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1. INTRODUCTION

Synchronization is one of the fundamental con�
cepts of the theory of nonlinear dynamics and chaos
theory. This phenomenon is widespread in nature, sci�
ence, engineering, and society [1]. One of important
manifestations of this phenomenon is the synchroni�
zation of chaotic oscillations, which was experimen�
tally observed in various physical applications (see [1–
5] and references therein) such as radio oscillators,
mechanical systems, lasers, electrochemical oscilla�
tors, plasma and gas discharge, and quantum systems.
The study of this phenomenon is also very important
from the viewpoint of its application to information
transmission [6], cryptographic coding [7] with the
use of deterministic chaotic oscillations, and quantum
computation [3, 8].

There are several types of synchronization of cha�
otic oscillations [2]: generalized synchronization [9],
complete synchronization [10], antisynchronization
[11], lag synchronization [12], frequency synchroni�
zation [13], phase synchronization [14], and time
scale synchronization [15]. For each type, an appro�
priate analytic apparatus and diagnostic methods have
been developed. Nevertheless, intensive investigations
are being continued that are aimed, on the one hand,
at the examination of different types of synchroniza�
tion from unique positions and, on the other hand, at
the search for new types of synchronous behavior that
do not fall under the above�mentioned types. In spite
of the long history of the study of synchronization of
chaotic oscillations, many important problems in this
field remain unsolved. These include the quantitative
analysis of the time structure of synchronization of
dynamical systems. By this structure we mean spikes in

the synchronous behavior of the phase variables of sys�
tems between which the level of synchronism is char�
acterized by a small parameter, i.e., intermittent
behavior [16].

The concept of intermittency is very important in
physics (and not only in physics) for the study of struc�
tural properties of processes and is not restricted to the
synchronism of chaotic systems. This fact was noticed
even by Mandelbrot [17] (the turbulent flow problem
in fluid dynamics) and, somewhat later, by Zel’dovich
and colleagues [16] (problems of chemical kinetics
and self�excitation of a magnetic field in a random
flow of a conducting fluid). For instance, the phenom�
enon of intermittency has application in high�energy
particle physics [18], cosmology [19], in the study of
rearrangements of attractors in nonlinear dynamical
systems [20–22], and in other fields. From the physi�
cal point of view, intermittency generally implies the
emergence of some structures of different scales in a
medium (for example, vortices, localized strains, tem�
perature irregularities) that originally could be abso�
lutely structureless on these scales. From the mathe�
matical viewpoint, such behavior is characterized by
the presence of rare but strong peaks in the behavior of
the indicator of a structure—a certain random vari�
able [16].

The analysis of the structure of synchronism has
theoretical significance for nonlinear dynamics itself
[20], as well as applied value, for example, in problems
of biology and medicine [23–25], stochastic financial
mathematics [26], and so on. The paper [27] on the
analysis of the bubbling phenomenon is one of the first
publications in which the authors experimentally
observed intermittency between synchronous and
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asynchronous behavior in a system of coupled oscilla�
tors. However, when analyzing this phenomenon, the
authors did not investigate the time structure of syn�
chronism as such. Eventually, interest of researchers in
the structural phenomena arising during the synchro�
nization of chaos grew steadily. At present, the ques�
tions of time, space, and space–time structures of syn�
chronism are intensively studied both from theoretical
(model) [28–31] and applied standpoints, for exam�
ple, from the viewpoint of neurophysiology (neurobi�
ology) [23, 32] and power networks [33].

