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1 1. INTRODUCTION

It is a great pleasure to write this paper dedicated to
Valery Rubakov on the occasion of his sixties birthday.
Our scientific careers have started simultaneously
when we were students at the Moscow University and
shared common interests in physics—classical and
quantum gravity—and invariably pursued these inter�
ests, in our own ways and styles, throughout the years
to come. In particular, the results of this work were
conceived in the course of discussions, when Valery
suggested to work out a covariant method for calculat�
ing radiative corrections in brane gravity models [1] as
a means of establishing applicability limits of the per�
turbation theory. By the time this method has become
ready for use, the peak of interest in brane models was
basically over, and interests of scientific community
have shifted to other areas, not the least of those being
the idea of holographic duality and the AdS/CFT cor�
respondence. Interestingly, that old method now
seems to find application in this field, and, I hope,
Valery will be amused to see how his suggestions are
realized in this nonperturbative concept of high�
energy physics.

The idea of holographic duality between a
d�dimensional conformal field theory (CFT) and a
theory in the (d + 1)�dimensional anti�de Sitter (AdS)
space�time that initially began with supersymmetric
models of N × N�matrix valued fields [2–4] was later
formulated for much simpler “vectorial” models with�
out the need in supersymmetry [5]. These models have
an infinite tower of nearly conserved higher�spin cur�
rents and in this way naturally lead to a corresponding
tower of massless higher�spin gauge fields. Therefore,
the holography concept implies that the dual theory
should contain these fields in AdS spacetime, thus
forming the Vasiliev theory of nonlinear higher�spin
gauge fields [6, 7], which necessarily imply an infinite
set of those, because the principle of gauge invariance
for spins s > 2 cannot be realized for a finite tower of
spins. In contrast to the original supersymmetric mod�
els in which the AdS/CFT correspondence was
checked for supersymmetry�protected correlators,
holographic duality in vectorial models underwent
verification by numerous nontrivial calculations that
go beyond simple kinematical or group�theoretical
reasoning and extend from the tree level O(N1) to the
“one�loop” order O(N0).

In particular, the calculation of the U(N) singlet
scalar CFT partition function on S1 × S2 was shown to
agree with the corresponding higher�spin partition
function calculation in AdS4 [8], a result extended to1 The article is published in the original.
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the O(N) singlet sector of a scalar CFT [9]. Then these
results were confirmed and extended to arbitrary
dimensions in [10], including the comparison of ther�
mal and Casimir energy parts of partition functions in
CFTd and AdSd + 1 in [11]. The vanishing Casimir
energy in odd�dimensional theory (associated with the
absence of the conformal anomaly) implies the same
on the AdS side, which is nontrivial because it implies
an infinite summation over the tower of higher�spin
gauge fields—the property that was observed in d = 4
on the AdS5 side [12] and confirmed by an explicit
summation of conformal anomaly coefficients as for
conformal higher�spin fields on the S4 side [13]. The
list of similar results agreeing on both sides of the
AdSd + 1/CFTd correspondence was extended in [11].

A special class of holographic dualities is associated
with the so�called double�trace deformations of the
scalar CFT [14], which generates its renormalization
group (RG) flow from the IR fixed point (free CFT) to
the UV fixed point [15]. The associated holographic
dual of this RG flow in the AdS spacetime is the tran�
sition between two different boundary conditions on
the dual massless gauge fields of higher spins at the
AdS boundary [12, 15].

The variety of these miraculous coincidences and
the gradually extending area of validity of duality rela�
tions (from supersymmetric models to nonsuper�sym�
metric ones, from lower spacetime dimensions and
lower spins to higher ones, from divergent and Casimir
energy parts of partition functions to their thermal
parts, from bosons to fermions, etc.) imply that there
should be some deep functional reasons underlying all
this and perhaps even allowing one to extend holo�
graphic duality beyond AdS isometry and conformal
invariance. The goal of this paper is to show that this is
indeed possible. Within the class of holographic dual�
ities associated with the double�trace deformation of
CFT, there exist universal relations for one�loop func�
tional determinants of local and nonlocal operators on
generic (d + 1)�dimensional spacetime and its d�
dimensional boundary [16] that guarantee this duality
irrespective of the background geometry and confor�
mal invariance. The only condition that relates (d +
1)�dimensional and d�dimensional theories is that at
the tree level, the boundary theory be induced from the
bulk by a Dirichlet boundary value problem; then their
one�loop quantum corrections dutifully match. The
proof of this statement is based on linear algebra of
(pseudo)differential operators and a sequence of
Gaussian functional integrations. When the theory has
a small parameter 1/N playing the role of a semiclassi�
cal Planck constant, this sequence of integrations
might apparently be extended to holographic duality
beyond the one�loop order O(N0).

2. DOUBLE�TRACE DEFORMATION OF CFT 
AND THE ADS/CFT CORRESPONDENCE

The double�trace deformation [14] of the large�N
CFT of scalar fields Φi(x), i = 1, …, N, by the square of
the O(N) invariant single�trace scalar operator

leads to the renormalization group flow between the
IR fixed point of the free CFT and its UV fixed point.
In the limit of large N, this was clearly demonstrated
by using the Habbard–Stratonovich transformation as
follows [15].

