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1 1. INTRODUCTION

The problem of strong�coupling superconductivity
has been studied for a long time, starting with the pio�
neering papers by Eagles and Leggett [1, 2]. Signifi�
cant progress here was achieved by Nozieres and
Schmitt�Rink [3], who suggested an effective method
to study the transition temperature crossover from
weak�coupling BCS�like behavior to the Bose–Ein�
stein condensation (BEC) scenario in the strong�cou�
pling region. Recent progress in experimental studies
of quantum gases in magnetic and optical dipole traps,
as well as in optical lattices, with controllable parame�
ters, such as the density and interaction strength (see
reviews [4, 5]), has increased the interest in supercon�
ductivity (superfluidity of fermions) with strong pair�
ing interaction, including the region of the BCS–BEC
crossover. One of the simplest models allowing the
study of the BCS–BEC crossover is the Hubbard
model with an attractive on�site interaction. The most
successive approach to the solution of the Hubbard

1 The article is published in the original.

model, both in the case of repulsive interaction and for
the studies of BCS–BEC crossover in the case of
attraction, is the dynamical mean field theory
(DMFT) [6–8]. The attractive Hubbard model was
studied within the DMFT in a number of recent
papers [9–13]. However, up to now there have been
only a few studies of the disorder influence on the
properties of normal and superconducting phases in
this model, especially in the region of the BCS–BEC
crossover. Disorder effects in this region were analyzed
qualitatively in [14], where it was argued that the
Anderson theorem remains valid in the BCS–BEC
crossover region in the case of s�wave pairing. A dia�
grammatic approach to (weak) disorder effects on the
superconducting transition temperature and the prop�
erties of the normal phase in the crossover region was
developed recently in [15].

In recent years, we have developed a generalized
DMFT+Σ approach to the Hubbard model [16–19],
which is very convenient for the studies of different
external interactions with respect to those taken into
account in the DMFT, such as pseudogap fluctuations
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[16–19], disorder [20, 21], electron–phonon interac�
tion [22], etc. This approach is also well suited to the
analysis of two�particle properties, such as optical
(dynamic) conductivity [20, 23]. In [13], we used this
approximation to calculate single�particle properties
of the normal phase and optical conductivity in the
attractive Hubbard model. In a recent paper [24], the
DMFT+Σ approach was used by us to study the disor�
der influence on the superconducting transition tem�
perature, which was calculated in the Nozieres–
Schmitt�Rink approximation. In that paper, for the
semi�elliptic density of states of the “bare” conduc�
tion band, which is adequate for three�dimensional
systems, we numerically demonstrated the validity of
the generalized Anderson theorem according to which
all changes in the critical temperature are controlled
only by the general widening of the conduction band
by disorder.

In this paper, we present an analytic proof of such
universal influence of disorder (in the DMFT+Σ
approximation) on single�particle characteristics and
the superconducting transition temperature for the
semi�elliptic density of states and also investigate dis�
order effects in the case of the “bare” band with a flat
density of states, qualitatively appropriate for two�
dimensional systems. We show that for the flat band
model, the universal dependence of single�particle
properties and the superconducting transition temper�
ature is also realized for the case of sufficiently strong
disorder.

2. DISORDERED HUBBARD MODEL
WITHIN THE DMFT+Σ APPROACH

We consider the disordered nonmagnetic Hubbard
model with attractive interaction with the Hamilto�
nian

(1)

where t > 0 is the transfer integral between nearest
neighbors on the lattice, U represents Hubbard�like on

site attraction, aiσ( ) is the annihilation (creation)

operator of an electron with spin σ, niσ = aiσ is the
particle number operator on a lattice site i, while local
on�site energies are assumed to be random variables
(independent on the lattice sites). For the standard
“impurity” diagram technique to be valid, we take the
Gaussian distribution of energy levels �i:

(2)

The parameter Δ is a measure of the disorder strength,
while the Gaussian random field of random on�site
energy levels, which are independent on different sites
(“white noise” correlation) induces “impurity” scat�
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tering, which is analyzed using the standard formalism
of averaged Green’s functions [25].

