they cor-
respond to the coefficients in the free energy density in
functional (31). Having determined these coefficients,
we can calibrate the free energy functional for iron.

The free energy density in the second integral of
expression (32) can now be written in the reciprocal
space of the k vectors in terms of the two-point cor-
relation function for the crystal:

 (34)

Coefficients C0, C2, and C4 are required to fit the
functional to the first peak of the pair correlation
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function in the space of k vectors; the structural factor
is defined as

 (35)
where C(k) is the correlation function. Then func-
tional (32) with allowance for expressions (33) and
(34) assumes the form

 (36)

which can easily be transformed to

 (37)

Let us introduce the coefficients

 (38)

where, as before, R1 is the scale of transformation of
the operators. Substituting this expression into (37),
we finally obtain the functional

 (39)

which completely corresponds to free energy func-
tional (1) or (31).

Using the results obtained in [15], we obtain the
following values of the constants: 1/S(km) = 1 –
C(km) = 0.332 and C''(km) = –10.40 Å2. Here, S(km) is
the structural factor (35) calculated for the critical
wavenumber km = 2.985 Å–1. Both km and coefficient
C''(km) determine the principal (first) peak of the cor-
relation function and approximate the envelope of the
atomic density of the unit cell in the bcc lattice of iron.
In this case, we can define the coefficients of correla-
tion function (34) as C0 = 10.9153/ , C2 = 2.6/  Å2,
and C4 = 0.1459/  Å4 for reference density of iron melt

 = 0.0801 Å–3 [15, 18].
The parameters for functional (31) can now be

written as

 (40)

 (41)

where S(km) = 3.012048, us = 0.72 is the equilibrium

value of the amplitude, and parameters  and R1 are
defined by expressions (38).
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5.2. Conditions for the Existence
of a Liquid and bcc Crystal

For convenience of further calculations, we intro-
duce the following substitution in functional (31):

 (42)

where  is the renormalized dimensionless density and
ε is the relative temperature,

 (43)

which determines the excess over transition tempera-
ture T = Tc and the relation between elastic properties

of the system in terms of quantities ΔB0 and . Then
free energy (31) assumes a more convenient and com-
pact form:

 (44)

Passing from functional (31) to functional (44), we
have assumed that all constants or linear contributions
in  can be omitted without loss of accuracy and cor-
rectness of analysis because these quantities make zero
contribution to the equation of the phase field crystal
model with the conservative order parameter, which in
the stationary case has the form of Eq. (12). It should
also be noted that coefficient R1 is cancelled out in the
derivation of free energy (44).

In the 3D case, the bcc structure can be repre-
sented in terms of equilibrium lattice parameter qeq
and lattice wavenumber q = 2π/aeq, which are used for
the reciprocal lattice vectors:

 (45)

where i1, i2, and i3 are unit vectors. Then general solu-
tion (13) with allowance for relations (45) has the
amplitude representation of the bcc structure in the
form
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Minimizing free energy (47) in wavenumber q, we
obtain its equilibrium values qeq = 0, /2, – /2.
Substituting now the positive root of wavenumber q =
qeq = /2 into expression (47) for the free energy and
integrating, we obtain

 (48)

where subscript “bcc” indicates the structure of the
bcc lattice. Minimizing further expression (48) in
amplitude η, we get

 (49)

This equation has the following roots:

 (50)

From the set of solutions (50), we choose the posi-
tive root and substitute it into Eq. (48). As a result, we
obtain the final form of free energy functional
Fbcc(n0, ΔB0) of the bcc lattice structure.

To construct the structural diagram in the liquid–
bcc crystal system, we write the Maxwell area rule
(analogously to Eqs. (30)):

 (51)

Here, free energy Fh and chemical potential μh =
 of the liquid are defined by expression

(17) taking into account its dimensionless form. Solv-
ing system (51) for the average density n0bcc of the bcc
structure and average density n0h of the homogeneous
structure, we obtain the domains of existence of den-
sities  of liquid iron of bcc iron crystal for various
temperatures ε.

