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Abstract—The time evolution of the water–disordered nanoporous medium Libersorb 23 (L23) system has
been studied after complete filling at elevated pressure followed by full release of overpressure. It is established
that relaxation of the L23 rapidly f lows out during the overpressure relief time, following the variation in pres-
sure. At a temperature below that of the dispersion transition (T < Td = 284 K), e.g., at T = 277 K, the degree
of filling θ decreases from 1 to 0.8 within 10 s. The degree of filling varies with time according to the power
law θ ~ t–α with the exponent α < 0.1 over a period of t ~ 105 s. This process corresponds to slow relaxation of
a metastable state of a nonwetting liquid in a porous medium. At times t > 105 s, the metastable state exhibits
decay, manifested as the transition to a power dependence of θ(t) with a larger exponent. The relaxation of
the metastable state of nonwetting liquid in a disordered porous medium is described in the mean field
approximation as a continuous sequence of metastable states with a barrier decreasing upon a decrease in the
degree of filling. Using this approach, it is possible to qualitatively explain the observed relaxation process and
crossover transition to the stage described by θ(t) with a larger exponent.
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1. INTRODUCTION

In recent years, much attention is devoted to
researching the state and properties of disordered
media such as glasses, colloids, polymers, loose mate-
rials, etc. [1–12]. Numerical simulations have been
carried out [6, 7, 16, 18] and phenomenological mod-
els have been formulated, including dynamic hetero-
geneity (DH) [2, 5, 21], random first-order transition
(RFOT) theory, topological bond-oriented local con-
figurations [1, 6, 7, 16, 18, 27, 28], shear transforma-
tion zone (STZ) [1, 4, 9, 13, 19], etc. (see, e.g., [1–3,
10, 14, 20]), which employ the concept of local struc-
tures (configurations) that determine the properties of
disordered media. These models have been used to
describe the states and properties of glasses, colloids,
polymers, and loose media, as well as liquid–glass
transitions and sol–gel processes that lead to the
appearance of random order. According to [1, 22, 23],
these media are nonergodic and are characterized by
anomalously slow relaxation of local nonequilibrium
states, which is phenomenologically described by the
law of stretched exponential relaxation [1, 8, 12, 27].
This anomalously slow relaxation implies that, for an
arbitrarily long observation time (shorter than the life-
time of states), the system cannot reach any point in
the phase space [1]. In phenomenological models of
disordered media, the anomalously slow (power-law)
relaxation is related to the assumption that metastable

states of random local configurations form and decay
in a disordered medium.

The class of disordered media includes, in particu-
lar, disordered porous media. Their structures can be
studied by gas adsorption–desorption and mercury
(liquid) porosimetry techniques. These methods pro-
vide information on the volume of pores, their surface
area, and the pore size distribution function. Research
into the states of a nonwetting liquid confined in a dis-
ordered structure of pores after removal of excess pres-
sure opens new possibilities for studying the properties
of disordered porous media [24–26].

In terms of statistical description, a system com-
prising a disordered nanoporous medium and an
ensemble of a nonwetting liquid confined in the pores
has certain specific features [25, 26]. The system has
no dynamic degrees of freedom; hence, the dynamical
heterogeneity as such cannot lead to the appearance
and relaxation of local metastable configurations. The
system can have a degenerate ground state character-
ized by the formation of a fractal percolation cluster of
pores filled with a liquid. Only this ground state admits
a hydrodynamic f low of the liquid filling the system
and flowing out from filled pores, rather than capillary
evaporation and condensation. Unlike the aforemen-
tioned phenomenological models, a statistical
description of the confinement of liquid and disper-
sion transition [24–26] makes it possible to under-
stand the physical origin of local structure formation,
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calculate the potential barrier for the relaxation of
metastable local configurations, consistently allow for
their interaction, and describe the kinetics of anoma-
lous relaxation of the system with these local struc-
tures [25, 26, 62].

The aim of this work was to study the phenomenon
of anomalously slow relaxation of metastable states of
a liquid confined in a disordered porous medium. The
porous medium under consideration is a silica gel with
disordered structures of the skeleton and pores formed
during the sol–gel process. Relaxation of this system
consists in anomalously slow extrusion of the confined
nonwetting liquid from the porous medium. The
relaxation of such states has not been studied before,
although the fact of anomalously slow extrusion of a
nonwetting liquid from porous media was sometimes
pointed out (see, e.g., [29–32]). An approach to
describing the anomalously slow relaxation of a con-
fined nonwetting liquid is proposed that takes into
account the appearance of local configurations of
confined liquid clusters and considers their energies
and interaction inside an infinite percolation cluster of
filled pores. This approach makes it possible to quali-
tatively describe the observed power-law relaxation.

For many nonwetting liquids and disordered
porous media, immediately after the removal of excess
pressure, the porous medium immersed in a nonwet-
ting liquid can be filled with this liquid only for an
excess pressure above a certain critical value, which
can be estimated using the Laplace formula. After sub-
sequent removal of the excess pressure, this system can
occur in an unstable state because surface forces will
push the nonwetting liquid out. These phenomena are
confirmed by numerous observations of hysteresis in
the nonwetting liquid intrusion–extrusion curves for a
porous medium immersed in this liquid [31, 33–43].
The characteristic extrusion time was determined in
experiments with rapid compression of a porous
medium immersed in a liquid and the subsequent fast
removal of excess pressure [44]. For hydrophobized
L23 silica gel (with a mean pore radius of  ~ 4 nm
and granule average size of 10 μm) filled with water,
the complete liquid extrusion time was ~0.1 s. The fast
extrusion mechanism was proposed in [44] using
dynamic percolation theory [44, 45].

At the same time, it is known that many nonwetting
liquids confined in disordered porous media are partly
or completely retained in the pores even upon release
of excess pressure. In these cases, only a fraction of the
initially confined liquid can rapidly f low out from the
medium. The confinement (nonextrusion) of non-
wetting liquids was observed for water, aqueous solu-
tions of salts and organic compounds, mercury and
other liquid metals (e.g., Wood’s alloy) in media such
as hydrophobized silica gels (KSK-G, PEP 100, PEP
300, Fluka 60, Fluka 100, and C8W (Waters)) and
porous glasses (Vycor, СPG) [31–43, 48, 49]. These
media differ in the degree of hydrophobicity, porosity,

R

average pore size (0.5–20 nm) and average granule
size (10–100 μm), and the width of the pore size dis-
tribution. It should be noted that the confinement
effect is not related to a change in the phase state of the
liquid. Indeed, according to [29, 50], the properties of
a confined liquid in a medium with the pore radius R >
1 nm at T > 273 K do not differ from properties of the
bulk liquid. The confined liquid can be retained in a
porous medium for several hours, days, and even
months. For example, in the mercury–porous glass
system [29], the weight of porous glass samples with
confined mercury and the results of neutron scattering
experiments did not change for several months. In
some other systems consisting of mercury and porous
glasses (Vycor, СPG) and silica gels, it was found that
the volume of the confined liquid depends on the
extrusion observation time and the granule size of the
porous medium [46, 51].

Studies showed that volume fraction θ of the con-
fined liquid can vary from several to a hundred percent
[31–33, 43, 46, 49, 52, 53]. In particular, for L23 silica
gel–water system at Т = 279 K, confinement of about
100% of the liquid changes to a small (~5%) volume
fraction of retained liquid for a variation in tempera-
ture of ΔT ≈ 10 K. If the degree of filling θ of pores
with the confined liquid is above the threshold θc of
percolation through filled pores (θc = 0.15–0.35,
depending on the model of the porous medium [54]),
the porous medium can retain the confined liquid for
an observation time of 10–105 s despite the fact that
the liquid can flow out through filled pores (which
form an infinite percolation cluster at θ > θc). In other
cases, when θ < θc, only individual clusters of filled
pores are formed in the porous medium. Analogous
states have been observed in the water–Fluka 100 C18
system [47], since there are no pathways for liquid
extrusion from these clusters via filled pores. A possi-
ble mechanism of liquid discharge from clusters of
filled pores can be related to recondensation, that is,
capillary evaporation followed by capillary condensa-
tion at the porous medium–surrounding liquid inter-
face [55, 56]. This work is devoted to studying the pro-
cess of confined liquid extrusion from pores at θ > θc.