We consider the generating functional ZSFT(ϕ) of
the correlators of J for the perturbed theory with
sources ϕ,

with

(2.1)

(2.2)

For the sake of generality of our formalism we write
the operator f = f(x, y) in what follows in a rather gen�
eral form even though it is ultralocal in CFT models,
f(x, y) = fδ(x, y), and we also use the condensed nota�
tion omitting the sign of integration over d�dimen�
sional coordinates. A functional dependence in the d�
dimensional space is denoted by round brackets, like
SCFT(Φ) ≡ SCFT(Φ(x)), and the operators acting in this
space, like f, are boldfaced.

Representing the part of the exponential in (2.1)
quadratic in J as a Gaussian integral over an auxiliary
field φ (the Habbard–Stratonovich transform), we
have

(2.3)

where det f denotes the functional determinant of the
operator f(x, y) on the space of functions of d�dimen�
sional coordinates.

J x( ) Φi x( )Φi x( ),=

SCFT Φ( ) SCFT Φ( ) 1
2f
��� dxJ2 x( ),∫–

ZCFT ϕ( )

=  dΦ SCFT Φ( )– 1
2
��J Φ( )f 1– J Φ( ) ϕJ Φ( )+ +⎝ ⎠

⎛ ⎞ ,exp∫

ZCFT ϕ( )
ZCFT 0( )
���������������� 1

2
�� Ĵf 1– Ĵ ϕĴ+⎝ ⎠
⎛ ⎞exp

CFT

=

≡ ϕĴ( )exp〈 〉CFT
f

,

Ĵf 1– Ĵ dxdyĴ x( )f 1– x y,( )Ĵ y( ),∫=

ϕĴ dxϕ x( )Ĵ x( ).∫=

ϕĴ( )exp〈 〉CFT
f

=  detf( )1/2
dφ 1

2
��φfφ– φ ϕ+( )Ĵ+⎝ ⎠

⎛ ⎞exp
CFT

,∫
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As usual in large�N CFT, we assume the vanishing

expectation value of , 〈 〉 = 0, and the smallness of

higher�order correlators 〈 … 〉 as N  ∞,

(2.4)

(2.5)
where –F is the notation for the undeformed two�
point correlator of J. From the new Gaussian integra�
tion in (2.3), we then have

(2.6)

where
(2.7)

Therefore, the correlator  in the double�trace
deformed CFT interpolates between the UV and IR
fixed points of the theory:

(2.8)

For an ultralocal f = fδ(x, y) in the CFT with a single�

trace scalar operator  of dimension Δ, the correlator

 = –F in the coordinate and momentum rep�
resentations behaves as

Thus, the above two limits indeed correspond to the
respective UV,

and IR,

fixed points. In the IR limit, the correlator (modulo
the contact term f = fδ(x, y)) is dominated by the sec�
ond term

in the long�distance regime |x – y| � |f|1/(d – 2Δ) [15].
The renormalization group flow interpolates between
two phases in which the operator J(x) has different
dimensions, Δ = Δ+ in IR and d/2 – Δ = Δ– in UV.

This double�trace deformation picture also applies
in the context of the dual description of higher�spin
conformal gauge fields [12, 15]. Since the O(N) or

U(N) scalar or fermion CFT has a tower of nearly con�
served higher�spin currents (x), their gauging

results in the corresponding tower of higher�spin

gauge fields (x):

(2.9)

This class of theories was conjectured to be dual to
Vasiliev theories of higher�spin gauge fields in AdS (a
very incomplete list of references is contained in [17–
22]). The description of these dualities can be summa�
rized as follows.

In AdSd + 1 with the coordinates X ≡ XA = X1, …,
Xd + 1, there exist totally symmetric transverse gauge

fields Φ = (X) with the quadratic action

(2.10)

that generates linearized equations for massless spin�s
tensor fields. The covariant form of this quadratic
action is known [23], but its concrete expression is not
needed in what follows. At the boundary of AdSd + 1,
which is either Rd or Sd (or S1 × Sd – 1 in the thermal
case) and is parameterized by coordinates x ≡ xμ = x1,
…, xd via the embedding functions X = e(x), the
boundary values of the tangential components of Φ,

(2.11)

represent the gauge fields of the d�dimensional CFT,
coupled to its conserved higher�spin currents. Then
the AdSd + 1/CFTd conjecture means that the generat�
ing functional of the correlators of conserved currents
of the undeformed CFT living on the boundary
∂(AdSd + 1) can be obtained from the path integral of
the dual theory of gauge fields in the AdSd + 1 space�
time subject to Dirichlet boundary conditions at this
boundary:

(2.12)

In what follows, we always use a vertical bar to denote
the restriction of a bulk quantity to the boundary.