The generalized DMFT+Σ approach [16–19]
extends the standard dynamical mean field theory
(DMFT) [6–8] taking into account an additional
“external” self�energy part Σp(ε) (in the general case,
momentum dependent), which is due to some addi�
tional interaction outside the DMFT, and gives an
effective method to calculate both single�particle and
two�particle properties [20, 23]. The success of this
generalized approach is based on the choice of the sin�
gle�particle Green’s function in the form

(3)

where ε(p) is the “bare” electron dispersion, while the
complete self�energy is assumed to be an additive sum
of the local DMFT self�energy and some “external”
self�energy Σp(ε), due to the neglect of the interference
of Hubbard and “external” interactions. This allows
the conservation of the standard form of self�consis�
tent equations of the standard DMFT [6–8]. At the
same time, at each step of DMFT iterations, we con�
sistently recalculate the “external” self�energy Σp(ε)
using an appropriate approximate scheme, corre�
sponding to the form of the additional interaction,
while the local Green’s function is also “dressed” by
Σp(ε) at each step of the standard DMFT procedure.

For the “external” self�energy entering the
DMFT+Σ cycle for the problem of random scattering
by disorder, we use the simplest self�consistent Born
approximation, neglecting diagrams with crossing
“impurity” lines, which gives

(4)

where G(ε, p) is the single�electron Green’s func�
tion (3) and Δ is the amplitude of site disorder.

To solve the effective single�Anderson�impurity
problem of DMFT, we use the numerical renormaliza�
tion group approach (NRG) [26].

In what follows, we consider two models of the
“bare” conduction band. The first is the band with a
semi�elliptic density of states (per unit cell and single
spin projection)

(5)

where D is the band half�width. This model is appro�
priate for a three�dimensional system. The second
model is the one with the flat density of states, appro�
priate for the two�dimensional case:

(6)
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In principle, for two�dimensional systems, we should
take the presence of the weak (logarithmic) Van Hove
singularity in the density of states into account. How�
ever, this singularity is already effectively suppressed
by rather small disorder, and hence the simple model
in Eq. (6) is quite sufficient for our aims.

All calculations in this paper are done for a quarter�
filled band (the number of electrons per lattice site is
n = 0.5).

The superconducting transition temperature in the
attractive model was analyzed in a number of papers
[9, 10, 12], both from the condition of instability of the
normal phase [9] (divergence of the Cooper suscepti�
bility) and from the condition of the superconducting
order parameter going to zero [10, 12]. In recent paper
[13], we determined the critical temperature from the
condition of instability of the normal phase, reflected
in the instability of the DMFT iteration procedure.
The results obtained in this way in fact coincide with
those in [9, 10, 12]. Also, to calculate Tc in [13], we
used the approach due to Nozieres and Schmitt�Rink
[3], which allows the correct (though approximate)
description of Tc in the BCS–BEC crossover region.
In a later paper [24], we used the combination of
Nozieres and Schmitt�Rink and DMFT+Σ approxi�
mations for detailed numerical studies of the disorder
dependence of Tc and the number of local pairs in the
model with the semi�elliptic density of states.

3. DISORDER INFLUENCE
ON SINGLE�PARTICLE PROPERTIES
FOR THE SEMI�ELLIPTIC DENSITY

OF STATES

In this section, we analytically demonstrate that in
the DMFT+Σ approximation, the disorder influence
on single�particle properties of the disordered Hub�
bard model (both attractive or repulsive) with a semi�
elliptic “bare” conduction band is completely
described by effects of general band widening by disor�
der scattering.

In the system of self�consistent DMFT+Σ equa�
tions [17, 19, 20], information on the “bare” band and
disorder scattering enter only at the stage of calcula�
tions of the local Green’s function

(7)

where the full Green’s function G(ε, p) is determined
by Eq. (3), while the self�energy due to disorder, in the
self�consistent Born approximation, is defined by

Gii G ε p,( ),
p

∑=

Eq. (4). Then the local Green’s function takes the
form

(8)

where we introduce the notation Et = ε + μ – Σ(ε) –
Δ2Gii. In the case of semi�elliptic density of states (5),
this integral is easily calculated in analytic form, and
hence the local Green’s function is written as

(9)

It can be easily seen that Eq. (9) represents one of the
roots of the quadratic equation

(10)

corresponding to the correct limit of Gii   for an
infinitely narrow band (D  0). Then