Previously [31, 32], it was established for water and
L23 or Fluka 100 C18 porous media systems that the
volume of the confined liquid critically depends on
both the initial degree of filling and the temperature
(dispersion transition). This behavior cannot be
explained by notions of liquid intrusion–extrusion in
the system of individual pores based on the Laplace
relation with a phenomenological contact angle [46].
These critical dependences imply that the confine-
ment of a fraction of the nonwetting liquid can be
attributed to the collective interaction between liquid
clusters in neighboring pores depending on the degree
of filling. Correlation effects of the interaction
between liquid clusters in confinement were consid-
ered in [57–59]. The state and relaxation of an ensem-
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ble of liquid clusters in pores was described using the
lattice gas model [58, 59], according to which trans-
port proceeds by vapor diffusion from a filled pore to a
neighboring empty pore [60, 61].

Confinement of a nonwetting liquid in a disordered
porous structure and the dispersion transition kinetics
in this system were recently described [62] using ana-
lytic percolation theory and statistical f luctuation the-
ory. Within this approach, the extrusion of the liquid
and its confinement were considered for the ground
state of the disordered porous medium, which is char-
acterized by the formation of an infinite fractal perco-
lation cluster of filled pores. The energy barrier of a
metastable state is determined as the difference
between the surface energy of the interaction of a liq-
uid cluster in a pore with the skeleton of the medium
(which pushes the nonwetting liquid out) and the sur-
face energy of “multiparticle interaction” between the
liquid cluster in a pore and liquid clusters in neighbor-
ing pores. This energy barrier forms a random poten-
tial relief in the space of the porous medium on the
shell and in the volume of a percolation cluster of filled
pores. According to [62], the liquid extrusion reduces
to overcoming numerous peaks of this potential relief.
Description of the relaxation of a metastable state of
the confined liquid, which has been proposed in [62]
based on calculations of the distribution of filled pores
with respect to liquid extrusion times, is also used in
this work for a porous medium with narrow distribu-
tion of pore sizes (ΔR/R ≪ 1).

In Section 2, we describe a method of step-by-step
determination of θ for a period up to 105 s. Using this
method, it is possible to reproduce and monitor the
initial state of the confined liquid over a period of t >
10 s, which is greater than the time of spontaneous
barrierless extrusion of this liquid at θ > θc.

This study revealed an anomalously slow extrusion
of a confined liquid under conditions of initial degree

of filling θ of pores both above and below the percola-
tion threshold (Section 2.2). Experimental data for θ >
θc are described by an inverse power dependence as θ
~ t–α with exponents within 0 < α < 0.1.

Theoretical analysis of the results was aimed at
describing the general pattern of appearance and
relaxation of metastable states of a nonwetting liquid
in a disordered porous medium in the mean-field
approximation (Section 3).

2. EXPERIMENTAL
2.1. Porous Medium

The experiments were performed with a Libersorb
23 (L23) nanoporous medium based on KSK-G silica
gel, in which a disordered structure of pores is formed
using the sol–gel process. The surfaces of pores of
KSK-G silica gel were modified by alkylsilanes at the
laboratory headed by Prof. G.V. Lisichkin (Moscow
State University) in order to impart hydrophobic
properties to it [63, 64]. The characteristics of samples
of L23 porous medium were determined by the
adsorption of nitrogen in an Autosorb IQ (Quanta-
chrome, United States) analyzer for studying low-
temperature sorption and a Micro-Ultrapyc 1200e
helium pycnometer. The density of the porous
medium was ρ = 1.7798 ± 0.0016 g/cm3, the specific
volume of pores was Vp = 0.62 ± 0.02 cm3/g, the
porosity of the material was φ = 0.52, the specific sur-
face was Sp = 199 ± 7 m2/g, and the mean size of gran-
ules in the L23 powder was ~10 μm.

Figure 1 shows the pore volume distribution func-
tion. This curve qualitatively characterizes the pore
size distribution with respect to their radii. The mean
radius of pores is 〈R〉 = 5.0 ± 0.2 nm. The full width at
half maximum (FWHM) of this distribution is ΔR =
0.4 ± 0.1 nm, and ΔR/〈R〉 ≤ 0.1. The distribution tails
are observed in regions of large and small pore sizes.

2.2. Measurement Techniques
The aim of our experiments was to determine the

time variation of the volume fraction θ of pores filled
with a confined liquid. The confined liquid is defined
as the fraction of liquid retained in pores after their
complete filling at increased pressure and the subse-
quent release of excess pressure. The other fraction of
liquid rapidly f lows out of the pores during the pres-
sure release time. The extrusion time of the latter frac-
tion from the L23–water system can be smaller than
1 s [47]. In this work, we studied the time dependence
of volume fraction θ of pores with retained liquid in a
slow liquid extrusion process, i.e., the relaxation of the
state of liquid confined in the porous medium. The
scale of the characteristic liquid extrusion times can
vary depending on the mechanism of liquid transport
through the system of filled pores and/or the mecha-
nism involving capillary evaporation and subsequent

Fig. 1. Pore size distribution function for Libersorb 23
porous medium according to BJH method.
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capillary condensation at the interface between the
bulk liquid and a granule of the powder of the porous
medium immersed in this liquid. The latter mecha-
nism can obviously be effective in case of the forma-
tion of an “infinite” percolation cluster of empty
pores, i.e., when the degree of pore filling with the
confined liquid is θ < θc1 = 0.7–0.85.

The method used to measure the volume of the
nonwetting liquid–porous medium system was similar
to the mercury [65] or water [63] porosimetry tech-
nique, according to which a preliminarily dried and
degassed sample of L23 porous medium with a mass of
up to 6 g in a water-permeable container was placed in
a high-pressure chamber. The remaining free volume
of the chamber (28 cm3) was completely filled with
distiller water. A rod was introduced into the chamber
through seals. The chamber was equipped with a ther-
mostat system, which allowed experiments to be per-
formed at controlled temperatures from 243 to 393 K.
Prior to measurements, the assembled chamber was
kept at a given temperature for no less than 1 h. The

temperature during measurements was maintained
accurate to within ±0.2 K. The chamber was mounted
in a setup described in [31], which ensured pro-
grammed loading of the rod introduced into the
chamber, measurement of the force, and displacement
of the rod. Pores in the sample were filled under a
pressure produced by compression of the system in a
closed volume as the rod was introduced into the
chamber. Seals ensured the impermeability of the
chamber filled with water and porous medium. The
force (F) acting on the rod was measured using a
CWH-T2 strain gauge (Dacell, South Korea); dis-
placements (l) of the rod were measured by a Model
8719 potentiometric displacement sensor (Burster,
Germany). The pressure (p) in the chamber was deter-
mined as p = F/Sr, where Sr = 0.785 cm2 is the area of
the cross section of the rod. A change in the internal
volume of the chamber (V) was determined as V = lSr.
Sensors data were recorded at a frequency of 1 kHz.

An increase in the pressure inside the chamber
resulted in elastic straining of the chamber, liquid, and
porous medium. The filling of pores in L23 porous
medium with water was observed only at pressures
above 120 × 105 Pa. This made it possible to determine
the effective compressibility of the chamber, as well as
the compressibilities of water and porous medium in
additional experiments at pressures below 120 × 105 Pa
(see Fig. 2); the corresponding data were taken into
account in determining the volume of filled pores at a
given pressure. In these experiments, we used a step-
by-step procedure to determine the degree of filling
(θ) of pores in the medium with confined liquid as a
function of time (t). The θ value was determined for
every observation time (ti) of the liquid outflow by extru-
sion and/or evaporation. Then, the porous medium–
liquid system was returned to the initial state and θ(tj)
value was determined for different times tj both larger
and smaller than tj. The θ(t) function was determined by
multiple repetition of this procedure for various ti. Every
step of the procedure consisted of two successive intru-
sion–extrusion cycles performed for a given ti.

