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1 1. INTRODUCTION. CHIRAL LIQUIDS

Theory of liquids with massless fermionic constitu�
ents has been greatly highlighted recently (for a review,
see, e.g., lecture volume [1]). The interest in such
chiral liquids was triggered by the discovery of QCD
plasma, with its nearly massless quarks (see, e.g., [2]).
The quark–gluon plasma exhibits remarkable proper�
ties. In particular, it is characterized by a low ratio of
the viscosity η to the entropy density s, close to its con�
jectured quantum lower bound [3]. However, this
property of the quark–gluon plasma has not yet been
related to the (nearly) chiral nature of the plasma, and
we return to this point later.

Vector and axial�vector currents are natural probes
of the chiral nature of the underlying field theory.
Moreover, from the theoretical standpoint, the con�
sideration of chiral media with an asymmetric right–
left composition or a nonvanishing chiral chemical
potential μ5 ≠ 0 represents an especially clean case. In
particular, one predicts the existence of the chiral
magnetic effect [4–6], or a flow of electric current
along the magnetic field in equilibrium,

(1)

where Bμ ≡ (1/2)�μναβuνFαβ, uμ is the 4�velocity of an
element of the liquid, and Fαβ is the standard electro�
magnetic field tensor. In the rest frame, Bμ reduces to
the magnetic field. We mostly focus on the vortical
chiral effect [7–9], according to which helical macro�

1 The article is published in the original.
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scopic motion of the liquid contributes to the axial

current :

(2)

We note that σω is actually a function of both the
chemical potential and temperature. For simplicity,
we mostly suppress the temperature dependences.
This does not affect our conclusions.

Currents (1) and (2) are predicted to exhibit
remarkable properties. First, the coefficients σM and
σω are uniquely determined in terms of the chiral
anomaly. Thus, for a single massless Dirac fermion
with an electric charge e,

(3)

where μ5 = μL – μR is the chiral chemical potential.
For the vortical conductivity σω, we obtain

(4)

where μ = μL + μR. Amusingly, Eqs. (1) and (3) imply
that the laws of classical electrodynamics are modified
for chiral liquids.

Another intriguing feature of chiral liquids is that
currents (1) and (2) are nondissipative. This conclu�
sion already follows from the observation that the cur�
rents exist in equilibrium. Another way of reasoning
[10] is that both the r.h.s. and the l.h.s. of (1) are odd
under time reversal. This is a strong indication that the
dynamics behind Eqs. (1) and (2) is Hamiltonian and
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there is no dissipation. For a discussion of the analogy
with supeconductivity, we refer the reader to [11].

As mentioned above, the numerical values of σM
and σω can be traced back to the coefficients in front
of the product of electric and magnetic fields in the
expression for the famous chiral anomaly [12]:

(5)

where the definition of the magnetic field adjusted to
the consideration of hydrodynamics is given above,
while the electric field in the medium is defined as
Eα = uβFβα. In the hydrodynamic approximation,
relations (3) and (4) were originally obtained in [9]. In
their approach, the authors of [9] start with both elec�
tric and magnetic external fields present and then let
Eα  0. Remarkably enough, currents (1) and (2)
survive in the limit of chiral anomaly (5) being
switched off by taking the limit Eα  0. This implies
that already in the limit of the electromagnetic cou�
pling αel  0 the conserved axial charge is modified
in the hydrodynamic setup.

The reason for such a modification can be
explained in a number of ways (see in particular, [13–
17]). What is specific for hydrodynamics, is the change
of the original Hamiltonian H0 of the system to a mod�
ified one:

(6)

where μ is the chemical potential associated with a
conserved charge Q. As a result, there is a change
already in the conserved axial current (i.e., in the limit
of vanishing electromagnetic coupling). In a some�
what simplified form, the axial charge within the
hydrodynamic approach is given by

(7)

where  counts the number of elementary chiral

constituents and the fluid helicity is �fluid = xμ2ω0,

where ωα = (1/2)�αβγδu
β∂γuδ and we reserve for the

possibility of the chemical potential varying in space.2 
The conservation of hydrodynamic axial charge (7)

suggests a possibility of transition of the chirality of the
constituents into helical macroscopic motion of the
liquid. As is mentioned in the abstract, this is an analog
of the Einstein–de Haas effect. A new point is what
can be called the clash of symmetries: on the micro�
scopic level, chirality is conserved, but on the macro�
scopic level, we are using the standard hydrodynamic
description, which does not incorporate the conserva�

2 For simplicity, we quote the expression for the fluid helicity in
flat space. In curved space, there is an extra geometric factor of

 in the integrand.
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tion of chirality in general and was originally devel�
oped for nonrelativistic motion of the constituents.