(11)

where we introduce Deff as the effective half�width of
the band (in the absence of electronic correlations,
i.e., for U = 0) widened by disorder scattering:

(12)

Equation (10) was obtained from (8), and hence com�
paring (11) and (10), we obtain:

(13)

where

(14)

represents the density of states in the absence of the
interaction U “dressed” by disorder. This density of
states remains semi�elliptic in the presence of disor�
der, and therefore all effects of disorder scattering on
single�particle properties of the disordered Hubbard
model in the DMFT+Σ approximation reduce to only
disorder widening of the conduction band, i.e., to the
replacement D  Deff.
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4. DISORDER INFLUENCE 
ON THE SUPERCONDUCTING TRANSITION 

TEMPERATURE

The superconducting transition temperature Tc is
not a single�particle characteristic of the system. The
Cooper instability determining Tc is related to the
divergence of a two�particle loop in the Cooper chan�
nel. In the weak�coupling limit, when superconduc�
tivity is due to the appearance of Cooper pairs at Tc,
disorder only slightly influences superconductivity
with the s�wave pairing [27, 28]. The so�called Ander�
son theorem is valid and changes of Tc are connected
only with the relatively small changes of the density of
states by disorder. The standard derivation of the
Anderson theorem [27, 28] uses the formalism of exact
eigenstates of an electron in the random field of impu�
rities. Here, we present another derivation of the
Anderson theorem, using the exact Ward identity,
which allows us to derive the equation for Tc, which is
then used to calculate Tc in the Nozieres–Schmitt�
Rink approximation in a disordered system.

In general, the Nozieres–Schmitt�Rink approach
[3] assumes that corrections due to strong pairing
attraction significantly change the chemical potential
of the system, while possible corrections due to this
interaction to the Cooper instability condition can be
neglected, and we can therefore always use the weak�
coupling (ladder) approximation. In that approxima�
tion, the Cooper instability condition in the disor�
dered Hubbard model takes the form

(15)

where

(16)

represents the two�particle loop (susceptibility) in the
Cooper channel “dressed” only by disorder scattering,
and Φpp'(εn) is the averaged two�particle Green’s func�
tion in the Cooper channel (ωm = 2πmT and εn =
πT(2n + 1) are the usual boson and fermion Matsub�
ara frequencies).

To obtain (εn), we use the exact Ward

identity, derived by us in [23]:

(17)

Here, G(εn, p) is the impurity�averaged single�particle
Green’s function (not containing Hubbard interaction
corrections!). Using the obvious symmetry ε(p) =
ε( ⎯ p) and G(εn, –p) = G(εn, p), we obtain from the
Ward identity (17) that

1 Uχ0 q 0= ωm, 0=( ),=
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and hence for Cooper susceptibility (16) we have

(19)

Performing the standard summation over Matsubara
frequencies [25], we obtain

(20)

where (ε) is the density of states (U = 0) “dressed”
by disorder scattering. In Eq. (20), the energy ε is ref�
erenced to the chemical potential, and if we reference
it to the center of the conduction band, we have to
replace ε  ε – μ, such that Cooper instability con�
dition (15) leads to the following equation for Tc:

(21)

where (ε) is again the density of states (calculated
at U = 0) “dressed” by disorder scattering. At the same
time, the chemical potential of the system at different
values of U and Δ should be determined from
DMFT+Σ calculations, i.e., from the standard equa�
tion for the number of electrons (band filling) deter�
mined by the Green’s function in Eq. (3), which
allows us to find Tc for the wide range of model param�
eters, including the BCS–BEC crossover and strong�
coupling regions, as well as for different levels of disor�
der. This reflects the physical meaning of the
Nozieres–Schmitt�Rink approximation: in the weak�
coupling region, the transition temperature is con�
trolled by Cooper instability equation (21), while in
the limit of strong�coupling, it is determined as the
BEC temperature controlled by the chemical poten�
tial. Thus, the joint solution of Eq. (21) and the equa�
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tion for the chemical potential guarantees the correct
interpolation for Tc through the BCS–BEC crossover
region. This approach gives the results for the critical
temperature that are quantitatively close to the exact
results obtained by direct numerical DMFT calcula�
tions [13], but demands much less numerical effort.