Figure 2 shows the typical pressure dependences of
volume change in the L23–water system at T = 286 K
for two successive cycles at the first step of the mea-
surement procedure. The curves in Fig. 2 for the pre-
liminarily dried and degassed porous medium are
plotted for subtraction of changes in the system vol-
ume related to the compressibility of the liquid, the
skeleton of the porous medium, and the chamber.
Curve I corresponds to a decrease in the volume of the
empty porous medium caused by an increase in pres-
sure during the first cycle. Curve I' shows an increase
in the volume with decreasing pressure. Three regions
in the V(p) curve can be distinguished at the stage of
increasing pressure. Region 0–1 corresponds to com-
pression of the empty porous medium, the slope of
this linear segment being determined by the compress-
ibility of the empty porous medium. It should be noted

Fig. 2. Pressure dependences of changes in volume of
L23–water system at T = 286 K for two successive intru-
sion–extrusion cycles.
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that the filling of pores in granules of the porous
medium immersed in liquid in the chamber was
observed neither at the initial state at zero excess
atmospheric pressure Δp = p – patm = (0.05 ± 0.05) ×
105 Pa (when empty pores may contain saturated water
vapor) nor at high pressures up to 120 × 105 Pa at
point 1 in segment 0–1 (when the observation time is
smaller than 15 h). Region 1–2 of curve I corresponds
to the filling of accessible pores in the empty porous
medium. At a pressure of p = 450 × 105 Pa, about
99.8% pores are filled. The volume of all filled pores in
the sample is equal to the difference |V2 – V1|. When
the pressure decreases below point 3 on curve I', vol-
ume V exhibits a decrease that corresponds to the
extrusion of liquid from pores, which is described by
curve I'. The main decrease in the volume V is
observed at low pressures comparable with the error of
pressure measurements, so that the volume of the con-
fined liquid can be determined from the intersection
of V(p) curve and the y axis only to within δV/V ~ 1.
For this reason, the volume of pores in these experi-
ments was determined in two successive intrusion–
extrusion cycles.

Prior to repeated filling of the system in the second
cycle, some pores contain a residual confined liquid
and, when the pressure in the second cycle increases
above point 4 in curve II, only a fraction of empty
pores are filled. The volume of these empty pores is
|V2 – V4|, and the difference between the volumes of
filled pores in the first and second cycles determines
the volume of pores filled with the liquid retained after
the first cycle, Vt = |V2 – V1| – |V2 – V4|, so that θ(t) =
Vt/|V2 – V1|. The relative compressibilities in the
regions corresponding to filling of the empty and par-
tially filled porous medium are almost the same within
the measurement error, (7.5 ± 0.9) × 10–9 Pa–1. After
complete filling, the system forgets the prehistory of
the formation and relaxation of the preceding initial
state, so that a new initial state of the confined liquid
is formed upon its partial extrusion (curve II'). In this

way, the total volume θ(t) of all empty pores at any step
in the first filling cycle can be determined. The volume
of pores that remain empty after the extrusion of liquid
in the time interval from the onset of extrusion in the
first cycle (point 3) to the beginning of filling due to
increase in the pressure (point 4) in the second cycle is
determined upon the repeated filling.

Therefore, volume V according to this method is
determined for time t that has passed from the onset of
liquid extrusion in the first cycle (point 3). This period
of time includes interval t1 required to reach a “zero”
excess pressure Δp = p – patm = (0.05 ± 0.05) × 105 Pa
and interval ti to the onset of repeated intrusion at
point 4 in the second cycle.

Since the time of pressure release (t1 = 10 s) in the
first cycle is much greater than the time of hydrody-
namic extrusion of a fraction of the liquid at θ > θc, a
decrease in the volume adiabatically follows the
decrease in the pressure. Thus, the initial state of the
system is formed for a time that is fixed in all measure-
ments (t1 =10 s), and relaxation of the metastable state
of the confined liquid begins at t > t1. The volume Vt of
confined liquid in the metastable state in these exper-
iments refers to the observation time of relaxation
(extrusion of the liquid) t = ti.

In order to check the reproducibility of the initial
state, we performed additional experiments with mul-
tiply repeated measurements of θ(t) at a fixed time of
t = t1 + ti = 1 min. It was established that the spread of
θ values measured at t = 1 min is smaller than the mea-
surement error. An additional series of measurements
showed that θ(ti) and the value measured at some dif-
ferent time tj are independent of the order of these
measurements. Multiple intrusion–extrusion–con-
finement experiments with the nonwetting liquid at
temperatures within T = 277–293 K with the subse-
quent removal of confined water from the L23 porous
medium by evacuation drying at T = 343 K, performed
before and after measuring θ(t), confirmed that the
properties of the porous medium did not change. The
specific volume of pores, pressure pin of the intrusion
onset at point 1 (Fig. 2), and pressure pout of the begin-
ning of liquid outflow (extrusion) at point 3 remained
unchanged within the measurement error after more
than 100 identical cycles.

2.3. Experimental Results

Figure 3 shows the values of the degree of filling θ
of pores with the confined liquid measured for various
relaxation observation times t at temperatures T = 279
and 293 K. Experimental points in Fig. 3 represent the
averaged results of up to six measurements at each time
t. The spread of θ values does not exceed the measure-
ment error. This confirms the reproducibility of the
initial state of the liquid–disordered porous medium
system after “memory loss” of the preceding states

Fig. 3. Plots of θ vs. relaxation observation time t at tem-
peratures T = 279 and 289 K.
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upon complete filling in the first and second intru-
sion–extrusion cycles.

Between temperatures T = 293 and 279 K, the
water–L23 porous medium system undergoes a dis-
persion transition for which liquid dispersed in the
porous medium pass to a metastable state with
decreasing temperature [24]. With an increase in tem-
perature, an adiabatic transition from almost total
nonextrusion of the liquid at T = 279 K to its almost
total extrusion at Т = 293 K takes place in a narrow
(ΔT ≈ 10 K) temperature interval near the critical tem-
perature. At T = 277 K and relaxation observation
times from 13 to 3 × 105 s, the degree of filling
decreases from 0.8 to 0.6 (see Fig. 4). In this case, θ >
θc (where θc = 0.15–0.3 is the percolation threshold)
and relaxation proceeds under conditions of the for-
mation of an “infinite” percolation cluster of filled
pores. Therefore, the liquid can leave the porous
medium via the mechanism of extrusion through filled
pores of the percolation cluster. At T = 293 K and
times t in the interval from 13 to 105 s, the degree of
filling θ varies from 0.08 to 0.02. At these degrees of
filling below the percolation threshold, the confined
liquid occurs in separate pores surrounded by empty
pores. For this reason, the volume of the confined liq-
uid can decrease by the well-known gas-phase trans-
port mechanism, which involves capillary evaporation
from the liquid surface in filled pores, diffusion of
vapor in the residual gas of the infinite percolation

cluster of empty pores, and capillary condensation at
the interface between granules of the porous medium
and the bulk liquid [58, 59].

According to Figs. 3–5, θ exhibits slow relaxation
within the time interval 60 s < t < 6 × 103 s at T =
279 K, and the log–log plot of θ(t) is described by a
straight line within the measurement error.
An analogous picture is observed at T = 293 K for a
different (gas-phase) transport mechanism in the time
interval 60 s < t < 6 × 103 s. However, the slope of θ(t)
plot at the higher temperature is smaller and, there-
fore, the relaxation rate is lower in accordance with a
slower gas transport at T = 293 K.

Figures 4 and 5 show the time dependences θ(t)
measured for seven temperatures from 277 to 293 K in
the time interval from 60 to 6 × 103 s. As can be seen,
the experimental data can be described within the
measurement error by the power function as θ ~ t–α

with a temperature-dependent exponent α. Figure 5
shows that the slope of the linear log–log plot of θ(t)
increases with temperature from 277 to 286 K and then
decreases when the temperature increases further up
to 293 K. Therefore, exponent α has an extremum at
T ≈ 285 K that corresponds to the maximum extrusion
rate of the confined liquid at this temperature.

Figure 6 shows the temperature dependence of
exponent α for the power-law approximation θ ~ t–α.
The corresponding confidence parameter R2 (see
table) of experimental data in Figs. 4 and 5 was used to
estimate the uncertainty of the α values. The small
confidence parameter (R2 = 0.315) of the power
approximation at T = 293 K may be related to a change
in the relaxation mechanism. In the case under con-
sideration, relaxation at θ < θc is based on the well-
known vapor transport mechanism [58, 59]. Accord-

Confidence of power-law approximation θ ~ t–α of experi-
mental θ values in Figs. 4 and 5

T, K 277 279 282 284 286 289 293

R2 0.8776 0.9003 0.9625 0.9985 0.9814 0.9426 0.3150

Fig. 4. Time variation of θ(t) at seven temperatures from
277 to 293 K in time interval from 60 to 6 × 103 s. Points
represent experimental data; solid lines, approximation by
power function θ ~ t–α.
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6 × 103 s. Points represent experimental data; solid lines,
approximation by power function θ ~ t–α.