One way to resolve this contradiction is to impose
extra constraints on the hydrodynamic description
[18]. Generically, the solution of these constraints is
that classically chiral liquids are dissipation�free. In
particular,

(8)

We note that phenomenological consequences from
the (hypothesized) conservation of fluid helicity were
studied in great detail in magnetohydrodynamics3

(see, e.g., [19] and the references therein).

The outline of this paper is as follows. In Section 2,
we discuss the issue of the conservation of macro�
scopic helical motion in hydrodynamics in more
detail. The main conclusion is that the conservation of
the axial charge implies dissipation�free hydrodynam�
ics of chiral liquids in the classical approximation. In
Section 3, we discuss reservations and problems.

2. AXIAL CHARGE IN HYDRODYNAMICS

2.1. Hydrodynamics As an Effective Field Theory

Hydrodynamics is a traversal framework to
describe motions in the infrared limit, when the wave
lengths of perturbations are much larger than the
mean free path of constituents. The beauty of this
approach is that hydrodynamic equations of motion
reduce to general conservation laws. In particular, in
the absence of external fields, these equations are

where Tμν is the energy�momentum tensor and  is

a set of conserved currents.4

Since explicit expressions for Tμν and  involve
phenomenological expansions in derivatives, hydrody�
namics is usually considered as a “typical” effective
field theory. However, apart from integrating out hard,
or ultraviolet degrees of freedom, the hydrodynamic
approximation also assumes a change of language.
Indeed, the μQ term in hydrodynamic Hamiltonian (6)
does not correspond literally to any integration over
fundamental interactions and the very notion of the
chemical potential can be introduced only on average,
or thermodynamically (e.g., [20]). Also, the problem
we are considering here is somewhat specific since we
need a closed expression for the axial charge, with no

3 Note, however, that in magnetohydrodynamics, the electromag�
netic field is considered to be dynamical, while many results we
are quoting refer to the case of global symmetries, or external
magnetic and electric fields.

4 For a moment, we ignore possible quantum anomalies. Moreover,
we consider only U(1) anomalies, and then we can redefine the
anomaly as a new conserved charge, such that the external elec�
tromagnetic field has a nonvanishing axial charge if EαBα ≠ 0.
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further contributions [13] from the gradient expan�
sion.

The simplest way to argue that the hydrodynamic
axial charge contains extra pieces, see (7) is as follows
[13]. We first assume the chemical potential to be
small, such that the μQ term in hydrodynamic Hamil�
tonian (6) can be treated as a perturbation. Using the
relation δL = –δH for a small variation of the
Lagrangian, we find for small μ:

(9)

where the charge Q above is related to the current jα in

the standard way, Q = xj0. Finally, using the anal�

ogy with the electromagnetic interaction, δLel =

e xAαjα, we come to the substitution

(10)

Extra pieces in the axial charg generated via this sub�
stitution.

In more detail, we recall that chiral anomaly (5)
can be reformated [21] as the statement that the actu�
ally conserved axial charge contains a term with exter�
nal electromagnetic potentials:

(11)

where we introduce the notation �magn, common in
papers on magnetohydrodynamics, which stands for
the magnetic helicity,

where (i, j, k) range over 1, 2, 3, Ai and Fjk are the elec�
tromagnetic potential and field strength tensor, and e
is the electric charge of the massless fermions.

Now, by substitution (10), we generate further
terms in the hydrodynamic expression for the con�
served axial charge [16, 18]:

(12)

where the so�called naive axial charge is expressed in
terms of the density ρA of the fermionic constituents,

 = xρA, the so�called mixed helicity is given

by

and �fluid and �magn are defined in Eqs. (7) and (11).
We emphasize again that only the last term in the r.h.s.
of Eq. (12), that is, �magn, corresponds to chiral
anomaly (5) on the fundamental level of the underly�
ing field theory, while the sum of the first three terms is
to be conserved classically.
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So far, we treated the μQ piece in Hamiltonian (6)
as a perturbation, and the whole construction seems to
be straightforward. In the spirit of the hydrodynamic
approximation, one could introduce further terms in
the derivative expression for the currents and look for
the solution of the hydrodynamic equations order by
order in terms of such expansions [9]. However, from
the experience with evaluating the axial charge in per�
turbative vacuum (11), we learn that the anomalous
term �magn is uniquely fixed and has no extention in
terms of perturbative expansions either in the electric
charge or in derivatives. We expect a similar phenom�
enon to occur in the hydrodynamic approximation,
such that the densities of �fluid and �mixed receive no
further contributions [13]. To achieve this, we need to
formulate the hydrodynamic approximation with an
explicitly chiral invariant infrared regularization
(which fails, exceptionally, in the one�loop calculation
in the effective theory).