For all the significance of the problems of quantita�
tive analysis of the time structure of synchronization of
nonlinear systems, progress in this field falls far behind
the investigation of purely spatial synchronization pat�
terns in distributed systems. This is clearly illustrated
by the above�cited papers [23, 28–33]. Among the
main reasons, in my opinion, are two objective diffi�
culties. First, this is the lack of a unified and complete
theory of nonlinear dynamical systems [20]. Second,
during the analysis of spatial patterns, one can exten�
sively apply both the apparatus of network theory [34]
and the apparatus of the theory of pattern recognition
on images (two� and three�dimensional scalar fields of
physical quantities). In turn, during the analysis of a
time or space–time structure, one faces the problem
of transition from time series of phase variables to the
graphs or images that characterize the intermittency of
the synchronization process. Not least of all, this is
associated with the underdevelopment of appropriate
tools, because researchers have mainly been dealing
with the so�called integral coefficient of synchronism,
thus studying the synchronization parameters on aver�
age. Accordingly, the measurement techniques have
been developed, as a rule, within the same concepts.
Note that the paradigm of studying systems and pro�
cesses on average has been widely accustomed in many
experimental fields of science. The reasons for the
wide use of this approach and its fundamental restric�
tions are presented in detail, for example, in the survey
[16].

In this paper, we develop an original method for the
diagnostics and quantitative measurement of the char�
acteristics of intermittency regimes during synchroni�
zation of chaotic systems, which is aimed at the inte�
grated study of the time structure of synchronism
through the analysis of the so�called T�synchroniza�
tion [35–37]. The method is based on the formalism of

symbolic CTQ analysis
1
 proposed by the present

author in [38, 39]. One should note that symbolic
dynamics, for all its seeming external simplicity, is a
very strongly substantiated tool for the analysis of non�
linear dynamical systems [40] and allows one to inves�
tigate complicated phenomena in systems such as
chaos, strange attractors, hyperbolicity, structural sta�

1 The abbreviation CTQ stands for three alphabets with which the
method operates: C, T, and Q.

bility, controllability, etc. (see, for example, [40, 42]
and references therein).

In the present study, we propose to consider the
relationship between synchronous and desynchronous
domains integrally. This allows us to carry out a
detailed analysis of intermittency regimes during syn�
chronization of chaotic systems. Moreover, we essen�
tially revise the principles of the symbolic CTQ analy�
sis: we formulate the encoding rules for the symbols of
the base alphabet in a rigorous and formal form, which
allows us to form a complete set of symbols. In addi�
tion, we propose a number of measures for evaluating
the time structure of synchronization. As an example,
we take a system of logical mappings, which, on the
one hand, is a standard object of nonlinear dynamics,
and, on the other hand, with regard to the Feigenbaum
universality, many results of the analysis of this system
are extended to a wide class of both model and real
objects.

2. DEFINITION OF T�SYNCHRONIZATION
OF CHAOTIC SYSTEMS

Introduce a trajectory of a dynamical system

defined as a discrete sequence (time series) ,
where the phase variable s of the system has dimension
N and the trajectory consists of K time samples. In this
case, each kth sample can be assigned a time instant tk.

Define the original mapping that encodes the form

of the nth component of the sequence  in
terms of a finite T alphabet [38, 39]:

(1)

Strictly speaking, mapping (1) is defined by the rela�
tions

(2)
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where

The graphic diagrams illustrating the geometry of
the symbols Tαϕ|n for the kth sample and nth phase
variable are shown in Fig. 1.

Thus, the T alphabet includes the set of symbols

(3)

This formula shows that a symbol  is encoded

as Ti, where i is the right part of the symbol codes of

the alphabet . In turn, a symbol  is encoded in
terms of Ti1 … iN, see (1). The complete alphabet

|N that encodes the form of the trajectory of a

multidimensional sequence  consists of 17N

symbols in total.
Now, suppose, for simplicity but without loss of

generality, that the time sequence  of dimen�
sion N is formed by the combination of the phase vari�
ables of N one�dimensional dynamical systems; i.e.,

suppose that  is the value of the phase variable of
the nth system at the kth instant of time.

We will assume that the dynamical systems are syn�
chronous at time instant k in the sense of T�synchro�
nization [35] if the condition Jk = 1 is satisfied, where

(4)

Taking into account possible antisynchronization
[11] between the systems, we should also consider all
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possible variants of inversion of their phase variables:

  –1 · . In this case, for the nth system, a

change of symbols of  in the kth sample occurs

by the scheme

(5)

Denote each variant of inversion by number m. The
total number of variants of inversion is M = 2N – 1.