Figure 5 shows the domains of existence of the
homogeneous liquid phase and the crystalline bcc
structure in “normalized average atomic density  vs.
dimensionless temperature ε” coordinates as the solu-
tion to system of equations (51). Obviously, while
determining various vectors (45) in solution (13) (e.g.,
for a face-centered or hexagonal closely packed lat-
tice), we must supplement the diagram in Fig. 5 with
the domains of existence of these 3D structures. This
is confirmed by numerically solving the 3D time-
dependent equation of the phase field crystal [28].
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Using the values of parameters (40) and (41), as well as
transformations (42), we can reconstruct the diagram
in Fig. 5 for dimensional quantities and parameters; in
particular, the temperature of the equilibrium coexis-
tence of the iron melt and its high-temperature crys-
talline bcc modification is determined.

6. FEATURES OF APPROXIMATION
OF THE PHASE FIELD MODEL

6.1. Common Features of Models
The phase field crystal (PFC) model used here is

based on an analysis of free energy (1) in the Bra-
zovskii sense [5]. This form of free energy makes it
possible to describe the transition to the periodic state
and is formally (analytically) identical to the form
required for constructing the weak crystallization the-
ory (WCT). Both theories describe the first-order
transition due to the presence of the cubic term in free
energy density (4) as shown in Section 2. With such a
formal generality, these two theories contain similar
solutions. For example, for the 2D space, we observe
that (i) isotropic phases (solutions for the liquid) are
completely identical; (ii) the hexagonal crystalline
phase in the WCT [29] corresponds to the triangular
structure in the PFC model (see Section 3.2); finally
(iii), the smectic phase in the WCT [29] as a phase
with one-dimensional modulation of the atomic den-
sity corresponds to the striped structure in the PFC
model (see Section 3.3).

For the short-wavelength field of the atomic den-
sity in the WCT, as well as for the long-wavelength
field in the PFC model, coefficients a and v in expan-
sion (4) can be assumed variable but dependent on the
wavevectors of different directions in the crystal lattice

[6, 30]. For example, coefficient v in the general case
depends on the angles between the wavevectors of the
directions in the lattice. In this case, the structural dia-
gram can become richer and more diversified than
those obtained in this study. In particular, it can be
observed that [6] (i) the diagram of 2D structures
shown in Fig. 4 is supplemented with possible types of
a quasi-crystal lattice of the icosahedral type; (ii) min-
imization of the free energy in the angles between the
wavevectors supplements the diagram of 3D structures
(see Fig. 5) with various bcc lattice types, columnar
and bent structures, as well as with lattices of the
rhombohedral and face-centered modifications (as in
the liquid–smectic phase transitions [31]).

6.2. Differences between the WCT and the PFC Model

However, the theoretical approximations in the
WCT and in the PFC model are different. In particu-
lar, the solutions in the WCT are real-valued solutions
for short-wavelength 3D processes in contrast to solu-
tions in the PFC model describing the periodic struc-
ture with information on elasticity, dislocations, etc.,
on larger scales. In this sense, the PFC model is the
long-wavelength theoretical description (like any
other phase field model [13]), in which predictions on
short-wavelength scales are not theoretically exact nor
reliable for applications. Indeed, the WCT presumes
that the solutions hold in the range of order parameter
n ≈ ρshort/ρ, where ρ is the long-wavelength compo-
nent of density and ρshort is its short-wavelength com-
ponent [32]. The solutions and structural diagrams in
the WCT (see, e.g., [33]) are analyzed for n0 = 0 (zero
mean field in the liquid) and n0 ≠ 0 (nonzero mean
field corresponding to periodic modulation of density
with the lattice period in crystalline substances [32] or
of the molecular spacing in smectics [34]). This defi-
nition implies smallness of the mean value appearing
near the weak-crystallization phase transition: n0 ≪ 1.
Conversely, the long-wavelength nature of determin-
ing the order parameter in the PFC model as the rela-
tive difference between the local atomic density and
the density of the liquid, n ≡ (ρ – )/ , makes it pos-
sible to consider the solution for the mean value n0 > 0
without confining analysis to values much smaller
than unity.

The contribution of the cubic term in free energy
(4) in the WCT is small in view of the smallness of
parameter a. Density jump (11) at the phase transition
point is small (because Δn ∝ a), and the transition
itself becomes nearly continuous. In this case, the
contribution from thermodynamic f luctuations is of
fundamental importance for the initiation and contin-
uation of crystallization. In this sense, we are talking
about crystallization as a “weak transition,” in which
thermodynamic f luctuations considerably affect its
dynamics and the structural diagram [30]. Collaterally
with this theory, the PFC model also takes into

ρ ρ

Fig. 5. Diagram of coexistence of a 3D homogeneous liq-
uid and bcc lattice in coordinates of dimensionless tem-
perature ε vs. dimensionless average density .
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account the fact that crystallization can be described
for an appreciable value of parameter a, significant
value of density jump (11), and a weak effect of ther-
modynamic f luctuations in the crystallization proper.
Therefore, the PFC model also makes it possible to
describe crystallization as a “strong transition.”