We stress that we have used the exact Ward identity,
which also allows using Eq. (21) in the region of strong
disorder, when the effects of Anderson localization
may become relevant. Equation (21) demonstrates
that the critical temperature depends on disorder only
through the disorder dependence of the density of

states (ε), which is the main statement of the Ander�
son theorem. In the framework of the Nozieres–
Schmitt�Rink approach, Eq. (21) is also preserved in
the strong�coupling region, when the critical temper�
ature is determined by the BEC condition for compact
Cooper pairs. In this case, the chemical potential μ
entering Eq. (21) may significantly depend on disor�
der. However, in the DMFT+Σ approximation, this
dependence of the chemical potential (as well as of any
other single�particle characteristic) in the model with
a semi�elliptic density of states is only due to disorder
widening of the conduction band. Thus, in both the
BCS–BEC crossover and strong�coupling regions, the
generalized Anderson theorem actually remains valid.
Accordingly, in the model of a semi�elliptic band,
Eq. (21) leads to a universal dependence of Tc on dis�
order, due to the change D  Deff. Such universality
is fully confirmed by numerical calculations of Tc in
this model, performed in [24] (cf. also the results pre�
sented below).

5. MAIN RESULTS

We now discuss the main results of our numerical
calculations, explicitly demonstrating the universal
behavior of single�particle properties and the super�
conducting transition temperature with disorder. We
see below that all disorder effects are effectively con�
trolled, in fact, only by the growth of the half�width of
conduction band, which for a semi�elliptic density of
states is given by Eq. (12). In the case of the band with
a flat density of states, the growth of disorder changes
the shape of the density of states, making it semi�ellip�
tic in the limit of sufficiently strong disorder, while the
effective half�width of the band is given by (cf. Appen�
dix A)

(22)

As an example of the most important single�parti�
cle property, we take the density of states. In Fig. 1, we
show the evolution of the density of states with disor�
der in the model of a semi�elliptic band [13]. We can
see that the growth of disorder smears the density of
states and widens the band. This smearing somehow
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masks the peculiarities of the density of states due to
correlation effects. In particular, both the quasiparti�
cle peak and the lower and upper Hubbard bands,
observed in Fig. 1 in the absence of disorder, are com�
pletely destroyed in the limit of strong enough disor�
der. However, we can easily convince ourselves that
this evolution is only due to the general widening of
the band due to disorder (cf. Eqs. (12) and (22)),
because all the data for the density of states belong to
the same universal curve replotted in appropriate new
variables, with all energies (and temperature) normal�
ized by the effective bandwidth by replacing D 
Deff, as shown in Fig. 2a, in complete agreement with
the general results obtained above. For the conduction
band with a flat density of states, there is no complete
universality, as can be seen from Fig. 2b for low enough
values of disorder. However, for large enough disorder,
the dashed curve shown in Fig. 2b practically coin�
cides with the universal curve for the density of states
shown in Fig. 2a. This reflects the simple fact that at
large disorder, the flat density of states effectively
transforms into a semi�elliptic one (cf. Appendix A).

Going now to the analysis of the superconducting
transition temperature, in Fig. 3 we present the depen�
dence of Tc (normalized by the critical temperature in
the absence of disorder, Tc0 = Tc(Δ = 0)) on disorder
for different values of the pairing interaction U for
both models of the initial “bare” density of states,
semi�elliptic (Fig. 3a) and flat (Fig. 3b). Qualitatively,
the evolution of Tc with disorder is the same for both
models. We can see that in the weak�coupling limit
(U/2D � 1), disorder slightly suppresses Tc (curves 1).
At intermediate couplings (U/2D ~ 1), weak disorder
increases Tc, while the further increase in disorder
suppresses the critical temperature (curves 3). In the
strong�coupling region (U/2D � 1), the growth of dis�
order leads to a significant increase in the critical tem�
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perature (curves 5). However, we can easily see that
such a complicated dependence of Tc on disorder is
completely determined by the disorder widening of the
“bare” (U = 0) conduction band, demonstrating the
validity of the generalized Anderson theorem for all
values of U. In Fig. 4, the curve with octagons shows
the dependence of the critical temperature Tc/2D on
the coupling strength U/2D in the absence of disorder
(Δ = 0) for both models of “bare” conduction bands,