Synchronization between systems can also be set in
the lag mode [12]. To detect this synchronization, one
should move a little the phase trajectories of the sys�
tems with respect to each other (shifts hn ≥ 0):

(6)

The antisynchronization and lag synchronization
modes may coexist; therefore, when calculating a par�
tial integral coefficient of synchronism, we take this
fact into consideration:

(7)

where

and K is the length of the sequence .

On the basis of the partial coefficient, we calculate
the total integral coefficient of synchronism of the sys�
tems:

(8)

i.e., we take a combination of shifts between the trajec�
tories of the systems and a variant of inversion of their
phase variables that, taken together, provide the maxi�
mum number of samples k satisfying the condition
Jk = 1.

It follows from the definition of the synchroniza�
tion condition (4) that the analyzer proposed evaluates
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Fig. 1. Graphic diagrams illustrating the geometry of the symbols of Tαϕ|n for the kth sample and the nth phase variable.
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the complete synchronization level [10] and detects
antisynchronization [11] with lag synchronization

[12] precisely in the alphabetic representation .
However, according to the definition of the geometry
of the symbols of the T alphabet (2), a complete syn�

chronization at the level of the samples of  is a
wider phenomenon compared with the complete syn�
chronization at the level of sk—the samples of the
sequence itself. The T synchronism of dynamical sys�
tems (with respect to the set of phase variables s) is
considered from the viewpoint of the shape (geometric
structure) of the trajectories of the systems in the
extended phase space. By the shape (geometric struc�
ture) of a trajectory of a dynamical system in the
extended phase space is meant its certain invariant
under uniform translations and dilations of the trajec�
tory in the space of phase variables. Thus, in a sense,
the T�synchronization deals with the topological
aspects of synchronization of dynamical systems [20,
40, 43]. Hence, this opens a potential possibility for
the application of the analyzer proposed to the study
of generalized synchronization of chaos [9].

3. TIME STRUCTURE OF SYNCHRONIZATION 
OF CHAOTIC SYSTEMS

The quantity δs introduced in (8) characterizes the
synchronism of the systems on average over a period of
tK – t1. As mentioned in the Introduction, most inves�
tigations on the synchronization of chaos are usually
restricted to this situation. However, often a researcher
may be interested in the time structure of synchroniza�
tion of systems. Recall that by this structure one means
the spikes in the synchronous behavior of the phase
variables of the systems between which the synchro�
nism level is characterized by a small quantity, i.e., one
means intermittent behavior [16].

In [35], the present author introduced the concept
of a synchronous domain SD—a set of samples of a
time series that satisfy the condition (∨ is the symbol of
the logical operation OR)

(9)

where , , and r are the emergence time, the
length, and the ordinal number of a synchronous
domain, respectively. In this case, the following condi�

tions are satisfied:  ≤ K, and the total number of

synchronous domains (in the original sequence) RSD ≤
(K + 1)div2.

To
αϕ

Tk
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k' br
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br
SD Lr
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Lr
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To quantitatively describe the structure of synchro�
nization of systems, the author introduced in [35] a
spectral density function of synchronous domains SD:

(10)

where δ[…, …] is the Kronecker delta and L = .

To analyze the degree of degeneracy of a structure
of synchronous domains, we additionally define a
quantity ESD—the entropy of the structure of syn�
chronous domains (according to Shannon) [36],
which makes sense for δs > 0:

(11)

It follows from Shannon’s entropy properties that the
entropy ESD is minimal (ESD = 0) when the spectrum
HSD[L] is degenerate (all synchronous domains have

the same length) and maximal (ESD = ) in the case
of a uniform comb spectrum HSD[L] with a limit num�
ber of different lengths of synchronization domains

equal to :

(12)

where ⎣a⎦ is the integer part of a.