Using this relation in the right hand side of (2.3),
we obtain

Ĵ Ĵ

ĴĴ Ĵ

ϕĴ( )exp〈 〉CFT
1
2
��ϕ ĴĴ〈 〉ϕ⎝ ⎠
⎛ ⎞ 1

2
��ϕFϕ–⎝ ⎠

⎛ ⎞ ,exp≡≈

Ĵ x( ) Ĵ y( )〈 〉 F x y,( ),–=

ϕĴ( )exp〈 〉CFT
f

=  detf( )1/2
detFf( ) 1/2– 1

2
��ϕ 1

F 1– f 1–+
����������������ϕ–⎝ ⎠

⎛ ⎞ ,exp

Ff F f.+≡

ĴĴ〈 〉CFT
f

ĴĴ〈 〉CFT
f 1

F 1– f 1–+
����������������–=

F– …, f 1– F � 1,+

f– f f 1– F( )
1–

…, f 1– F � 1.+ +⎩
⎨
⎧

Ĵ

ĴĴ〈 〉CFT

F– 1

x y– 2Δ
��������������� 1

kd 2Δ–
����������.∼ ∼

f 1– F 1

fkd 2Δ–
������������ � 1,–∼

f 1– F 1

fkd 2Δ–
������������ � 1,–∼

f f 1– F( )
1– 1

x y– 1/ d 2Δ–( )
��������������������������∼

Jμ1…μs

ϕ
μ1…μs

J Jμ1…μs
x( ) Φi x( )∂μ1

…∂μs
Φi x( ),∼=

ϕ ϕ
μ1…μs x( ).=

Φ
A1…As

Sd 1+ Φ[ ] d
d 1+ X� Φ X( ) ∇Φ X( ),( )

AdS

∫=

Φ Φ
μ1…μs e x( )( )≡ ϕ

μ1…μs x( ),=

ϕĴ( )exp〈 〉CFT

DΦ Sd 1+ Φ[ ]–( )exp

Φ ϕ=

∫

DΦ Sd 1+ Φ[ ]–( )exp

Φ 0=

∫

�������������������������������������������������.=
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(2.13)

where the total action in the functional integrand con�
tains both the bulk part and the boundary part located
at ∂(AdSd + 1) = Md

(2.14)

and the integration in the denominator runs over the
fields Φ both in the bulk and on the boundary. This
means that the boundary conditions on a saddle�point
configuration Φf are affected by the boundary part of
the action (that is, by f, which is a kernel of the qua�
dratic boundary action in (2.14)), and that is why we
label it by the subscript f.

The kernel of the bulk Lagrangian in given by the
second�order operator F(∇), whose derivatives ∇ ≡ ∂X

are integrated by parts in such a way that they form
bilinear combinations of first�order derivatives acting
on two different fields (this is denoted by the left�right
arrow over F(∇)). Integration by parts gives nontrivial
surface terms on the boundary. In particular, this oper�
ation results in the Wronskian relations for generic test
functions Φ1, 2(X) on any spacetime domain Md + 1

with the boundary ∂Md + 1:

(2.15)

(2.16)

The arrows here indicate the direction of the action of
derivatives on either Φ1 or Φ2. These relations can be
regarded as a definition of the first�order Wronskian
operator W = W(∇) for F(∇). In simple models on the
AdS background and its conformal boundary, param�
eterized by coordinates XA = y, xμ, it basically reduces
to the normal to the boundary derivative, W(∇) ~ ∂y.

The saddle�point approximation for the path inte�
gral in the numerator of (2.13) is dominated by the
contribution of a stationary point of the total action
(2.14). In view of (2.16), the requirement of the van�
ishing first�order variation contains bulk and surface
terms,

(2.17)

which must vanish independently because δΦ(X) is
nonvanishing both in the bulk and at the boundary
since Φ is being integrated over all spacetime points.
Thus we obtain equations of motion for a stationary
configuration Φf(X) in the bulk and the boundary con�
dition at Md,

(2.18)

The latter is the generalized Neumann (or Robin)
boundary condition involving the normal�to�the�
boundary derivative of Φ(X) contained in W(∇). On
the contrary, f is an entirely d�dimensional operator,
which is ultralocal in the CFT theory of double�trace
deformations, but we keep it as a more general (differ�
ential or even nonlocal pseudo�differential) operator

ϕĴ( )exp〈 〉CFT
f

detf( )1/2

dφ 1
2
��φfφ–⎝ ⎠

⎛ ⎞ DΦ Sd 1+ Φ[ ]–( )exp

Φ φ ϕ+=

∫exp∫

DΦ Sd 1+ Φ[ ]–( )exp

Φ 0=

∫

����������������������������������������������������������������������������������������=

=  detf( )1/2

DΦ Sd 1+ Φ[ ]– 1
2
�� Φ ϕ–( )f Φ ϕ–( )–⎝ ⎠

⎛ ⎞exp

all Φ

∫

DΦ Sd 1+ Φ[ ]–( )exp

Φ 0=

∫

��������������������������������������������������������������������������������������������,

S Φ[ ] Sd 1+ Φ[ ] 1
2
�� Φ ϕ–( )f Φ ϕ–( )+≡

=  1
2
�� d

d 1+ XΦ X( )F ∇( )Φ X( )

AdS

∫

+ 1
2
�� d

dx Φ x( ) ϕ x( )–( )f Φ x( ) ϕ x( )–( ),

Md

∫

↔

d
d 1+ X Φ1F ∇( )Φ2 Φ1F ∇( )Φ2–( )

Md 1+

∫

=  d
dx Φ1WΦ2 Φ1WΦ2–( ),

∂Md 1+

∫–

→

→

←

←

d
d 1+ XΦ1FΦ2

Md 1+

∫ d
d 1+ XΦ1 FΦ2( )

Md 1+

∫=

+ d
dxΦ1WΦ2 .