101

100
θ

10−1

10−2

102 103 104

t, s

277 K
279 K
282 K
284 K
286 K
289 K
293 K



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 6  2015

ANOMALOUSLY SLOW RELAXATION OF A NONWETTING LIQUID 1033

ing to this mechanism, the hydrodynamic f low time in
a channel for a Knudsen gas is independent of the
channel radius and the relaxation should obey a loga-
rithmic rather than a power law, because the Knudsen
number in experiments at p = 1 × 105 Pa,  = 4 nm,
and T ≈ 300 K is Kn > 10.

The obtained experimental data lead to the follow-
ing conclusions. When the excess pressure is varied
from 450 × 105 to about 120 × 105 Pa, the extrusion of
liquid from the filled porous medium is not observed
in the entire temperature range under study. The
extrusion begins at an excess pressure of p < 120 ×
105 Pa. At temperatures T > 286 K, the pressure release
from 120 × 105 Pa to zero for τp = 10 s is accompanied
by a decrease in the degree of filling below the perco-
lation threshold θc via filled pores. In the time interval
from 10 to 106 s, the degree of filling θ varies from 0.08
to 0.02 according to the power law θ ~ t–α with an
exponent of α ≤ 0.05.

At T < 282 K, the pressure release from 120 ×
105 Pa to zero for τp = 10 s is accompanied by a partial
outflow of about 60% of confined liquid. The degree
of filling remains above the percolation threshold θc
and the possibility of rapid (within τ0 ~ 0.1 s) [44]
hydrodynamic extrusion of liquid via a percolation
cluster of filled pores is retained. However, this does
not take place, and the degree of filling decreases
between t = 10 s and 6 × 103 s according to the power
law θ ~ t–α with an exponent of α ≤ 0.2.

3. RELAXATION SCENARIO

The results of experiments showed that two differ-
ent relaxation scenarios were possible after filling of
the porous medium and the subsequent release of
excess pressure. At temperatures T > 284 K, most of
the confined liquid (>70%) occurs in an unstable state
and flows out of the porous medium within the char-

R

acteristic time of the release of excess pressure (t ~
10 s). The remaining part of the liquid confined in a
fraction of filled pores below the percolation threshold
θ < θc slowly relaxes at times t ≫ 10 s according to the
power law θ~ t–α with a small exponent (α ≤ 0.05). At
temperatures T < 284 K, a fraction of the liquid after
intrusion at excess pressure and release of excess pres-
sure occurs in an unstable state and f lows out within
the time of pressure release (t = 10 s) through filled
pores of the infinite percolation cluster. Partial extru-
sion of up to 60% of the liquid can take place within
this time at T = 282 K. According to [62], the remain-
ing large (above 40%) part of the liquid occurs in a
metastable state and flows out slowly. For observation
times t < 6 × 103 s, the degree of filling decreases
according to the power law α ~ t–α with a temperature-
dependent exponent of α ≤ 0.2. For t > 6 × 103 s, the
metastable state exhibits decay.

3.1. Formation of a Metastable State
Let us consider the dynamics of extrusion of the

nonwetting liquid from the nanoporous medium. The
porous medium contains pores of various dimensions,
consists of granules with sizes much greater than the
maximum pore diameter, and admits the formation of
an infinite percolation cluster of pores. Therefore, the
porous medium can be considered infinite.

The characteristic time of release of excess pressure
in our experiments was τp ~ 10 s, and hence, τp ≫ τ0
(τ0 ~ 0.1 s) [44]. For τp ≫ τ0, the process of liquid
extrusion can be considered as taking place in a quasi-
stationary medium at a slowly varying excess pressure
p(t) that decays to zero, so that Δp = p – patm =
(0.05 ± 0.05) × 105 Pa. Under these conditions, extru-
sion of the nonwetting liquid from the porous medium
filled with this liquid at pressure p requires performing
a work for emptying pores. A filled pore in the medium
can occur in various states corresponding to different
extrusion times (depending on the pore radius) [62].
The time of liquid extrusion from a pore can be calcu-
lated using statistical f luctuation theory. Let us con-
sider a change in the state of the liquid–porous
medium system upon extrusion of the liquid from a
pore surrounded by empty and filled pores (in a partly
filled porous medium). Surrounding pores are con-
nected to the pore under consideration via channels
(“throats”) with mouths in which menisci are formed
provided that one of the two connected pores is not
filled with the liquid.

According to [66], the probability w of the system
changing state per unit time due to liquid extrusion
from the studied pore under the action of f luctuations
obeys the following relation:

where ΔS is the change in the entropy of the system
upon extrusion of liquid from the pore. The proportion-

~ exp( ),w SΔ

Fig. 6. Plot of exponent α vs. temperature. Uncertainty of
ordinate determined as α(T)(1 – R2(Т)).
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ality coefficient in this relation is determined by the
extrusion dynamics of the liquid. Let us assume that the
change in system temperature during this process can be
ignored. This assumption corresponds to the small ther-
mal effect observed in experiments [39, 67]. In this case,
probability w can be written as follows:

 (1)
where w0 is the pre-exponential factor that takes into
account the dynamics of liquid extrusion from the
porous medium and δA is the isothemal work that
must be done for the extrusion of liquid from the pore.

Equation (1) suggests that the time of liquid extru-
sion from the pore can be expressed as

 (2)
where τ0(R) is the hydrodynamic time of extrusion
determined by the liquid outflow dynamics from the
porous medium. This time can be estimated as follows.
If the liquid f lows out from a pore of radius R through
a channel of filled pores with the same radius, then
τ0 = 4πR3/3Q(R) [62]. In this case, we have Q(R) ~ R4

[68] and, hence,

 (3)
The expression for δA in the case of a spherical pore

with radius R can be written as follows [62]:

 (4)

where V = 4πR3/3 and S = 4πR2 are the volume and
surface area of the pore, respectively; 〈Sm〉 is the mean
area of menisci in the local configuration; δσ is the
change in the specific energy of the solid surface (skel-
eton of the porous medium) upon extrusion of the liq-
uid; and σ is the specific energy of the nonwetting liq-
uid–gas interface.

It follows from Eqs. (4) that δε1 depends on the
change in the surface energy upon extrusion of liquid
from the pore and therefore takes into account the
interaction of the liquid with the skeleton of the
porous medium. The value of εint is determined as the
mean change in surface energy of menisci in the
mouths of pores surrounding the pore out of which the
liquid f lows. Therefore, δεint(R, θ) can be treated as
describing the effective “multiparticle interaction” of
a liquid cluster in the pore with neighboring pores.

The function η(R) in Eqs. (4), which is defined as
the ratio of the mean area of menisci to the pore area,
was calculated previously [69] for a medium contain-
ing pores with various radii taking into account cor-
relations in the spatial arrangement of pores in the
medium: η ~ q(R0/R)–γ, where γ ≈ 0.3, q ~ 1 and R0 is
the minimum radius of pores determined by the pore

= −δ0 exp( / ),w w A T

0 exp( / ).A Tτ = τ δ

0 ~ 1/ .Rτ

δ θ = + δε
δε = δε + δε θ

〈 〉δε = −δσ − η η =

δε θ = σ θ η

1 int

m
1

int

( , ) ,
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( , ) ( , ) ( ),

A R pV
R R

S TR R R
S

R W z R

radius distribution function. In order of magnitude, R0
is the mean pore radius divided by the average number
of nearest neighbors, R0 ~ / .

The function W(z, θ) in Eqs. (4) is defined as the
average difference between the numbers of menisci
after and before emptying of the pore and can be
expressed as

 (5)

where P(θ) is the probability that the filled pore
belongs to the infinite cluster of filled pores. In this
expression, the first and second factors correspond to
the probability that the filled pore is surrounded by n
empty and z – n filled pores, respectively, while the
third factor determines the difference between the rel-
ative numbers of menisci after (z – n) and before (n)
filling of the pore. The combinatory factor takes into
account variants of the arrangement of n menisci over
the nearest neighbors of the given pore and corre-
sponds to degeneracy of the local geometric state of
the “pore and neighboring filled pores” configuration
in the first coordination sphere. Thus, each term in
sum (5) describes a change in the number of menisci
at a fixed relation between the numbers of filled and
empty pores. The summation in Eq. (5) involves all
possible variants of the mutual arrangement of empty
and filled pores and makes it possible on the average to
take into account variation of the local configurations
“pore and its environment of filled and empty pores”
in the disordered porous medium. The number z of
nearest neighbors is related to the porosity φ and can
be calculated for various models of the porous
medium [70]. In particular, for a model of randomly
distributed spheres, z = –8ln(1 – φ), where φ is the
porosity of the medium [70]. An analysis of Eq. (5)
shows that function W(z, θ) weakly depends on a par-
ticular choice of the probability P(θ) that a filled pore
belongs to the infinite cluster of filled pores [62].