On the basis of (11) and (12), we define the relative
entropy of the structure of synchronous domains:

(13)

It makes sense to apply the quantity  when the
researcher should compare synchronization cases that
differ in the values of δs and/or K.

Nevertheless, for the full description of the inter�
mittent behavior of chaotic systems during synchroni�
zation, it is obviously insufficient to study only syn�
chronous domains SD. To obtain a complete and
closed idea of the time structure of synchronism of
dynamical systems (a complete and closed representa�
tion of the intermittency structure), in this paper we
additionally introduce the concept of a desynchronous
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domain —a set of samples of a time series satisfy�
ing the condition

(14)

where , , and r are the emergence time, the
length, and the ordinal number of a desynchronous

domain , respectively.
We will schematically illustrate the necessity of a

consistent analysis of desynchronous and synchronous
domains by a model example (see Fig. 2a). Let us
define three variants (A, B, and C) that have the same
integral coefficient of synchronism, the same set and
sequence of synchronous domains SD, but essentially
different sets and sequences of desynchronous

domains .
If these model variants are compared only with

respect to the parameters of SD domains, then a
wrong conclusion is made on the identity of synchro�
nization processes in these cases. However, Fig. 2a
points to the contrary. Therefore, in addition to SD

domains, we consider  domains. Figures 2b and 2c
show that, in the case of A, all desynchronous domains
have a sample length of 2 and, in the case of B, desyn�

SD

SDr : Jk' 0= Jk'', 1 k''∨ 0,= ={

Jk''' 1 k'''∨ K 1 },+= =

k' br
SD br

SD Lr
SD+, , k'' br

SD
1,–= =

k''' br
SD Lr

SD 1,+ +=

br
SD Lr

SD

SD

SD

SD

chronous domains have a sample length of 2 and 11
(among which there is a single desynchronous domain
of length 11). The case C has the most complex struc�
ture: in addition to the fact that desynchronous
domains have four different lengths of 1, 2, 3, and 4

samples, the structure of   SD transitions is
rather nontrivial. Thus, a consistent analysis of the

parameters of  and SD domains, as well as of the

structure of   SD transitions, provide much
more information on the character of rearrangement
of the structure of attractors and on the intermittent
behavior in synchronized systems. Note that, in most
cases (see, for example, [23, 28–33]), it is synchroni�
zation patterns that are subjected to analysis as a rule,
while the desynchronization areas are considered as a
background signal; i.e., they are removed from the
analysis.

A quantitative analysis of the time structure of syn�
chronization is possible through the study of a graph

(see Fig. 2c) whose vertices are domains  and SD

with lengths  and L, respectively, and arcs (oriented

edges) are   SD and SD   interdomain
transitions. The labeling of the vertices of this graph is

made by the probabilities  and PSD, and the label�
ing of edges, by conditional transition probabilities

SD

SD

SD

SD

L

SD SD

PSD

А

B

C

HSD

4
3
2
1

1 2 3 4 5 6
HSD−

LSD

4
3
2
1

10
9
8
7
6
5

2 111

А B C

А B C

– SD
−

– SD

2

1

2

3

4

5

6

1

2

3

4

5

6

1

11

1

2

3

4

5

6

1

2

3

4

(а)

(c)

(b)

LSD−1 2 3 4

Fig. 2. A model example: (a) sequence order of desynchronous  and synchronous SD domains; (b) spectral densities of desyn�
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A, B, and C denote three cases that have different structure of desynchronous behavior.
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(15)

where  and  are the spectral densities of the

interdomain transitions   SD and SD  ,
respectively.

The analysis of the graph of the   SD tran�
sitions opens wide possibilities for the application of
the currently intensively developing apparatus of net�
work theory [34, 44–46], involving the methods of sta�
tistical physics [47] and symbolic dynamics [40–42],
to the analysis of the time structure of synchronization
of chaotic oscillations. Note that these topics are the
subject of our current research.