∂Md 1+

∫

↔ →

→

d
d 1+ XδΦ FΦ( )

AdSd 1+

∫

+ d
dxδΦ W f+( )Φ fϕ–( )

∂AdSd 1+

∫ 0,=

→

→

F ∇( )Φf X( ) 0, W ∇( ) f+( )Φf fϕ.= =
→
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in Md in what follows. The solution to this boundary
value problem can be given in terms of the Green’s
function (X, Y) of F(∇) subject to this (homoge�

neous) Neumann boundary condition:

(2.19)

and is given by

(2.20)

Here,

is the notation for the boundary�to�bulk propagator—
the Green’s function with its second argument put on
the boundary via the embedding function YA = eA(yμ).
Its subscript indicates that this Green’s function is
determined by the generalized Neumann boundary
conditions with a particular function f.

Then the stationary (on�shell) value of the action
(2.14)

(2.21)

where
(2.22)

is the notation for the boundary�to�boundary propa�
gator—the restriction of both Green’s function argu�
ments to the boundary, denoted by two vertical bars for
brevity. Again using the condensed notation on the
boundary, we omitted the sign of integration over the
boundary coordinates in (2.20), (2.21).2 Thus, finally,
we have

(2.23)

where

is the bulk functional determinant of F on the space of
functions subject to the generalized Neumann bound�
ary conditions (2.19). The denominator of (2.13) is
given of course by the functional determinant with the
Dirichlet boundary conditions corresponding to Φ| = 0,

(2.24)

2 It is useful to apply this DeWitt condensed notation for integral
operations on the boundary, because these operations have
properties of formal matrix contraction and multiplication.

GNf

F ∇( )GNf
X Y,( ) δ X Y,( ),=

W f+( )GNf
X Y,( ) X ∂Md 1+∈ 0,=

→

Φf X( ) dyGNf
X y,( )fϕ y( )

b

∫ GNf
fϕ.≡=

GNf
X y,( ) Gf X Y,( ) Y e y( )=≡

S Φf[ ] 1
2
�� dxdyϕ x( )f f 1– x y,( ) GNf

x y,( )–( )fϕ y( )

b

∫=

≡ 1
2
��ϕ f fGNf

 || f–[ ]ϕ,

GNf
x y,( ) GNf

X Y,( ) X e x( )= Y, e y( )= GNf
||≡ ≡

DΦ Sd 1+ Φ[ ]– 1
2
�� Φ ϕ–( )f Φ ϕ–( )–⎝ ⎠

⎛ ⎞exp∫

=  DetNf
F( ) 1/2– 1

2
��ϕ f fGNf

 || f–[ ]ϕ–⎝ ⎠
⎛ ⎞ ,exp

DetNf
F DetGNf

( ) 1–=

DA Sd 1+ Φ[ ]–( )exp

Φ 0=

∫ DetDF( ) 1/2–
.=

Functional determinants of operators acting in the
(d + 1)�dimensional bulk here and in what follows are
denoted by Det with a subscript indicating the type of
boundary conditions for the class of functions on
which the determinant is calculated (in contrast to det
for operators acting on the boundary).

Substituting these results in (2.13), we obtain

(2.25)

and the comparison of the exponentials and preexpo�
nential factors here and in (2.6) then yields the tree�
level and one�loop relations

(2.26)

(2.27)

These relations are direct consequences of
AdS/CFT correspondence (2.12) in the lowest two
orders of the 1/N expansion, but the logic of this deri�
vation can be reversed. If we start with these relations,
then the holographic duality is enforced in this
approximation. As we see shortly, a simple exercise on
linear algebra and Gaussian integration provides a
proof that these relations are very general and hold for
a generic second�order differential operator F(∇) act�
ing on an arbitrary spin–tensor field for a generic
manifold with a boundary. By a special rule, it induces
a (generically nonlocal pseudodifferential) operator Ff
acting on the boundary that can be regarded as the
inverse (boundary�to�boundary) propagator of the
surface theory induced from the bulk theory. No par�
ticular geometry of the bulk spacetime or its boundary
is assumed in this construction. All this means that the
holographic duality between d� and (d + 1)�dimen�
sional theories can be extended beyond AdS isometries
and conformal invariance under the single assumption
that the d�dimensional theory is induced from the bulk
theory by integrating out its bulk deg of freedom.