In the case of an ideal chiral liquid, such a formal�
ism is worked out in [17, 22] and the references
therein. The infrared degrees of freedom in the field
theoretic language are provided by real scalar fields ϕi

and ψ, where the number of ϕs is equal to the number
of spatial coordinates and the ϕi can be thought of as
comoving coordinates of an element of liquid. This
identification introduces symmetries that have a geo�
metric origin, like the invariance of the volume under
reparameterization of the coordinates. Another real
field ψ is needed to realize a flavor symmetry, or a con�
served charge. We can develop intuition on symmetries
obeyed by the interactions of the field ψ and its rela�
tion to hydrodynamics if we think of ψ as of a relativ�
istic generalization of the phase of the wave function in
the case of superfluidity.

The interaction of the fields ϕ, ψ is highly nonlin�
ear. The main advantage, however, is that symmetries
of the theory can now be realized in field�theoretic
terms. Thus, we can expect that the modified axial
current, like (7), arises as a Noether current, which is
conserved, as usual, on the mass shell, or with the
account of hydrodynamic equations of motion. These
expectations are indeed realized. For details, we refer
the reader to [17] and quote here only the final result,
relevant to our purposes:

(13)

where ωα = (1/2) αβγδuβ∂γuδ, Bα and Eα are magnetic
and electric fields in the medium defined above (with
the constant e included into the definition of the elec�

tromagnetic potential), and  and  are con�
structed on the hydrodynamic “shadow” potential
μuμ + eAμ in a similar way. The chemical potential μ
satisfies the standard thermodynamic relation dP =
Tds + qdμ, while field�theoretically it is expressed in
terms of the covariant derivative of the field ψ men�
tioned above, μ = uαDαψ.

∂α μ2ωα μBα+( ) BαEα B̂αÊ
α

,–=

�

B̂α Êα
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A crucial point is that the so�called transverse elec�

tric field  entering Eq. (13) vanishes on the hydro�
dynamic equations of motion for the ideal liquid, or in
equilibrium [17]. Moreover, the hydrodynamic axial
charge is defined to all orders in the derivative expan�
sion, as desired (see the discussion above). A reserva�
tion is that these properties hold if the liquid velocity
uα is defined in a specific frame. Namely, in this frame,
also called the “entropy frame” [22], the entropy cur�
rent is simply sα = suα, where s is the entropy density.
Moreover, the entropy current is defined geometrically
in such a way that it is conserved automatically, i.e., off
the mass shell:

There are no further corrections to the entropy current
due to the expansion in derivatives. We also note that
we are using general curvilinear coordinates and the
expression for the axial charge in terms of the current
density contains a geometric factor due to the invari�
ant volume element.

2.2. Clash of Symmetries?

We now consider a nonideal liquid. Then there
seemingly arises a problem with the axial current con�
servation. In its generality, it can be formulated as the
lack of matching between symmetries at microscopic
and macroscopic scales. Microscopically, we consider
a chiral invariant theory of massless constituents (bar�
ring the chiral anomaly (5) for the moment, which is
of the second order in electromagnetic interactions).
The classification of particles according to their chiral
charges is specific for massless fermions. In general,
there is no macroscopic conservation law matching
the chirality conservation in the underlying field the�
ory.

To reiterate the point, we compare the conservation
of the angular momentum and of chirality. We invoke
the conservation of the total angular momentum when
interpreting the Einstein–de Haas experiment. In this
case, we have the conserved total angular momentum
that incorporates both the spin angular momenta of
the constituents (electrons) and the angular momen�
tum of a rotating body:

(14)

where the summation is over all the constituents and
the axis of rotation is directed along the z coordinate.
As a result of absorbing spinning elementary electrons,
there arises macroscopic rotation of a rigid body, in
accordance with conservation law (14).

Now, in the case of chiral liquids, we have an extra
condition of the axial charge conservation. In the limit

Êα

sα �
αβγδ

�ijk ∂βϕ
i( ) ∂γϕ

j( ) ∂δϕ
k( ).=

Mz( )total si
z

i

∑ Mrotation
z

,+=

of vanishing electromagnetic coupling, αel  0, the
conserved axial charge is given by (7):

(15)

where χi are chiralities of the constituents and Hfluid =

xμ2ω0 is the helical charge associated with the

axial current  = (μ2)ωα (see the discussion above).