4. ANALYSIS OF A SYSTEM
OF LOGISTIC MAPPINGS

A system of coupled logistic mappings is one of
popular models of nonlinear dynamics for studying
chaotic synchronization [38, 48]. Its theoretical value
is associated with the fact that, in spite of its relative
simplicity, a logistic mapping gives rise to a wide spec�
trum of complex, including chaotic, oscillation modes
[39, 49]. A transition to such oscillation modes occurs
by the classical period�doubling scenario. With regard
to the Feigenbaum universality, many results are
extended to a wide class of both model and real physi�
cal, biophysical, chemical, and other systems, which
also arouses applied interest in the logistic mapping
[49, 50].

Consider a system of two unidirectionally coupled
logistic oscillators:

(16)

where λ ∈ (0, 1] is a control parameter, γ ∈ [0, 1] is the
coupling coefficient of the systems, and x, y ∈ (0, 1)
are the phase variables of the master and slave systems,
respectively.

The analysis of mappings (16) was carried out on
the interval k ∈ [1 × 105, 2 × 105]. Such a shift from k =
1 is explained by the need to reduce the spurious effect
of the transient process to minimum. Moreover, all the
estimates of the quantities were averaged over 1000
realizations of the initial conditions: x1 = ξ1 and y1 =
ξ2, where ξ1 and ξ2 ∈ (0, 1) are uncorrelated uniformly
distributed random variables. This allowed us to neu�
tralize the memory effect induced by the initial condi�
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xk 1+ 4λxk 1 xk–( ),=

yk 1+ 4λ yk γ xk yk–( )+[ ] 1 yk γ xk yk–( )+[ ]–( ),=

tions on the trajectories of the processes x and y. The
value of the coupling parameter was varied in the
interval γ ∈ [0, 0.5] with a step of 1 × 10–4. The value
of the control parameter was taken to be λ = 0.95,
which means the existence of a developed chaos
regime in (16) [50]. Note that, according to the results
of [39], the final qualitative complexification of the
chaotic trajectory occurs at λ = 0.98805…. Neverthe�
less, the choice of the value of the control parameter is
attributed to the necessity of mutual analysis and coor�
dination of the results obtained in the present study
with the results of [38, 48]. In particular, it was estab�
lished in [38, 48] that, for γ ≥ γrb ≈ 0.38, a robust regime
of complete synchronization is set in the system, and,
at the point γbb ≈ 0.35, a nonrobust regime of complete
synchronization is set that persists on the interval γbb ≤
γ < γrb. There are four more points on the scale of the
coupling parameter that are responsible for various
rearrangements of the structure of the attractor: γwn ≈
0.0639, γws ≈ 0.14, γr1 ≈ 0.2606, and γr2 ≈ 0.2755. For
example, at γws, an unstable quasiperiodic motion is
fixed in the attractor on which the trajectory stays for a
considerable period of time [48], while, at γr1, the tra�
jectory of the slave system (y) contains the maximum
concentration of relaxation oscillations, which are
missing in the master system (x) [38].

Figure 3a demonstrates the graph of the integral
coefficient of synchronism δs as a function of the cou�
pling parameter γ. For γs ≈ 0.0191, the lower quantile

 becomes greater than the upper quantile  for the
first time. Thus, in a first approximation, the point γs

can be considered as a statistically significant thresh�
old for the emergence of T�synchronization in system
(16). Note that the critical intervals were constructed
by the empirical distribution functions of the calcu�
lated characteristics. The upper and lower quantiles
are constructed as two�sided quantiles of orders 1 –
α/2 and α/2, respectively. The level of statistical sig�
nificance was taken to be α = 10–3. As an estimate for
the mean value of the characteristics, we used a
median, as a more robust indicator compared with the
arithmetic mean [51]. Figure 3b demonstrates the graph

of Δδs =  –  as a function of the parameter γ.