6.3. Role of Fluctuations in the WCT
and in the PFC Model

The solutions and structural diagrams for the PFC
model considered above (see Sections 3 and 4) were
obtained in the mean field approximation. This obvi-
ously implies disregard of f luctuations in the system.

In the PFC model, f luctuations should be involved
in the nucleation of a new phase [35] as well as (at
least) in the initiation of the transformation dynamics
(because a supercooled metastable liquid cannot
solidify without f luctuations in the strong crystalliza-
tion theory also). For the further evolution of the pro-
cess, f luctuations can be omitted when analyzing the
solutions of the PFC model, because coefficient 2a of
the cubic term in energy density (4) can be not small as
compared to unity [14]. Indeed, coefficient 2a/3
determines the height of the barrier between the
phases and substantially increases the depth of the
minima in the free energy density for 2a/3 ~ 1, reduces
the role of thermodynamic f luctuations, but increases
the role of the driving force of the liquid–crystal tran-
sition.

Conversely to the PFC model, the WCT presumes
that the additional condition for a nearly continuous
first-order transition is precisely the smallness of the
coefficient of the cubic term in free energy density (4)
as compared to unity [6, 32]. In this sense, the role of
thermodynamic f luctuations in the WCT becomes
decisive upon a decrease in control parameter ΔB0
(i.e., in the vicinity of the phase transition point).

Thermal f luctuations play a special role in the
WCT, because these f luctuations are associated with
the occurrence of point defects that can disturb the
intrinsic order of the structure. For example, analysis
of the WCT for the 2D geometry of films shows [29]
that dislocations and thermal f luctuations associated
with them do not violate the order in the smectic phase
on a scale of

 (52)

(Here and below, all expressions are given in the nota-
tion of parameters of free energy function (4) taking
into account operator (2) for the one-mode approxi-
mation.) The stability scale L of a smectic, which is
defined by condition (52), considerably exceeds radius
rc of the dislocation core because one of the conditions
for the applicability of the WCT must be observed:

 (53)
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In this condition, gap Δg in the f luctuation region
can be estimated as [6]

 (54)

or, with allowance for the relations between the
parameters of the theory (see Section 2.3.4 in review
[6]), we obtain

 (55)

Conditions (52)–(55) show that with increasing
temperature T, stability scale L of the smectic ordered
phase decreases. On scales larger than L, the transla-
tional order of the smectic phase is violated and it can
become, e.g., a homogeneous phase [29].

The smectic phase with the translational symmetry
corresponds to the striped structure in the PFC model
(see Section 3.3). Analyzing thermal f luctuations sim-
ilarly to [6, 29] in the PFC model, we can estimate the
effect of dislocations on disordering of the striped
structure. Substituting expression (55) into the stable
scale condition (52), we obtain

 (56)

In the long-wavelength PFC model, parameter a
can be not small (comparable with unity); in this case,
stability scale (56) decreases with increasing parame-
ter a in accordance with the exponential law L ~
rcexp(a–1/4). This effective spatial deterioration of the
stability of the striped structure to thermal f luctua-
tions is a quite natural result, which obviously demon-
strates the difference between the short-wavelength
description in the WCT and the long-wavelength
description of the PFC model.

6.4. Theory of 2D Melting and PFC Model
The diagram of 2D structures constructed in Fig. 4

from analysis of free energy (1) predicts stable struc-
tures formed during crystallization and melting in the
PFC model. Fixing control parameter ΔB0 in the dia-
gram in Fig. 4, we can trace the variation in the struc-
ture upon an increase in average atomic density n0 in
the case of crystallization or its decrease during melt-
ing. In both cases, the transformation described by the
change in free energy (1) is determined by the scenario
of the first-order phase transition, in which atomic
density n experiences discontinuity and changes jump-
wise immediately at the phase transition point.
Indeed, the discontinuous variation in density n
described by expression (11) characterizes melting in
3D systems [36–38]. However, as applied to the 2D
case, numerous experiments evidence continuity of
melting of 2D films as a second-order phase transition
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(see Part IV in review [39]). For this reason, 2D melt-
ing is described using the scenario of the Berezinsky–
Kosterlitz–Thouless phase transition (BKT theory),
which was initially formulated and developed for a
continuous superfluid liquid–normal liquid transition
in a helium-4 film [40–43]. The BKT theory is widely
used in analyzing and interpreting experimental data
(e.g., to interpret the dynamic properties of thin films
[44] and estimate the superconducting state of single
crystals [45]).