Equations (4) and (5) determine the energy of the
barrier of a metastable state of the confined liquid,
which is calculated in the mean field approximation by
averaging over the number of empty neighbors of the
pore under consideration and over the radii of neigh-
boring pores. In these calculations, the contribution
from configurations with pores of various sizes was
ignored in view of the assumption of a narrow distribu-
tion of pore sizes, ΔR/  ≪ 1. It follows from Eqs. (4)
that potential barrier dA is determined by the pressure
p and the surface energy δε of liquid in the pore during
extrusion and depends significantly on the pore radius
R. The product pV is always positive, whereas the sur-
face energy δε has a maximum εmax at the pore radius
R = Rmax(z, θ) and can change sign at radii R*(z, θ) for
which δεint(R, θ) = |δε1|. This condition yields the fol-
lowing expression:

R z

−
−

=
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 (6)

where R0 ~ /  is the minimum size of pores in the
pore volume distribution fV(R). According to Eqs. (4)
and (6), the surface energy of pores with radii R <
R*(z, θ) is positive (δε > 0). In this case, the potential
barrier δA is positive at any pressure p. According to
Eq. (2), this implies that the time of extrusion from
such a state, τ = τ0exp(δA/T), is exponentially large as
compared to the hydrodynamic time (τ ≫ τ0).

In pores with R > R*(z, θ), the surface energy is
negative. In this case, Eq. (4) shows that the barrier δA
in this case depends critically on the pressure. Indeed,
the barrier is positive at pressures p > pc = δε/V and
negative at p < pc = δε/V. The critical pressure depends
on the pore radius: pc = pc(R). In a porous medium
under excess pressure p, the barrier for some pores is
negative and, according to Eq. (2), the liquid can flow
out from these pores within hydrodynamic time
τ0 ~ 0.1 s. For another fraction of pores, the barrier is
positive and, according to Eq. (2), the time of liquid
extrusion from these pores is exponentially large com-
pared to the hydrodynamic time: τ = τ0exp(δA/T) ≫ τ0.

It follows from Eq. (6) that the quantities R*(z, θ),
and εmax(z, θ) depend on the temperature because the
surface tension coefficients σ(T) and δσ(T) are tem-
perature dependent. An analysis shows that both

( )1/
1/

0*( , ) 1 ( , ) ,R z q R W z
β

β σθ = + θ
δσ

R z

R*(z, θ), and εmax(z, θ) grow with decreasing tempera-
ture and increasing degree of filling [25]. Correspond-
ingly, the potential barrier δA also depends on the tem-
perature, increasing with a decrease in the tempera-
ture and an increase in the degree of filling.

Figure 7 shows the dependence of potential barrier
δA on the pore radius in case of complete filling (θ1 = 1)
at T = 279 K and various pressures, as calculated by
Eqs. (4) and (5) using data [57] for the surface tension
and its temperature dependence σ(T). The surface
tension of water at T = 293 K is 75 mJ/m2 [57]. The
value of δσ and its temperature dependence for the
system under consideration were determined from the
temperature dependence of the extrusion pressure by
the method described in [57]. The δσ value at T =
293 K is 22 mJ/m2. The value of R0 ~ /  was esti-
mated in the framework of the model of randomly dis-
tributed spheres (RDS) [24, 25], which yielded R0 ~
1 nm for a porosity of φ ~ 0.5 and a mean pore radius
of  ~ 5 nm.

As can be seen from Fig. 7, the energy barrier for liq-
uid extrusion at p > 200 × 105 Pa is δA ~ 4 eV. A decrease
in the pressure to p ~ 107 Pa leads to a change in the bar-
rier height. For the pores with radii R > , the poten-
tial barrier for liquid extrusion vanishes, since δA(R >

) ≤ 0 (Fig. 7). For pores with R < , the barrier
δA(R < ) is positive and increases with decreasing R
within the pore volume distribution fV(R).

The time variation of the volume fraction of liquid
retained in the porous medium during the pressure
release for t < τp ~ 10 s can be calculated by taking into
account that the extrusion at τp ≫ τ0 can be treated as
a quasi-static process at slowly decaying external
excess pressure p(t). Then, following [44], the proba-
bility of finding a pore in the filled state at pressure p(t)
can be determined as

 (7)

Here, the value of δA (that plays the role of a poten-
tial barrier for extrusion) is defined by Eq. (4). In this
case, time variation of the volume fraction of liquid
retained in the porous medium during pressure release
at t < τp can be determined by solving the self-consis-
tent equation

 (8)

According to Eqs. (4), (7), and (8), at t < τp, the
potential barrier at nonzero excess pressure is deter-
mined by the competition between a change in the sur-
face energy δε of liquid in the pore and the work nec-
essary for emptying the pore with volume V at excess
pressure p(t). At t = τp, the excess pressure vanishes

R z
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Fig. 7. Potential barrier δA vs. pore radius R in case of com-
plete filling (θ1 = 1) of medium at T = 277 K and various
pressures;  = 5 nm; pore volume distribution function
fV(R) with ΔR/  = 0.1; z = 6;  and  are radii above
which δA < 0 at excess pressures p = 107 Pa and p = 0,
respectively.
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and the potential barrier for liquid extrusion is deter-
mined by competition between the energy δε1 of inter-
action of the liquid and skeleton of the porous medium
and the energy δεint of the effective “multiparticle
interaction” of the liquid cluster in the pore and liquid
clusters in the neighboring pores. According to Eq.
(4), liquid clusters for which the energies of the “mul-
tiparticle interaction” with liquid clusters in the neigh-
boring pores are δεint > 0 and δεint > |δε1| form an initial
metastable state of the system at t = τp and p = 0,which
corresponds to the bound states of interacting local
configurations of filled pores [62].

3.2. Relaxation and Decay of the Metastable State
at θ > θc

Now let us determine the character of relaxation of
this state upon pressure release, that is, calculate θ(t)
at t > τp for p = 0 and θ > θc. In this case, the system
contains a percolation cluster of filled pores through
which the liquid can flow out of the porous medium.
According to Eq. (5), the effective multiparticle inter-
action of the liquid cluster and those in neighboring
pores is nonzero and is attractive for a fraction of these
pores obeying the condition δεint > |δε1|. According to
Eqs. (2)–(4), the time of liquid extrusion from the
pore in a metastable state is

 (9)

This time is determined by the degree of filling θ of
the porous medium in the metastable state and
depends on the pore radius R and temperature T.

Following [62], let us introduce a distribution
function F(t) of the times of liquid extrusion from the
pores with radius R and volume V = (4π/3)R3. This
function determines the fraction dθ(t) of pores from
which the liquid was extruded within the time dt:
dθ(t) = F(t)dt. For a nonrandom period of extrusion
time τ, we have FV(t) = δ(t – τ) where δ(t) is the Dirac
delta function. In a porous medium, pores with vari-
ous volumes are present with a probability determined
by the corresponding distribution function. Then,
according to Eq. (9), the barrier ε(R, θ), pre-exponen-
tial factor τ0(R), and extrusion time τ(R) are random
functions. In this case, the distribution function FV(t)
of pore volumes with respect to the times of liquid
extrusion can be written as

 (10)

where τ(R) is given by relation (9) and fV(R) is the pore
volume distribution function normalized to unity.
Equations (4), (9), and (10) imply that the liquid is not
extruded from all pores within the same time and the
number of clusters involved in this relaxation process
depends on the time. As will be shown below, this cir-

0 0exp( ( , , )/ ), ~ 1/ .R T T Rτ = τ −δε θ τ

∞

= δ − τ∫
0

( ) ( ( )) ( ) ,V VF t t R f R dR

cumstance can lead to the power character of relax-
ation of the metastable state.