Figure 3a shows that the behavior of the integral
coefficient of synchronism δs allows one to reliably
detect only a domain of bubbling behavior of the sys�
tem near the point γbb at which a nonrobust regime of
complete T�synchronization is set. The nonrobustness
manifests itself in a more than fivefold stepwise broad�
ening of the interval Δδs (see Fig. 3b). Much more
complete information on the rearrangement of the
structure of attractors and the time structure of syn�
chronization is provided by the analysis of the medians

of the spectral densities of the domains  and SD,
which are demonstrated in Fig. 4.

δs

›

δ̂s

δ̂s δs

›

SD
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The time instant at which complete T�synchroni�
zation is set in system (16) at γbb can also be deter�

mined from the analysis of  (see Fig. 4b). This
time instant manifests itself in the burst of the lengths
of synchronous domains (see the inset in Figs. 4b and
5b), as well as in the transition of desynchronous
domains into synchronous ones.

The comparison of Figs. 4a and 4b shows a signifi�
cant difference between the behavior of desynchro�

H
SD

nous  and synchronous SD domains. For instance,
the maximum length of synchronous domains on the
entire range of variation of γ is not greater than

max  = 220 samples, whereas maxLSD = 105 sam�
ples (after setting a robust regime of complete T�syn�
chronization). As the coupling increases from 0 to γbb,
the lengths of synchronous domains monotonically
increase, and the maximum of a spectral domain is

SD

LSD

1.0

0
0.5

δs

0

0.8

0.6

0.4

0.2

0.40.30.20.1
γ

γs

0.27

0.25

0.23
0 0.01 0.02 0.03

γbb γrb

γs γwm γws γr1 γr2

δ̂0
s
γ 0=( )

0.20

0.5

Δδs

0

015

0.10

0.05

0
0.40.30.20.1

γ

γbb

γrb

γs γwm γws γr1 γr2

(а) (b)

Fig. 3. (a) Integral level of synchronization δs (the inset shows the region of small values of γ) and (b) the width of the interval
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interval of values with boundaries at probability 1 – α with a significance level of α = 10–3.

δ̂
s

δ
s

›

200

0.50
1

0.40.30.20.1
γ

γbb

γrbγs γwm γws γr1 γr2
−−

HSD

−

LSD

3 7 17 44 111 283 724 1854

175

150

125

100

75

50

25

(а)
100

0.50 0.40.30.20.1
γ

γbb

γrb

γs γwm γws γr1 γr2

−
HSD

LSD (b)

×103

75

50

25

1

100.00

99.97

99.93

99.90
0 0.1 0.2 0.3 0.4 0.5

γbb

γrb

3513

1267

457

165

60

22

8

3

×103

Fig. 4. (a)  and (b)  as a function of the coupling parameter γ. The inset shows the function  in the region of

domains of large length LSD ≥ 99900.

H
SD

H
SD

H
SD



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 5  2015

ANALYSIS OF THE TIME STRUCTURE OF SYNCHRONIZATION 919

shifted toward longer domains. This indicates that the

characteristic  is insensitive to the rearrangements
of the attractor structure, which occur in the slave sys�
tem (y) up to the onset of the nonrobust regime of
complete T�synchronization. In turn, the analysis of

 allows one to fix a number of rearrangements of
the attractor structure in the system (y) that occur
under the action of the master system when the cou�
pling varies from 0 to γbb. For instance, the regimes at
γwm and γr1 are accompanied by local spikes of the
length of desynchronous domains, while the regime at
γws is characterized by a pronounced comblike struc�

ture of the spectrum of  domains of small length
(see Fig. 5a). This kind of spectrum indeed corre�
sponds to an unstable quasiperiodic motion where the
trajectory of system (16) stays for a significant period
of time [48].