In the BKT theory, the melting process is described
as a dual sequence of continuous variation in the topo-
logical order in the solid phase of the film [46]. During
initial heating, dissociation of dislocation pairs takes
place, which transforms the crystal into the hexatic
phase having the liquid-crystal structure with the for-
mation of disclinations. Subsequent dissociation of
the formed disclination pairs upon a further increase
in temperature leads to the formation of the isotropic
liquid phase. This scenario is used in the BKT theory,
e.g., to analyze melting over the boundaries of 2D
grains by introducing two order parameters responsi-
ble for two different types of topological defects (dis-
locations and disclinations).

Melting over grain boundaries on dislocations was
also described using numerical simulation of equa-
tions in the PFC model [2, 47, 48]. This made it pos-
sible to determine the equilibrium and metastable
configurations of grain boundaries as soon as the crys-
tal symmetry, elastic/plastic effects, and dislocations
were taken into account in the PFC model. In partic-
ular, numerical simulation of the motion of disloca-
tions has made it possible to determine the mechanism
of grain-boundary melting in 3D samples [47]. Each
isolated dislocation moves, melting the boundary in
the radial direction from its core, because the localized
excess of elastic energy is inversely proportional to the
radius of melting in accordance with a power law. The
motion of dislocations continues until adjacent “pre-
liminarily melted” regions within grain boundaries
merge together. Such a description was obtained with
discontinuous variation in the order parameter at the
phase transition point, which coincides with the
description of the atomistic mechanism of melting
induced by structural disordering over grain boundar-
ies [38, 49]. Moreover, the mechanism revealed in the
simulation generally confirms the phenomenological
scheme of melting and the experimental results for 3D
metal samples [50]. The melting mechanism in 2D
systems and the possibility of continuous variation in
the atomic density in accordance with the conclusions
of the BKT theory can be the subject of subsequent
analysis based on the PFC model. Thus, analysis of
the BKT theory and the PFC model shows that melt-
ing in 2D and 3D systems is fundamentally different
both as regards the mechanism itself and the condi-
tions of continuity (discontinuity) of variation in the
order parameter (see review [39] and literature
therein).

Note lastly that the simultaneous description of the
structure and microscopic defects based on amplitude
equations (13) is one trend in the development of the
PFC model. In particular, multiscale analysis for
stress-induced fusion of heteroepitaxial monatomic
layers was carried out in [8]. The formation of the
structure was described on micrometer lengths, but
taking into account the microscopic effects with
nanoresolution on atomic scales and with allowance
for mismatch of atomic lattices of the monolayer and
the substrate. In this case, quantitative predictions of
superstructures (stripes, honeycombs, and triangles)
were obtained for two metal systems (Cu on Ru(0001)
and Cu on Pd(111)) in conformity with experimental
data (see Figs. 3 and 4 in [8]). Therefore, to take into
account microscopic defects in a mesoscopic dynamic
structure, the equations of the PFC model should be
combined with their amplitude representations (see
analytic and numerical solutions in [14] and literature
therein).

7. CONCLUSIONS
We have proposed and developed a method using

the atomic density functional to describe equilibrium
structures. Using this method, the free energy func-
tionals for homogeneous, triangular, and striped 2D
(planar) structures have been derived. Using the Max-
well thermodynamic rule, we constructed the struc-
tural diagram in a wide range of the control parame-
ters. The proposed method makes it possible to extend
the diagrammatic description to the case of 3D struc-
tures (e.g., a body-centered crystal lattice (see Fig. 2)
and rod structure (see Fig. 3)).

Using the method developed here, we constructed
the diagram of 3D structures for the equilibrium coex-
istence of the homogeneous liquid phase and the
body-centered iron lattice. The free energy functional
has been derived from density functional theory. The
phase field crystal model has been qualitatively com-
pared with the weak crystallization theory and the
conclusions of the 2D melting theory.
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