3. HOLOGRAPHIC DUALITY
AND THE INDUCED BOUNDARY THEORY

For Eqs. (2.26)–(2.27) to hold, the boundary oper�
ator Ff should be related to the operator F(∇) acting in
the bulk and to relevant boundary conditions Nf on
∂Md + 1. To establish this, we address the duality rela�
tion (2.12) at the tree level. For a quadratic (d + 1)�
dimensional action of the form

(3.1)

the tree�level holographic duality (2.12) implies that

(3.2)

ϕĴ( )exp〈 〉CFT
f

detf( )1/2 DetNf
F

DetDF
�������������⎝ ⎠
⎛ ⎞

1/2–

=

× 1
2
��ϕ f fGNf

 || f–[ ]ϕ–⎝ ⎠
⎛ ⎞ ,exp

GNf
|| Ff

1–
,=

DetNf
F detFfDetDF.=

Sd 1+ Φ[ ] 1
2
�� dXΦ X( )F ∇( )Φ X( ),

AdS

∫=
↔

ϕĴ( )exp〈 〉CFT
Sd 1+ ΦD ϕ( )[ ]–( )exp

Sd 1+ ΦD 0( )[ ]–( )exp
�����������������������������������������,=



454

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 3  2015

BARVINSKY

where ΦD(ϕ) is a solution of the problem, F(∇)φD(X) =
0, φD| = ϕ(x), with inhomogeneous Dirichlet boundary
conditions. In view of relations (2.15) and (2.16), this
solution and its on�shell value of the action can be rep�
resented in terms of the Dirichlet Green’s function
GD(X, Y),

(3.3)

as

(3.4)

(3.5)

The expression  GD  || implies that Wronskian
operators act on both arguments of the kernel of the
Dirichlet Green’s function, and the result is restricted
to the boundary,

(3.6)

The result in (3.5) is exactly the tree�level boundary
effective action obtained from the original action (4.3)
by integrating out the bulk fields subject to fixed
boundary values ϕ(x), S(ϕ) = S[φD(ϕ)]. Accordingly,
the kernel of the quadratic form of (3.5) in ϕ is the
inverse propagator of the boundary theory,

(3.7)

which is generically a nonlocal operator in the space of
boundary coordinates x. Thus, the generating func�
tional of correlation functions in the undeformed CFT
is given by

(3.8)

with the two�point correlator of the  (cf. Eq. (2.5))
induced from the (d + 1)�dimensional bulk. In fact,
this is a basic relation of the linearized tree�level
AdS/CFT correspondence, which has been checked
in numerous models starting with [3, 4]. This fixes the
boundary operator Ff = F + f in the right�hand sides of
our basic relations (2.26), (2.27) in terms of the bulk
operator F(∇). We now proceed with the proof of these
relations.

F ∇( )GD X Y,( ) δ X Y,( ),=

GD X Y,( ) X e x( )= 0,=

ΦD X( )

=  dyGD X Y,( )W Y e y( )= ϕ y( )

Md

∫– GDW ϕ,–≡
←←

S ΦD[ ] 1
2
�� dxdyϕ x( ) WGDW x y,( )–[ ]ϕ y( )

Md

∫=

≡ 1
2
��ϕ WGDW ||–[ ]ϕ.

→ ←

→ ←

W
→

W
←

W GD W || x y,( )

≡ W ∇X( )GD X Y,( )W ∇Y( ) X e x( )= Y, e y( )= .

→

→

←

←

F δ2S
δϕδϕ
�����������≡ WGDW ||,–=

→ ←

ϕĴ( )exp〈 〉CFT
1
2
��ϕFϕ–⎝ ⎠

⎛ ⎞ ,exp=

ĴĴ〈 〉CFT F,–=

Ĵ

4. FUNCTIONAL DETERMINANTS 
RELATIONS

The idea of the derivation of relations (2.26) and
(2.27), that was first given in [16], is based on a
sequence of Gaussian functional integrations. Any
action S[Φ] quadratic in its field Φ(X) can give rise to
two Gaussian functional integrals. One of them is of
the form

(4.1)

where integration runs over all fields both in the bulk
and on its boundary, and the other,

(4.2)

implies integration with fixed values of Φ at the
boundary. Obviously, these path integrals are related

by the equation Z = ϕZ(ϕ), and hence independent

calculations of its left� and right�hand sides yield cer�
tain tree�level and one�loop relations. As we see in
what follows, under an appropriate choice of S[Φ]
they turn out to be exactly the ones advocated above.

We consider the bulk–boundary action of the field
Φ(X) in the (d + 1)�dimensional (bulk) spacetime
Md + 1 and its boundary Md = ∂Md + 1,

(4.3)

(4.4)

We recall that the boundary embedding into the bulk
in terms of x = xμ is denoted by XA = eA(xμ) and, as pre�
viously, the vertical bar denotes the restriction of a bulk
quantity to the boundary. The field Φ(X) and the sec�
ond�order differential operator F(∇) have absolutely
generic spin–tensor structure, and there are no
restrictions on the geometry of the bulk Md + 1 and its
boundary Md. Similarly to (2.16), the derivatives of
F(∇) in the bulk part are integrated by parts in such a
way that they form bilinear combinations of first�order
derivatives. As a kernel, the boundary part of the
action contains some local or nonlocal (pseudodiffer�
ential) operator f = f(∂), ∂ = ∂x acting in the space of x.
In contrast to the bulk part, integration by parts on the
boundary is irrelevant for our purposes, because Md is
assumed either to be closed compact or to have trivial
vanishing boundary conditions at its infinity. Function
j(x) plays the role of sources conjugate to ϕ(x) and
located on the boundary.