semi�elliptic (Fig. 4a) and flat (Fig. 4b). We can see
that in both models, in the weak�coupling region, the
superconducting transition temperature is well
described by the BCS model (in Fig. 4a), the dashed
curve represents the result of the BCS model, with Tc

defined by Eq. (21), with the chemical potential inde�
pendent of U and determined by the quarter�filling of
the “bare” band), while in the strong�coupling region,
the critical temperature is determined by the BEC
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Fig. 2. Universal dependence of the density of states on disorder: (a) the model of a semi�elliptic “bare” density of states; (b) the
model of a flat “bare” density of states.

Tc/Tc0

Δ/2D
0.1

0.5

0.2 0.4

1.5

2.0

0

2.5

(a)

|U|/2D = 0.6

1.0

3.0

0.3 0.5

0.8

1.0

1.4

1.6

1

2

3

4

5

1

2

3

4

5

Tc/Tc0

Δ/2D
0.1

0.5

0.2 0.4

1.5

2.0

0

2.5

(b)

|U|/2D = 0.6

1.0

3.0

0.3 0.5

0.8

1.0

1.4

1.6

1

2

3

4

5

1

2

3

4

5

Fig. 3. Dependence of the superconducting transition temperature on disorder for different values of the Hubbard attraction U:
(a) semi�elliptic band; (b) flat band.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 6  2015

ATTRACTIVE HUBBARD MODEL WITH DISORDER 1061

condition for Cooper pairs and decreases as t2/U as U
increases (inversely proportional to the effective mass
of the pair), passing through the maximum at
U/2Deff ~ 1. The other symbols in Fig. 4a show the
results for Tc obtained by a combination of the
DMFT+Σ and Nozieres–Schmitt�Rink approxima�
tions for a semi�elliptic “bare” band. We can see that
all data (expressed in normalized units of U/2Deff and
Tc/2Deff) ideally fit the universal curve obtained in the
absence of disorder. For a flat “bare” band, results of
our calculations are shown in Fig. 4b and we do not
observe the complete universality: data points, corre�
sponding to different degrees of disorder, somehow
deviate from the curve obtained in the absence of dis�
order. However, with the increase in disorder, the form
of the band becomes close to semi�elliptic and our
data points move towards the universal curve obtained
for the semi�elliptic case and shown by the dashed
curve in Fig. 4b, thus confirming the validity of the
generalized Anderson theorem.

6. CONCLUSION

In this paper, in the framework of the DMFT+Σ
generalization of dynamical mean field theory, we
have studied the disorder influence on single�particle
properties (e.g., the density of states) and the super�
conducting transition temperature in the attractive
Hubbard model. Calculations were done for a wide
range of attractive interactions U, from the weak�cou�
pling region U/2Deff � 1, where both instability of the
normal phase and superconductivity are well
described by the BCS model, to the strong�coupling
limit U/2Deff � 1, where the superconducting transi�
tion is determined by Bose–Einstein condensation of
compact Cooper pairs forming at temperatures much

higher than the superconducting transition tempera�
ture. We have shown analytically that for the conduc�
tion band with a semi�elliptic density of states, which
is a good approximation in the three�dimensional
case, disorder influences all single�particle properties
in a universal way: all changes of these properties are
only due to the disorder widening of the band. In the
model of the conduction band with a flat density of
states, which is appropriate for two�dimensional sys�
tems, there is no universality in the region of weak dis�
order. However, the main effects are again due to the
general widening of the band and complete universal�
ity is restored for high enough disorder, when the den�
sity of states effectively becomes semi�elliptic.

To study the superconducting transition tempera�
ture, we have used the combination of the DMFT+Σ
approach and the Nozieres–Schmitt�Rink approxi�
mation. For both models of the conduction band, dis�
ordering the density of states may either suppress the
critical temperature Tc (in the region of weak cou�
pling) or significantly increase it (in the strong�cou�
pling region). However, in all these cases, we have
actually proved the validity of the generalized Ander�
son theorem, and hence all changes of the transition
temperature are in fact controlled only by the effects of
general disorder widening of the conduction band. In
the case of the initial semi�elliptic band, the disorder
influence on Tc is completely universal, while in the
case of the initial flat band, such universality is absent
at weak disorder, but is completely restored for high
enough disorder levels.