The conservation of  suggests the possibility of
transition of the chirality of the constituents into heli�
cal macroscopic motion. Such a transition could be
called a chiral analog of the Einstein–de Haas effect.

As we discussed in the preceding subsection, in the

case of the ideal liquid, both  and �fluid are sep�

arately conserved in equilibrium. The transition, say,

from  ≠ 0, �fluid = 0 to �fluid ≠ 0, with the con�

servation of , is still possible if the configuration

with �fluid = 0 does not correspond to the minimum of
energy and is in fact unstable. (For related discussions,
see [23–27] and Section 3 below.)

We now try to include dissipation. Then the mac�
roscopic helicity �fluid is not conserved. Indeed, rela�
tion (13) reduces to the standard anomaly relation (5)
only upon the use of the equations of motion of the
ideal liquid, which correspond to the vanishing viscos�
ity η = 0. Actually, the observation that the fluid helic�
ity conservation assumes the vanishing viscosity was
made a long time ago, in the context of magnetohy�
drodynamics (see, in particular, [19]).5

We can readily understand why the conservation of
axial charge (7) requires the vanishing viscosity.
Because of the viscosity, or friction, the helical motion
slows down and recedes. Thus, �fluid diminishes as
time progresses. On the other hand, we assume that
η ≠ 0 arises due to some chiral invariant interaction
and neglect the chiral anomaly. This implies that the

total chirality of the constituents, , conserved.

For consistency with the axial charge conservation, we
therefore need the validity of Eq. (8).

It is interesting to note that the limit of vanishing
electric resistivity, or infinite conductivity σE is also
closely related to the conservation of extended axial
charge (12). Namely, in the limit as σ  ∞, the elec�
tric field in the rest frame of an element of liquid van�

5 On the detailed level, there are important differences between
the formalism in [17], which we quoted in Section 2, and that in
papers [19] on traditional magnetohydrodynamics.
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ishes. Therefore, the Lorentz invariant EαBα vanishes
in any frame as well:

(16)

as is emphasized in many papers on magnetohydrody�
namics (see, e.g., [19]). Moreover, for a large finite σE,
we obtain the estimate

(17)

This relation has been used in many applications; for
recent examples and further references, we refer the
reader to [25].

3. RESERVATIONS AND CONCLUSIONS

3.1. Instabilities

In the preceding section, we argued that the axial
current conservation in the hydrodynamic approach
imposes constraints on the hydrodynamics itself (in
the classical approximation). Essentially, dissipation�
free hydrodynamics is favored in the classical approx�
imation (see, in particular, Eq. (8)). Such a scenario
looks very attractive since it allows appreciating the
most striking effects—the low ratio η/s, chiral mag�
netic effect (1), chiral vortical effect (2)—in a unified
way, as consequences of the chiral nature of the under�
lying field theories. It is therefore important to analyze
reservations and possible alternative scenarios.

We begin with a discussion of the expansion in elec�
tromagnetic interaction. To derive (8), we neglected
electromagnetic interactions and used a “shortened”
version of the conserved axial charge (see Eq. (7))
instead of the full expression (see Eq. (12)). At first
sight, solving hydrodynamic equations order by order
in the expansion in electromagnetic interactions is a
legitimate procedure.

There is a possibility, however, that in fact there are
instabilities, and the true equilibrium state corre�
sponds to the (approximate) equality of all four terms
contributing to the total conserved axial charge (12):

(18)

in apparent defiance of the expansion in electromag�
netic interactions. We note that in this regime, the
smallness of the extra powers of the electromagnetic
coupling is compensated by large amplitudes of elec�
tromagnetic potentials in the components with small
momenta, k ~ 1/αel.

The instability implies, for example, that if we start

with a state with  ≠ 0 and �magn = 0, then there is
spontaneous production of domains with �magn ≠ 0
[27]. This scenario is supported, in particular, by an
explicit identification of an unstable mode (see [26]).

∂α�
αβγδAβ∂γAδ EαBα 0 with∼
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d
dt
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A

The time needed for developing the instability is of the
order of

(19)

[26] and becomes infinite in the limit of vanishing
electromagnetic coupling, σel  0.