Z DΦ S Φ[ ]–( ),exp

all

∫=

Z ϕ( ) DΦ S Φ[ ]–( ),exp

Φ ϕ=

∫=

d∫

S Φ[ ] 1
2
�� dXΦ X( )F ∇( )Φ X( )

Md 1+

∫=

+ dx 1
2
��ϕ x( )f ∂( )ϕ x( ) j x( )ϕ x( )+⎝ ⎠
⎛ ⎞ ,

Md

∫

↔

Φ Φ X( ) ∂Md 1+
≡ Φ e x( )( ) ϕ x( ).= =
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The calculation of (4.2) repeats the derivation in
Section 2, and the answer is given by

(4.5)

where Φf is a stationary point of action (4.3) satisfying
the problem with inhomogeneous generalized Neu�
mann boundary conditions

(4.6)

and F denotes the bulk ((d + 1)�dimensional)

functional determinant of F(∇) on the space of func�
tions subject to these (homogeneous) boundary condi�
tions.

Similarly to (2.17), problem (4.6) naturally follows
from the action (4.3) and Wronskian relations for F(∇),
because the variation of the action is given by the sum
of bulk and boundary terms, which should vanish sep�
arately since the action should be stationary also with
respect to arbitrary variations of the boundary fields
δϕ. The Neumann Green’s function of this problem,
Eq. (2.19), gives a solution of (4.6) that in the con�
densed notation of Section 2 (cf. Eq. (2.20)) has the
form Φf(X) = – |j and gives rise to the on�shell value

of the action as a functional of the boundary source
j(x):

(4.7)

Here, again,

is the notation for the boundary�to�boundary propa�
gator, with the restriction of both Green’s function
arguments to the boundary denoted by two vertical
bars for brevity. To simplify the formalism, we omitted
the sign of integration over the boundary coordinates
in (4.7).3 Thus, we finally have

(4.8)

Alternatively, we can calculate the same integral by
splitting the integration procedure into two steps: first
integrating over bulk fields with fixed boundary values
and then integrating over the latter. This allows rewrit�

ing the same result in the form Z = Z(ϕ), where

the inner integral (4.2),

(4.9)

3 It is useful to apply this DeWitt condensed notation for integral
operations on the brane, because these operations have proper�
ties of formal matrix contraction and multiplication.

Z DetNf
F( ) 1/2– S Φf[ ]–( ),exp=

F ∇( )φf X( ) 0, W f+( )φf j x( )+ 0,= =
→

DetNf

GNf

S φf[ ] 1
2
�� dxdyj x( )GNf

x y,( )j y( )

b

∫– 1
2
�� jGNf

 || j.–≡=

GNf
x y,( ) GNf

X Y,( ) X e x( )= Y, e y( )= GNf
 || ≡≡

Z DetNf
F( ) 1/2– 1

2
�� jGNf

 || j⎝ ⎠
⎛ ⎞ .exp=

dϕ∫

Z ϕ( ) DΦ S Φ[ ]–( )exp

Φ ϕ=

∫≡

=  DetDF( ) 1/2– S ΦD[ ]–( ),exp

is given by the contribution of the solution of Dirichlet
problem (3.4) with the Dirichlet Green’s function
GD(X, Y) (cf. Eq. (3.3)). The corresponding on�shell
action equals

(4.10)

The part quadratic in ϕ here coincides with the
induced action (3.5) in Section 3 modulo the addi�
tional f�term.

Substituting (4.9) with (4.10) in Z = Z(ϕ), we

again obtain the Gaussian integral over ϕ that is satu�
rated by the saddle point ϕ0 of the above boundary

action (4.10), ϕ0 = – j, and the final result is

(4.11)

where we recall that det denotes functional determi�
nants in the d�dimensional boundary theory.

In view of the arbitrariness of the boundary source
j, comparing the tree�level and one�loop (preexpo�
nential) parts with those of (4.8) immediately yields
two relations

(4.12)

(4.13)

These are exactly the relations (2.26), (2.27) that
underlie the dual AdS description of the double�trace
deformation of CFT models. The one�loop�order
equation (4.13) here relates functional determinants
of the bulk operator on different functional spaces
defined by Neumann and Dirichlet boundary condi�
tions and intertwines them via the determinant of the
boundary operator.4

When applied to a large�N CFT, these relations
describe a deformation of the boundary CFT that
induces a renormalization group flow from the infra�
red (f = ∞) to the ultraviolet (f = 0) fixed points of this
theory and generates the corresponding increase in the
central charge [24] (or the conformal anomaly a�coef�
ficient in the 4D case [25]). From (4.13), the change
of the f parameter is determined by the ratio

(4.14)

where in the second equality we took into account that
for an ultralocal kernel f = fδ(x, y), its determinant det
f = 1 (e.g., in dimensional regularization) does not give

4 This might perhaps be a field�theoretic analogue of Vasiliev’s
determinant relation in the operator algebra of conformal cur�
rents [22] based on different star products—a counterpart of
different functional spaces on the field theory side.