The comparison of Figs. 6a and 6b also demon�
strates a difference in the behavior of the degree of
degeneracy of the structure of synchronous and desyn�
chronous domains, depending on γ—the coupling
between the master and slave systems. It follows from
the analysis of the figures that, almost up to the setting
a nonrobust regime of complete T�synchronization,

the relative entropy of the structure of  domains
varies very little, remaining near the level of 0.5. There
are local statistically significant spikes near the rear�
rangement areas of the attractor structure γwm and γr1.
The width of the interval of values with boundaries at

H
SD

H
SD

SD

SD

probability of 1 – α with the significance level α = 10–3

also remains virtually constant. As the parameter γ
approaches the critical value γbb and the system passes
to a nonrobust synchronization regime, the interval of

values of  with boundaries at probability of 1 – α

opens up, and the median  experiences a jump
from 0.5 to 0.73. A further increase in the coupling
force to γ = 0.5, the width of the interval is not

changed, while the median  decreases to values
close to zero. In turn, as the coupling parameter
increases from γ = 0, the relative entropy of the struc�
ture of synchronous domains SD first locally (statisti�
cally significantly) increases from 0.35 to 0.375 near
the value of γwm and then returns to the original level,
and, starting from about γws, again starts to increase.
Before the γr1 region, there is a local maximum, and,
in the region [γr1, γr2], there is a local minimum. As the
coupling force increases further, the interval of values

of  with boundaries at probability of 1 – α opens

up near γbb, and the median , upon reaching a
maximum of 0.57, decreases to values close to zero.
The analysis carried out implies that the relative entro�

pies  and  are a very sensitive indicator of rear�

rangements of the attractor structure that occur in the
regime of chaos synchronization.
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5. CONCLUSIONS

We have proposed a new method for integrated
analysis of the time structure of synchronization in
nonlinear chaotic systems. The method allows one to
diagnose and quantitatively evaluate the intermittency
characteristics during synchronization of chaotic
oscillations in the so�called T�synchronization mode
[35, 36]. The approach is based on the formalism of
symbolic CTQ analysis proposed by the author in
[38, 39].

To demonstrate the main capabilities of the
method, we have carried out an analysis of a system of
two identical logistic oscillators with unidirectional
coupling that are in the developed chaos regime. This
system is a standard model of nonlinear dynamics. In
addition, in view of the Feigenbaum universality,
many results of the analysis can be extended to a wide
class of both theoretical and real objects [49, 50]. The
analysis carried out has revealed the setting of nonro�
bust and robust regimes of complete T�synchroniza�
tion in the system. The nonrobust regime is accompa�
nied by a bubbling attractor that exhibits intermittency
between synchronous and asynchronous behavior of
the oscillators. In addition, we have confirmed the
results of [48] concerning the fact that, for certain val�
ues of the coupling force between subsystems, an
unstable quasiperiodic motion is detected in the
attractor on which the trajectory stays for a consider�
able period of time. We have also established that the
regime, revealed in [38], in which the trajectory of the
slave subsystem contains the maximum concentration
of relaxation oscillations, which are missing in the
master subsystem, leads to a local increase in the devi�
ation of the length of desynchronous domains. This
fact increases the intermittency between the synchro�
nous and asynchronous behavior of the oscillators.

The analysis has confirmed that the widely used
method in which only synchronization patterns are
analyzed, while the desynchronization areas are con�
sidered as a background signal and are actually not
analyzed, should be regarded as methodologically
incomplete due to the loss of important information
on the character of rearrangement of the structure of
attractors and the intermittent behavior in synchro�
nizing systems.

In conclusion, note that the method considered,
which is based on the analysis of T�synchronization,
can be successfully applied to the study of multidi�
mensional systems consisting of two or a greater num�
ber of coupled nonidentical oscillators, including
multidimensional lattices of oscillators with arbitrary
topology. The approach described can be applied to
the analysis of experimental data, because it does not
require any a priori knowledge of a system under study.
Moreover, the invariance of the analyzer with respect
to the shifts and dilations of phase trajectories [39]
allows one to investigate the synchronization of
strongly nonstationary systems. It is quite possible that
this fact will allow one to effectively apply the method
proposed to the analysis of multidimensional time
series generated by physical and engineering [1, 4, 5],
biophysical [23–25], financial [26, 37, 46], power
[33], and other systems.
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