3.2. Chiral Dynamics, 
Dependence on Infrared Physics

To avoid confusion, it is worth emphasizing that
various possible scenarios for the dynamics of chiral
liquids can be considered. First, one can assume that
there exists a chiral invariant interaction, much stron�
ger than the electromagnetic interaction, which is
responsible for the gross features of the liquid. Then
the condition of the conservation of the total con�
served axial charge (12) can apparently be imposed in
each order in electromagnetic interactions. This sce�
nario essentially implies dissipation�free hydrody�
namics, or ηclassical  0, as discussed in detail in Sec�
tion 2. Unexpectedly, the total charge is split into at
least two pieces that are conserved separately accord�
ing to the equations of motion. Therefore, the transi�
tions between the states with the same total charge and
different “sub�charges” can occur only through for�
mation of bubbles of a new vacuum.

Closer analysis reveals, however, that the back�
reaction of the medium, or higher orders in electro�
magnetic interaction can crucially change the proper�
ties of chiral liquids because of the instabilities [23,
25–27]. To compensate for the smallness of αel, one
has to include into consideration distances and time
intervals inversely proportional to αel (e.g., (19)). One
can visualize this instability in the following way.
Because of the chiral magnetic effect, there is flow of
electric currents. These currents induce electric fields,
which in turn change the axial charge of the constitu�
ents because of the anomaly. This example demon�
strates that the properties of plasma might depend on
the details of the infrared regularization, as is empha�
sized in [27, 28]. Indeed, for the instability to be real�
ized, the total volume is to be large in units (μ5αel)

–3.

Moreover, if we make one step further and account
for the back�reaction of the medium to the electric
field arising as a result of the instability, then the
dynamical scenario can change again because of the
possibility of screening of the electric field in the
medium. In particular, if we consider magnetohydro�
dynamics, or the case where electrodynamics entirely
determines the properties of the plasma, the dissipa�
tion�free limit implies complete screening of the elec�
tric field [19]:

As a result, the instability would be curbed. Spontane�
ous production of domains with a nonzero �magn is

τinstability 1/μ5αel
2∼

σE ∞, EαBα( )medium 0.
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still possible, but the lifetime of the false vacuum with
�magn = 0 would be exponentially large,

(20)

To our knowledge, no explicit calculations of this life�
time were attempted in the literature.

3.3. Instability in a Euclidean Mirror

Instabilities discussed so far refer to the
Minkowskian picture. Many papers on the subject,
however, use the finite temperature T ≠ 0 to fix the the�
ory in the infrared (e.g., [15, 17]) and start with the
Euclidean picture, with its cyclic time coordinate 0 ≤ τ
≤ 1/T. One might suspect that since the lifetime of
false vacuum (19) is large, the instability does not
develop at temperatures T � 1/τinstability.

The question can be phrased in another way. The
magnetic conductivity is related to a static correlator
of two spatial components of the electromagnetic cur�
rent. In the momentum space,

(21)

where ω is the frequency, (i, j, k) = (1, 2, 3), and there
is no summation over repeated indices. The chiral
anomaly is encoded in the 3D action

(22)

which can be reconstructed, e.g., from Eqs. (6) and
(11) and in many other ways. The magnetic conduc�
tivity is uniquely fixed by action (22), which is linear in
derivatives.

We note that the standard criterion for superfluidity
also refers to a static correlator, this time of the spatial
components T0i and T0k of the energy�momentum
tensor. If we start from the Minkowskian definition,
the superfluidity is signaled by the following form of
the correlator:

(23)

In this case, however, the continuation to the Euclid�
ean space is much more subtle because of δ(ω) in the
r.h.s. of Eq. (23). Also, a pole in q2, or a long�range
force is required for the superfluidity, while correlator
(21) is saturated by a polynomial. In the cases of both
superfluidity and the chiral magnetic effect, the cur�
rents are evaluated in equilibrium, and hence the strik�
ing differences between correlators (21) and (23)
might look puzzling.

The chiral�plasma instability mentioned above
arises if the electromagnetic field is treated as dynam�
ical. To clarify the Euclidean counterpart of the phe�
nomenon, we add the standard 3D kinetic term

τbubble formation μ5
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Lkin
1
4
�� d

3xFij
2 i j, 1 2 3, ,=( )∫–=

to action (23) and evaluate the static photon propaga�
tor with the anomalous piece (22) taken into account
[27]. The result is

(24)

where σ = μ5e
2/2π2.