S ΦD[ ] 1
2
��ϕ WGDW || – f+[ ]ϕ jϕ+=

≡ 1
2
��ϕFfϕ jϕ.+

→ ←

dϕ∫

Ff
1–

Z DetDF( ) 1/2–
detFf( ) 1/2– 1

2
�� jFf

1– j⎝ ⎠
⎛ ⎞ ,exp=

GNf
 || Ff

1– WGDW ||– f+[ ] 1–
,≡=

→ ←

DetNf
F detFfDetDF.=

DetNf1

F

DetNf2

F
��������������

detFf1

detFf2

�����������
det 1 f1

1– F+( )

det 1 f2
1– F+( )

��������������������������,≡=
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any contribution. This is the relation that was formu�
lated in [26, 27] as the ratio of the bulk theory partition
functions with different values of the f coefficient in

terms of the 〈 〉CFT correlator of the unperturbed

boundary CFT, –F =  GD ||.5

While the right�hand side of this equation was
derived on the CFT side by using the Hubbard–Stra�
tonovich transform [15], the left�hand side equality
was proved in [26] by using an expression for the func�
tional determinant of the Sturm–Lioville operator in
terms of its basis functions [28, 29] or by the explicit
use of the operator spectra on the AdS background. On
the contrary, the power of our result (4.13) is that it
holds for generic bulk–boundary backgrounds for
operators F(∇) and f of the most general type and
admits any type of covariant regularization for UV
divergences [16].

4.1. The Case of Gauge Theories

An important remark is that the functional deter�
minant duality relation (4.13) also applies to gauge
theories, which is the case of major interest for us
because our goal is the holographic duality for towers
of higher�spin fields in the bulk and its boundary. A
potential difficulty here might be the fact that in the

bulk, the totally symmetric spin�s fields (X)
have bulk indices ranging over d + 1 values, while the

boundary fields (x) have only d�dimensional
tensor components, and hence the bulk F and bound�
ary F operators have essentially different spin struc�
tures. This controversy is reconciled, however, by not�
ing that spin s > 0 theories are gauge invariant under
transformations of the form

(4.15)

(4.16)

(4.17)
generated by a spin�(s – 1) field Ξ(X) with the tangen�
tial components Ξ|| = ξ(x) (Dμ denotes the covariant
derivative on the boundary). The balance of physical
degrees of freedom in the bulk and on the boundary is
then maintained by imposing gauge conditions fixing
these transformations. Background covariant gauges
of the form

fix them incompletely: there remain residual gauge
transformations that are the zero modes of the second�

5 To compare (4.14) with the formalism in [26] we should bear in
mind that our f is the negative inverse of f in [26], and our F is

the negative of the 〈 〉CFT correlator denoted by G in [26].

ĴĴ

W
→

W
←

ĴĴ

Φ
A1…As

ϕ
μ1…μs

Φ ΦΞ Φ ΔΞΦ, ϕ ϕξ+ ϕ Δξϕ,+= =

Ξ || ξ,=

ΔΞΦ
A1…As X( ) ∇

(A1Ξ
A2…As ) X( ),=

Δξϕ
μ1…μs x( ) D

(μ1ξ
μ2…μs ),=

H Φ( ) H
A1…As 1– X( ) ∇BΦ

BA1…As 1– X( )∼ 0= =

order bulk Faddeev–Popov operator Q = 

defined by

(4.18)

These modes are parameterized by the boundary val�
ues Ξ| = ξ(x), which perform gauge shift (4.15) of the
boundary fields ϕ. Therefore, these residual gauge
transformations can be gauged out by imposing the
boundary gauge conditions on ϕ of the form

In their turn, these generate a nondegenerate bound�

ary Faddeev–Popov operator Q =  defined by

(4.19)

Altogether, this is equivalent to introducing the
Faddeev–Popov gauge�breaking factor
δ[H(Φ)]δ(h(ϕ))MH, h[|Φ] under the path integral sign

with6

(4.20)

Again, using the obvious relation

(meaning that the integral over the full algebra of
gauge transformations decomposes into the integra�
tion over the algebra in the bulk with fixed transforma�
tions on the boundary and the subsequent integration
over these boundary transformations), we evaluate the
Faddeev–Popov gauge fixing factor as

(4.21)

which similarly to (4.13) factorizes into the product of
the bulk Dirichlet and boundary counterparts. We can
use the ’t Hooft trick to convert delta�function type
gauges into the bulk and boundary gauge breaking
terms

6 The ghost factor we use here involves a generic gauge, whereas
the works on higher spin gauge fields on AdS background [30]
usually use a particular (DeWitt background covariant) gauge
defined by the generator of the gauge transformation. Moreover,
in [30] the power of the Faddeev–Popov determinant in the
ghost factor is different, because all the determinants are defined
on functional spaces of symmetric tensor fields constrained by
conditions of transversality and tracelessness.