According to Eq. (10), the function FV(t) deter-
mines fraction θ(t) of the volume of pores from which
the liquid was extruded for a time interval t:

 (11)

With the aim of describing the relaxation of a meta-
stable state formed at t = τp, let us count the relaxation
time from this moment. Then, if the degree of filling of
the medium at the initial time (moment of the meta-
stable state formation) is θ(0) = θ0, the volume frac-
tion of pores in which the liquid is retained at time t is
determined as

 (12)

Calculating integral (12), we find that distribution
function FV(t) has the following form:

 (13)

where R(t) is a solution of the equation

 (14)

In order to solve Eq. (14), note that the metastable
state consists of the pores with radii R < R*, where R*
is determined by Eq. (6). In the case of pore volume
distribution fV(R) with the total relative width ΔR/  <
0.5, about 90% of the volume belongs to pores with
radii R <  + ΔR. Therefore, about 10% of the liquid
is in pores with radii R >  + ΔR. Liquid clusters in the
pores with radii R > R* do not participate in the meta-
stable state, and the liquid from these pores f lows out
during a hydrodynamic time of about τ0. For this rea-
son, it will be assume for simplicity that the distribu-
tion function of pores with liquid clusters in the meta-
stable state is constant for 0 < R < R* and is zero for
R > R*. Then, with allowance for the normalization,
the pore volume distribution function fV(R) in this
approximation can be written as follows:

 (15)

Analysis shows that the barrier ε(R, θ) for pores
with radii in this interval is a smooth function of R.
Then, in the interval of radii of the pores constituting
the metastable state (0 < R < R*), the characteristic
extrusion time τ(R), according to Eqs. (13) and (14),
can be expressed as follows:
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(16)

Here, εmax(θ) is the maximum height of barrier
ε(R, θ) given by formula (4) and τ0 is the hydrody-
namic time of liquid extrusion from pores of the
medium, which is determined by Eqs. (2) and (3).
Using Eqs. (4) and (16), exponent β at the ratio ΔR/
can be expressed as

 (17)

where γ is the exponent in coefficient η(R) of the pore
connectivity [69].

Using relation (13), pore volume distribution func-
tion (15), and Eqs. (12) and (13), the time variation of
θ(t) at t > τp can be described as

 (18)

It follows from Eqs. (18) that the volume fraction of
retained liquid occurring in the metastable state at t >
τp decreases according to a power law with exponent α
and characteristic time τq1 ~ τ0exp(εmax/T).

Equations (4) and (6) show that the values of R*(z,
θ) and εmax(z, θ) decrease with decreasing degree of
filling θ because of reduction in the energy of multi-
particle attraction between local configurations [25].
Therefore, as the degree of filling θ decreases accord-
ing to Eq. (18), the regime of relaxation exhibits a
change. The relaxation of the metastable state by
power law (18) with an exponent of α ≪ 1 for θ ~ 1 at
low temperatures (for which ΔRεmax/ T ≫ 1) changes
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(for ΔRεmax/ T < 1) to accelerated relaxation with α ~
1 and characteristic relaxation time

This corresponds to decay of the metastable state.
It follows from Eq. (18) that the decay of the metasta-
ble state begins at times for which the degree of filling
θ(t) is such that ΔRεmax/ T ~ 1.

Relations (18) also indicate that the power-law
dependence of θ(t) describing the relaxation and decay
of the metastable state is related to the total width
(ΔR/ ) of pore size distribution in the medium and to
the interaction of local configurations, the maximum
energy εmax of which determines both the characteristic
relaxation and decay time τq1 and exponent α.

3.3. Discussion of Results
Let us consider the time variation of the volume of

liquid retained in the porous medium during the for-
mation, relaxation, and decay of the metastable state.
It follows from Eq. (8) that time variation of the vol-
ume fraction of retained liquid for t < τp = 10 s is deter-
mined by Eqs. (2), (4), and (7). Relations (4) and (5)
give the potential barrier for liquid extrusion from a
pore of radius R in the porous medium filled with the
nonwetting liquid at pressure p. Estimations show that,
at a temperature below the dispersion transition tem-
perature (T = 277 K < Td = 284 K), the maximum bar-
rier for the system under consideration in the absence
of excess pressure (p = 0) amounts to εmax ≥ 0.8 eV. At
excess pressures p > 200 × 105 Pa, the energy barrier
for liquid extrusion from pores in the medium with
pore volume distribution function fV(R) (Fig. 7) is
δA > 4 eV. Estimation of the time of liquid extrusion
from pores using relations (2) and (4) in this case yields
τ > 1033 s. As the excess pressure decreases to p ~ 100 ×
105 Pa, the barrier δA for liquid clusters in the pores

with R >  becomes negative (Fig. 7), which implies
that liquid f lows out of these pores for a hydrodynamic
time of τ ~ 10–1 s. As the pressure is released, the R*
vale decreases and the number of pores from which the
liquid can flow out increases. According to Eqs. (6)
and (8), the volume of liquid extruded at zero excess
pressure can be expressed as

 (19)

An increase in temperature leads to a decrease in
the R* value. According to Eq. (19), this results in an
increasing amount of liquid extruded during the time
of excess pressure release (t = τp) and, hence, a
decreasing amount of liquid retained in the porous
medium at this time.

R

( )max
1 0 0 0~ exp ~ exp 1000 ~ 100 s.q

R
T R

ε⎛ ⎞τ τ τ < τ⎜ ⎟ Δ⎝ ⎠

R

R

1
*R

*

( ) .V
s

R

f R dR
∞

θ = ∫



1038

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 6  2015

BORMAN et al.

Equations (4) and (8) indicate that no extrusion of
liquid from a filled porous medium takes place when
the excess pressure decreases from about p = 200 ×
105 Pa to a level of 107 Pa, the amount of liquid
retained in the medium upon the release of excess
pressure can be estimated using relation (19) with R*
determined by formula (6). Estimate made with allow-
ance for the surface tension σ(T) [71], δσ, and its tem-
perature dependence (determined as described in
[57]) give 1 – θs(T = 277 K) ~ 0.15 and the fraction of
the volume of retained liquid 1 – θs(T = 289 K) ~ 0.9.
These values are close to the corresponding experi-
mental data on the fraction of retained liquid at t = 10 s
for the same temperatures (1 – θs ~ 0.1 and 0.8,
respectively).

It follows from Eqs. (4) and (9) that the character of
relaxation of the state formed upon reduction of the
excess pressure is determined by the potential barrier
δε. Figure 8 shows the plot of δε versus pore radius R
for the system under consideration at the moment of
time t = τp = 10 s at temperatures T = 277 and 293 K,
calculated using Eq. (4) with the same parameters
σ(T), δσ, , R0, z, and φ as those indicated in Fig. 7.
As can be seen from Fig. 8, the potential barrier δε
decreases with increasing temperature and decreasing
degree of filling. At T = 293 K and θ0 = 0.1 (Fig. 4), the
barrier is lower than or comparable with the tempera-
ture for all pores. In this case, θ < θc and only separate
clusters of filled pores are formed in the medium, so
that there are no pathways of liquid f low out via filled
pores. A possible mechanism of liquid extrusion from

R

the clusters of filled pores is based on evaporation fol-
lowed by condensation at the boundaries of porous
granules and the bulk liquid.

For T = 277 K at time instant t = τp corresponding
to Δp = 0, the initial degree of filling is θ > θc (Fig. 4)
and the potential barrier for liquid extrusion is deter-
mined by competition between the energy δε of inter-
action of the liquid and skeleton of the porous medium
and the energy δεint of the effective multiparticle inter-
action of a liquid cluster in the pore and liquid clusters
in the neighboring pores. For pores with radii R < R*
in a medium at θ ~ 0.8, the energy of the effective mul-
tiparticle interaction of a liquid cluster in the pore and
liquid clusters in the neighboring pores is δεint > 0.
Therefore, it is possible to assume that the interacting
local configurations of a pore and its environment are
condensed and form a metastable state of the entire
system of clusters that decays according to power law
(18) with a characteristic time of τq1 ~ τexp(εmax/T).
For τ0 ~ 0.1 s and εmax ~ 0.5 eV, this characteristic time
at T = 277 K is about τq1 ~ 105 s. Relation (18) also
shows that exponent α for narrow distributions with
ΔR/  = 0.1 at these parameters is α ~ 0.1.