Finally, we present some additional comments on
the methods and approximations used. Both the
DMFT+Σ and Nozieres–Schmitt�Rink approaches
represent certain approximate interpolation schemes,
strictly valid only in the corresponding limit cases
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Fig. 4. Universal dependence of the superconducting critical temperature on the Hubbard attraction U for different disorder lev�
els: (a) semi�elliptic band; the dotted curve represents the BCS dependence in the absence of disorder; (b) flat band; the dotted
line represents a similar dependence for the semi�elliptic band for Δ = 0.
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(e.g., small disorder or small (large) U). However, both
schemes demonstrate their effectiveness also in the
case of intermediate values of U and intermediate (or
even strong) disorder. Actually, the effectiveness of the
Nozieres–Schmitt�Rink approximation (neglecting U
corrections in the Cooper channel) was verified by
comparison with the direct DMFT calculations [13].
The use of DMFT+Σ to analyze the disorder effects in
the repulsive Hubbard model was shown to produce
reasonable results for the phase diagram, compared to
exact numerical simulations of disorder in DMFT,
including the region of large disorder (the Anderson
localized phase) [19–21]. However, the role of the
approximations made in DMFT+Σ, such as the
neglect of the interference of disorder scattering and
correlation effects, deserves further studies.
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APPENDIX A

For the band with a flat density of states (at U = 0
and Δ = 0), disorder leads both to widening of the band
and to a change of the form of the density of states.
Taking the density of states in the form given by
Eqs. (6), we calculate the local Green’s function as

(A1)

where the energy ε is referenced to the middle of the
“bare” band. We introduce the auxiliary notation Gii =
R – iI. At the band edges, I  0, and therefore
expanding the r.h.s. of Eq. (A.1) up to linear terms in
I, we obtain

(A2)

Equating the real parts in (A.2), we obtain

Similarly, equating the imaginary parts at the band

edges, we obtain ε – Δ2R = ± , and substitut�
ing this expression into the logarithm in the preceding
expression, we find R and the band edge positions at

Gii
1

2D
������ dε' 1

ε ε'– Δ2Gii–
�������������������������

D–

D

∫=

=  1
2D
������

ε Δ2Gii– D+

ε Δ2Gii– D–
�������������������������
⎝ ⎠
⎜ ⎟
⎛ ⎞

,ln

R iI– 1
2D
������ ε Δ2R– D+

ε Δ2R– D–
�����������������������⎝ ⎠
⎛ ⎞ln≈

– iI Δ2

ε Δ2R–( )
2

D2–
�������������������������������.

R 1
2D
������ ε Δ2R– D+

ε Δ2R– D–
�����������������������⎝ ⎠
⎛ ⎞ .ln=

D2 Δ2+

(A3)

Thus, the half�width of the band Deff widened by dis�
order in this model is determined by Eq. (22) used
above.

We note that although the Born approximation for
disorder scattering that we use is formally valid only for
small disorder Δ � D, the effects of Anderson localiza�
tion at large disorder Δ ~ D do not qualitatively change
the density of states [27], and hence the Born approx�
imation gives qualitatively correct results also in the
region of large disorder. Actually, this approximation
neglects only the appearance of exponentially small
“tails” in the density of states, outside the “mean
field” band edges [27] and gives more or less correct
results inside such a band.

At large enough disorder, almost any “bare” band
width 2D and an arbitrary density of states N0(ε)
acquires a semi�elliptic density of states. In the limit of
very large disorder Δ � D, almost in the whole band,
widened by disorder, we have |ε – Δ2R| � D and in the
expression for the local Green’s function we can
neglect the ε'�dependence in the denominator of the
integrand:

(A4)

Then we immediately obtain

(A5)

whence the density of states “dressed” by disorder

(A6)

becomes semi�elliptic, Eq. (5), with the half�width
Deff = 2Δ. Thus, at strong enough disorder, any “bare”
band becomes semi�elliptic, restoring the universal
dependence of single�particle properties on disorder
discussed above. In this sense, the model of the “bare”
band with a semi�elliptic density of states is most
appropriate for the studies of the effects of strong dis�
order. 
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