If we now use propagator (24) to evaluate correla�
tor (21), then there is a pole at q2 = 0, similar to the
case of the superfluidity�related correlator (23).
Thus, the apparent simplicity of the evaluation of
correlator (23) starting from action (22) is due to the
fact that we have not found the 3D spectrum of exci�
tations. On the other hand, checking the criterion of
superfluidity (23) does require the knowledge of the
spectrum.

Moreover, and more importantly, there is an un�
physical pole at q2 = σ2, which reveals the nonunitary
nature of the theory we are considering. This loss of
unitarity can be specified in the following way. The
static limit of the 4D theory that we are considering
can be compared with the Euclidean version of the
(2 + 1) theory with a nonvanishing topological photon
mass. Then the anomalous action (22) corresponds to

an imaginary topological photon mass  = iσ
[23, 24, 27], or

(25)

This is the signature of the plasma instability in
Euclidean disguise. The problem of the unphysical
pole is not removed by introducing finite temperature.

3.4. Double Counting?

Finally, we mention another reservation concern�
ing our conclusions in Section 2. Namely, in the case
of a perfect liquid, there seem to be two conserved cur�
rents. Indeed, the total current is represented as

(26)

where ρ is the corresponding charge density and the
rest of the notation is the same as in Eq. (13). Accord�
ing to (13), the second term in (26) by itself satisfies
the (anomalous) conservation law in equilibrium.
Hence, the first term, ρuμ, is to be conserved sepa�

rately.6 This seems uncomfortable, especially in view
of the fact that on the fundamental level, in terms of
massless fermions, there exists a single current. The
sum of the two terms in the r.h.s. of (26) refers to the
hydrodynamic matrix element of this fundamental
current. The splitting of the total current into two
terms seems not well defined in general.

The problem could also be formulated in the fol�
lowing way. One can derive the chiral vortical effect by
considering field theory in a rotating frame [7].
Another purely geometric derivation can be given in

6 For a related discussion, see [29] and the references therein.
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terms of the Fermi sphere in the momentum space
[16]. Thus, we could speculate that the origin of the
chiral vortical effect is similar to the origin of, say, the
Unruh effect and is rooted in a (hidden) use of a non�
inertial frame. Then the (anomalous) conservation of
the total current could have a kinematical origin. We
note that there is an explicit construction [17] of an
off�shell (anomalous) conservation of the total current
within the Schwinger–Keldysh formalism. This con�
struction has not been derived from first principles.
The mechanism behind it could be similar to what we
are describing here as the use of a noninertial frame.

At this moment, we cannot provide an educated
appreciation of the physics behind the possible off�
shell conservation of the current.

CONCLUSIONS

The main problem that we addressed in this note is
how to reconcile the chiral symmetry of underlying
theories with the general hydrodynamic framework.
The point is that chiral symmetry is a property of
(some of) theories of massless fermion fields. The clas�
sification of massless spin particles is different from
the classification of massive particles. The standard
hydrodynamics, on the other hand, uses the symme�
tries that are rooted only in symmetries of space�time
and, as a result, apply to both relativistic and nonrela�
tivistic motions, with or without dissipation.

One way to avoid this “clash of symmetries” is to
impose constraints on hydrodynamics, by requiring
the conservation of macroscopic helical motion.
Essentially, the constraints require the liquid to be
ideal, and therefore describable in terms of the field
theory. The axial current is then a Noether current,
(anomalously) conserved on the mass shell, i.e., with
the equation of motion of the ideal liquid taken into
account. The derivation of such currents can be found,
in particular, in [17, 22]. The construction turns in fact
highly nontrivial and the expression for the conserved
current contains a finite number of terms in the deriv�
ative expansion if a specific choice of the frame is
made. An unexpected problem emerges: there seem to
arise two independently conserved currents.

Another possibility is that we should reserve for an
off�shell conservation of the axial current in hydrody�
namics. We have not found any precise mechanism for
the off�shell conservation. However, the analogy with
the Unruh effect, where radiation of particles arises
because of the use of a noninertial, accelerated frame,
might serve as a guide. Indeed, the appearance of spe�
cifically hydrodynamic terms in the axial charge seems
to be related to the use of noninertial frames, like a
rotating frame. This possibility might correspond to
the construction of an automatically (anomalously)
conserved current within the Schwinger–Keldysh for�
malism presented in [17].

These notes were prepared for a volume devoted to
the 60th birthday of Valery Anatol’evich Rubakov. It is

a pleasure to acknowledge the influence of his papers
and discussions with him on our research. We are also
thankful to A.S. Adoshkin, V.P. Kirilin, and A.V. Sad�
ofyev for thorough discussions of the problems consid�
ered here.
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