Decay of the metastable state according to Eqs. (18)
is accompanied by a decrease in the degree of filling θ,
which leads to a decrease in εmax and an increase in α.
Accordingly, the decay rate increases in the course of
this process. Equations (18) also indicate that this decay
begins at a time for which ΔRεmax/ T ~ 1. Estimations
for ΔR/  ~ 0.1 and T = 277 K give the decay onset
time exceeding 104 s, which agrees with the experi-
mental data (Fig. 4). According to Eqs. (18), the max-
imum volume fraction θp of pore configurations
occurring in a metastable state is determined by the
integral of the pore volume distribution function

For a narrow volume distribution of pores with
ΔR/  ~ 0.1, this fraction amounts to θp ~ 0.8.

The relaxation of a metastable state of interacting
local configurations of filled pores continues as long as
a percolation cluster of filled pores exists in the system.
The lifetime of this cluster can be estimated from
Eq. (18) by equating the degree of filling to the perco-
lation threshold: θ(t) = θc. Hence it follows that the
lifetime of the percolation cluster of filled pores is tp ~
τq1(θp/θc)1/α. For α ~ 0.2, θp ~ 0.8, θc ~ 0.1, and allow-
ance for a change in the degree of filling during decay
of the metastable state, this time is tp ~ 106 s. At a
degree of filling below the percolation threshold (θ <
θc), only separate clusters consisting of filled pores are
formed in the porous medium. A possible mechanism
of liquid extrusion from these clusters is based on the

R

R
R

*

0

~ ( )
R

V
p dRf Rθ ∫

R

Fig. 8. Potential barrier δε vs. pore radius R for system
studied at time instant t = τp = 10 s at temperatures T = 277
and 293 K.
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evaporation of liquid [58, 59]. Considerations analo-
gous to those used in deriving Eqs. (16) and (18) in this
case lead to a logarithmic law of liquid extrusion.

 When the excess pressure is reduced from
p > 200 × 105 Pa to ~107 Pa, liquid clusters in all filled
pores of the water–L23 system occur in states with an
extrusion barrier δA ~ 4 eV. The time of liquid extru-
sion from these states is t > 1033 s. Therefore, during
pressure release to 107 Pa, no extrusion of liquid from
the porous medium should take place.

As the excess pressure is further decreased to p <
107 Pa, pores appear for which the extrusion barrier δA
is either negative of comparable with the temperature.
From these pores, liquid can flow out within hydrody-
namic time τ0 and, hence, extrusion must be observed
during the excess pressure reduction to zero. As the
excess pressure approaches zero, the number of such
pores increases.

Figure 9 shows the qualitative time dependences of
the volume fraction of retained liquid at various tem-
peratures, which were calculated using Eqs. (7), (8),
and (18). As can be seen, variation of the excess pres-
sure from 107 Pa to zero for 10 s at temperatures T <
Td = 284 K leads to a decrease in the degree of filling
from θ = 1 to θ > θc, which is accompanied by the
decay of weakly bound states and the formation of an
initial metastable state of the liquid confined in pores.
The relaxation of this metastable state takes place
within t = 100–6000 s and obeys the power law θ(t) ~
t–α described by Eq. (18) with an exponent of α ~ 0.1.
At t > 104 s, the metastable state exhibits decay (see
Fig. 9) and the exponent increases up to α ~ 0.3. Fig-
ure 9 also shows that the calculated time dependence
θ(t) describes the experimental data qualitatively well
(Fig. 3).

A decrease in the excess pressure to zero at tem-
peratures T > Td = 284 K leads to a decrease in the

fraction of retained liquid due to the decay of weakly
bound states from θ = 1 to degrees of filling below per-
colation threshold θc. The percolation cluster of filled
pores disappears and the liquid extrusion mechanism
changes to the slower process of evaporation and con-
densation. Accordingly, the value of exponent α at T >
284 K must decrease with increasing temperature.
Thus, the increase in α with temperature at T < Td =
284 K (related to the decrease in the potential barrier
for liquid extrusion) changes by its decrease with increas-
ing temperature at T > Td = 284 K. This leads to the
appearance of a maximum on the temperature depen-
dence of α, in agreement with the experimental data.

The slow relaxation and decay of a metastable state
of the nonwetting liquid confined in pores of the
medium have been described using the mean-field
approximation and are related to the appearance of
local configurations of liquid clusters in confinement
and their interaction inside an infinite percolation
cluster of filled pores. This approach allowed us to
qualitatively explain the observed power-law relax-
ation of θ(t) and the crossover transition to a power
dependence with greater exponent. The passage from
temperatures below the dispersion transition tempera-
ture (T < Td) to those above the transition temperature
(T > Td) leads to a change in the transport conditions.
Indeed, at T < Td and θ > θc ~ 0.2, liquid can f low out
from filled pores via the infinite percolation cluster,
while the transport at T > Td proceeds by the evapora-
tion–condensation mechanism. This can be responsi-
ble for the change in the relaxation law during the dis-
persion transition.

Thus, the results of our study of the relaxation of
dispersed confined incompressible liquid (water) in a
disordered porous medium (hydrophobized silica gel
L23) provide a self-consistent statistical pattern of this
process, which is based on the notion of local metasta-
ble cluster configurations. The system of a disordered
porous medium containing clusters of a nonwetting
liquid confined in pores has a degenerate ground state
characterized by the existence of an infinite fractal
percolation cluster of filled pores. This approach
makes it possible to describe the intrusion of the liquid
and its extrusion during relaxation of the metastable
nonergodic state [25, 26]. The established power law
of relaxation and dependence of the volume of con-
fined liquid on the degree of filling implies that both
the confinement and dispersion transition are related
to the interaction of liquid clusters in neighboring
pores. Using the proposed mean-field approximation,
it is possible to estimate the energy barrier of metasta-
ble states of the confined liquid and provide a qualita-
tive description of time variation of the volume of con-
fined liquid.

Fig. 9. Qualitative time dependences of volume fraction of
retained liquid at T < Td = 284 K and T = 286 K, calculated
using Eqs. (7), (8), and (18).

100

θ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

101 102 103 104 105

t, s

T  = 277 K
279 K

282 K

286 K



1040

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 6  2015

BORMAN et al.

ACKNOWLEDGMENTS
This work was supported by the Program of State

Orders for Russian Universities 2015–2016 (project
no. 3.720.2014/K) and the Russian Foundation for
Basic Research (project nos. 14-08-00895a and 14-
08-00805a).

REFERENCES
1. J. S. Langer, Rep. Prog. Phys. 77, 042501 (2014).
2. G. Biroli and J. Garrahan, J. Chem. Phys. 138, 12A301

(2013).
3. F. H. Stillinger and P. G. Debenedetti, Annu. Rev.

Condens. Matter Phys. 4, 263 (2013).
4. J. S. Langer, Phys. Rev. E: Stat., Nonlinear, Soft Mat-

ter Phys. 85 (5), 051507 (2012).
5. L. Berthier and G. Biroli, Rev. Mod. Phys. 83 (2), 587

(2011).
6. H. Tanaka, Eur. Phys. J. E: Soft Matter Biol. Phys. 35,

113 (2012).
7. H. Tanaka, N. Takeshi, H. Shintani, and K. Watanabe,

Nat. Mater. 9, 324 (2010).
8. W. Kob, S. Roldan-Vagras, and L. Berthier, Nat. Phys.

8, 164 (2012).
9. J. S. Langer, arXiv:1501.07228v1 [cod-mat.mtrl-sci].

10. W. Gotze, Complex Dynamics of Glass-Forming Liquids:
A Mode Coupling Theory (Oxford University Press,
Oxford, 2008).

11. G. Biroli and J. P. Bouchaud, in Structural Glasses and
Supercooled Liquids: Theory, Experiment, and Applica-
tions, Ed. by P. G. Wolynes and V. Lubchenko (Wiley,
New York, 2012).

12. J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
13. E. Bouchbinder and J. S. Langer, Phys. Rev. Lett. 106

(14), 148301 (2011); E. Bouchbinder and J. S. Langer,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83
(6), 061503 (2011).

14. A. Gavagna, N. S. Grigera, and P. Verrocchio, Phys.
Rev. Lett. 98 (18), 187801 (2007).

15. A. Ayadin, Ph. Germain, and S. Amokrane, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys. 84 (6), 061502
(2011).

16. M. Mosayebi, E. Del Gado, P. Ilg, and H. C. Ottinger,
Phys. Rev. Lett. 104, 205704 (2010).

17. J. S. Langer, Phys. Rev. E: Stat., Nonlinear, Soft Mat-
ter Phys. 88, 012122 (2013).

18. C. P. Royall, S. R. Williams, and H. Tanaka,
arXiv:1409.5469v1 [cod-mat.mtrl-sci].

19. A. M. Luo and M. Ch. Ottinger, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys. 89, 022137 (2014).

20. V. Lubchenko and P. G. Wolynes, Annu. Rev. Phys.
Chem. 58, 235 (2007).

21. Dynamical Heterogeneities in Glasses, Colloids, and
Granular Media, Ed. by L. Berthier, G. Biroli,
J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos
(Oxford University Press, Oxford, 2011).

22. M. Vasin, J. Stat. Mech. Theory Exp. 5, 05009 (2011).
23. V. S. Dotsenko, Phys.—Usp. 36 (6), 455 (1993).

24. V. D. Borman, A. A. Belogorlov, V. A. Byrkin,
V. N. Tronin, and V. I. Troyan, JETP Lett. 95 (10), 511
(2012).

25. V. D. Borman, A. A. Belogorlov, V. A. Byrkin,
V. N. Tronin, and V. I. Troyan, J. Exp. Theor. Phys. 117
(6), 1139 (2013).

26. V. D. Borman, A. A. Belogorlov, F. M. Grekhov, and
V. N. Tronin, Phys. Lett. A 378, 2888 (2014).

27. J. Russo and H. Tanaka, arXiv:1502.058v1 [cod-mat.
mtrl-sci].

28. T. Kawasaki and H. Tanaka, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys. 89, 062315 (2014).

29. Y. Kumzerov, A. Nabereznov, S. Vakhrushev, and
B. N. Savenko, Phys. Rev. B: Condens. Matter 52 (7),
4772 (1995).

30. J. R. Edison and P. A. Monson, J. Low Temp. Phys.
157, 395 (2009).

31. F. Porcheron, M. Thommes, R. Ahmad, and
P. A. Monson, Langmuir 23 (6), 3372 (2007).

32. V. D. Borman, F. M. Grekhov, and V. I. Troyan, J. Exp.
Theor. Phys. 91 (1), 170 (2000).

33. F. Porcheron, M. Thommes, R. Ahmad, and
P. A. Monson, Langmuir 23 (6), 3372 (2007).

34. A. Nan, X. Kong, and Y. Qiao, J. Appl. Phys. 100,
014308 (2006).

35. Y. Qiao, G. Gao, and X. Chen, J. Am. Chem. Soc. 129,
2355 (2007).

36. X. Kong and Y. Qiao, Appl. Phys. Lett. 86, 151919 (2004).
37. F. V. Surani and Y. Qiao, J. Appl. Phys. 100, 034311

(2004).
38. B. Xu, Y. Qiao, Y. Li, Q. Zhou, and X. Chen, Appl.

Phys. Lett. 98, 221909 (2011).
39. A. Han, W. Lu, V. K. Punyamurtula, T. Kim, and

Y. Qiao, J. Appl. Phys. 105, 024309 (2009).
40. V. Eroshenko, R.-C. Regis, Al. Soulard, and J. Patarin,

C. R. Phys. 3, 111 (2002).
41. A. Han, W. Lu, T. Kim, X. Chen, and Y. Qiao, Phys. Rev.

E: Stat., Nonlinear, Soft Matter Phys. 78, 031408 (2008).
42. L. Liu, X. Chen, W. Lu, A. Han, and Y. Qiao, Phys.

Rev. Lett. 102, 184501 (2009).
43. L. Coiffard and A. L. Eroshonko, J. Colloid Interface

Sci. 300, 304 (2006).
44. V. D. Borman, A. A. Belogorlov, G. V. Lisichkin,

V. I. Troyan, and V. N. Tronin, J. Exp. Theor. Phys. 108
(3), 389 (2009).

45. A. A. Abrikosov, JETP Lett. 29 (1), 65 (1979).
46. S. P. Rigby and K. J. Edler, J. Colloid Interface Sci.

250, 175 (2002).
47. V. D. Borman, A. A. Belogorlov, A. M. Grekhov, and

V. N. Tronin, Int. J. Mod. Phys. B 29 (15), 1550097
(2015). doi: 10.1142/S0217979215500976

48. F. Gomez, R. Donoyol, and J. Rouquerol, Langmuir
16 (9), 4374 (2000).

49. V. Lefevre, A. Saugey, J. L. Barrat, L. Bocquet,
E. Charlaix, P. F. Gobin, and G. Vigier, Colloids Surf.,
A 241, 265 (2004).

50. E. Mamontov, Y. Kumzerov, and S. Vakhrushev, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 061502
(2005).



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 6  2015

ANOMALOUSLY SLOW RELAXATION OF A NONWETTING LIQUID 1041

51. V. D. Borman, A. A. Belogorlov, F. M. Grekhov,
G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp.
Theor. Phys. 100 (2), 385 (2005).

52. X. Komg and Y. Qiao, Philos. Mag. Lett. 85 (7), 331 ().
53. F. Porcheron, R. A. Monison, and M. Thommes,

Langmuir 20 (15), 6482 (2004).
54. M. Sashimi, Rev. Mod. Phys. 65, 1393 (1993),

M. L. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
55. Porous Media: Applications in Biological Systems and

Biotechnology, Ed. by K. Vafai (CRC Press, Boca
Raton, Florida, United States, 2011).

56. S. Lowell, J. Shields, M. A. Thomas, and M. Thom-
mes, Characterization of Porous Solids and Powders:
Surface Area, Pore Size, and Density (Kluwer, Dor-
drecht, The Netherlands, 2004).

57. V. D. Borman, A. A. Belogorlov, V. A. Byrkin,
G. V. Lisichkin, V. N. Tronin, and V. I. Troyan, J. Exp.
Theor. Phys. 112 (3), 385 (2011).

58. J. A. Casselman, A. Desouza, and P. A. Monson, Mol.
Phys. 113, 1250 (2015).

59. H.-J. Woo and P. A. Monson, Phys. Rev. E: Stat., Non-
linear, Soft Matter Phys. 67, 041207 (2003).

60. E. Kieolik, P. A. Monson, M. L. Rosinberg, S. Sark-
isov, and G. Tarjus, Phys. Rev. Lett. 87, 055701 (2011),
H.-J. Woo, L. Sarkisov, and P. A. Monson, Langmuir
17 (24), 7472 (2001), M. Tommes, J. Morell,
K. A. Cychosz, and M. Fröba, Langmuir 29 (48),
14893 (2013).

61. R. Valiulin, S. Naumov, P. Galvosas, J. Kärger,
H.-J. Woo, F. Porcheron, and P. A. Monson, Nature
443 (7114), 965 (2006).

62. V. D. Borman, A. A. Belogorlov, V. A. Byrkin, and
V. N. Tronin, Phys. Rev. E: Stat., Nonlinear, Soft Mat-
ter Phys. 88, 052116 (2013).

63. A. Y. Fadeev and V. A. Eroshenko, J. Colloid Interface
Sci. 187, 275 (1997).

64. G. V. Lisichkin, Chemistry of Grafted Surface Com-
pounds (Nauka, Moscow, 2003) [in Russian].

65. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thom-
mes, Characterization of Porous Solids and Powders:
Surface Area, Pore Size and Density (Springer-Verlag,
New York, 2006).

66. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Volume 1: Mechanics (Butterworth–Heine-
mann, Oxford, 2000; Nauka, Moscow, 2010).

67. Qiao, Yu. Punyamurtula, Venkata K. Xian, Guijun
Karbhari, M. Vistasp, and Han Aijie, Appl. Phys. Lett.
92, 063109 (2008).

68. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Volume 6: Fluid Mechanics (Butterworth–
Heinemann, Oxford, 2000; Nauka, Moscow, 2010).

69. V. D. Borman, A. A. Belogorlov, V. A. Byrkin,
V. N. Tronin, and V. I. Troyan, arXiv:1302.5547.

70. L. Kheifets and A. Neimark, Multiphase Processes in
Porous Media (Khimiya, Moscow, 1982) [in Russian].

71. Handbook of Chemistry and Physics: A Ready-Reference
Book of Chemical and Physical Data, Ed. by
W. M. Haynes, D. R. Lide, and T. J. Bruno, 93rd ed.
(CRC Press, Boca Raton, Florida, United States, 2012).

Translated by P. Pozdeev


		2016-01-15T17:36:11+0300
	Preflight Ticket Signature