QB1…Bs 1–

A1…As 1–

ΔΞH Φ( ) QΞ.=

h ϕ( ) h
μ1…μs 1– x( ) Dνϕ

νμ1…μs 1– x( ).∼=

Qν1…νs 1–

μ1…μs 1–

Δξh ϕ( ) Qξ.=

MH h, Φ[ ]( ) 1–

=  DΞδ H ΦΞ( )[ ]δ h ϕξ( )( )∫ DetNQ( ) 1–
.≡

DΞ …( )∫ dξ DΞ …( )

Ξ ξ=

∫∫=

DΞδ H ΦΞ( )[ ]δ h ϕξ( )( )∫

=  dξδ Qξ( ) DΞδ QΞ[ ]

Ξ ξ=

∫∫

=  detQ( ) 1– DΞδ QΞ[ ]

Ξ 0=

∫ detQ( ) 1–
DetDQ( ) 1–

,=
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(4.22)

They contribute their respective gauge�breaking parts
to the operators F and Ff and make both of them non�
degenerate. Then, ultimately in higher�spin gauge
theories, relation (4.13) for the dual one�loop prefac�
tors takes the form

(4.23)

and it can again be laid in the basis of holographic
duality. Details of this bulk–boundary factorization,
including the Ward identities, which guarantee gauge
independence of both boundary and bulk factors in the
right�hand side of this relation (of the choice of
h(ϕ(x)) and H(Φ(X)) respectively), can be found in
[31]. The analysis in [31] was done in the spin�two
case, but it can easily be extended to all s.

5. CONCLUSIONS AND DISCUSSION

Thus, we have a strong evidence that the hologra�
phy principle extends beyond conformal symmetry
and AdS isometry of the underlying theories. In the
class of AdS/CFT dualities associated with the dou�
ble�trace deformation of CFT, holography is dutifully
enforced at the one�loop level wherever the holo�
graphic duality holds at the tree level in the form of the
boundary theory induced from the bulk via the
Dirichlet boundary value problem. This opens up
prospects for the further progress in the holographic
concept. First, the arbitrariness of the background
gives a firm ground for the tree�level duality beyond
the quadratic approximation for the action of bulk and
boundary theories. Second, the obvious identity

(5.1)

applied to a nonlinear bulk–boundary action with
1/N  0 playing the role of h,

(5.2)

suggests sequence of new higher�loop identities start�
ing with (4.12), (4.13) and involving tree�level vertices
of the action. This might help extending the known
results on the AdS/CFT correspondence beyond the
one�loop approximation.

Of course, there are certain limitations in the appli�
cability of the suggested method. It seems to be work�

δ H Φ( )[ ]δ h ϕ( )( ) 1
2
�� d

d 1+ XH2 Φ X( )( )∫–⎝
⎛exp

– 1
2
�� d

dxh2 ϕ x( )( )∫ ⎠
⎞ .

DetNQ

DetNf
F( )1/2

���������������������� detQ

detFf( )1/2
������������������

DetNQ

DetNF( )1/2
���������������������,=

DΦe NS Φ[ ]–

all

∫ dϕ DΦe NS Φ[ ]–

Φ ϕ=

∫∫=

S Φ[ ] d
d 1+ X 1

2
��S 2( )Φ

2 1
3!
����S 3( )Φ

3 …+ +⎝ ⎠
⎛ ⎞

Md 1+

∫=

+ d
dx 1

2
��f 2( )ϕ

2 1
3!
����f 3( )ϕ

3 …+ +⎝ ⎠
⎛ ⎞ ,

Md

∫

ing in only one direction: from a local theory in the
bulk to a potentially nonlocal theory on the boundary
(we recall that the critical point of our derivation is a
local bulk operator F(∇) of the second order in deriv�
atives, the corresponding definition of its Wronskian
operator W(∇), and the related Dirichlet and Neu�
mann boundary value problems). At the same time,
known numerous checks of the AdS/CFT correspon�
dence [11] start from a free local CFT at the boundary
and match with partition functions of local, although
apparently nonlinear, dual theories in the AdS bulk. In
order to invert the setting in our holography deriva�
tion, perhaps one might start with the attempt to solve
a mathematical problem as follows. Given a generic
boundary action functional S(ϕ) of the field ϕ(x), find
the functional of the bulk action S[Φ] on Md + 1 whose
on�shell value (subject to Dirichlet data on ∂Md + 1)
matches S(ϕ),

(5.3)
Apparently, this problem does not have a unique solu�
tion, but the requirement of locality of S[Φ] might
restrict the class of possible solutions (if any), and
then, given the boundary theory with an action S(ϕ),
one may apply the above derivation by first recovering
the local S[Φ].

The practical importance of functional determi�
nant relations (4.12), (4.13) is that they can be used in
concrete physical problems. In [16], these relations
were demonstrated to be useful for the derivation of
surface terms of the Schwinger–DeWitt (Gilkey–
Seely) coefficients in the heat kernel trace expan�
sion—a method important for the calculation of the
Casimir energy, the boundary UV divergences, etc.
The bulk–boundary/brane action (4.3) finds applica�
tion in the Randall–Sundrum brane�world model
[32], where the operator f is generated by the tension
term on the brane. In the Dvali–Gabadadze–Porrati
(DGP) model [33], f is a second�order operator
induced by the brane Einstein term, f(∂) ~ �/μ, where
μ is the DGP scale responsible for the cosmological
acceleration [34]. In the context of the Born–Infeld
action in D�brane string theory with vector gauge
fields, f(∂) is a first�order operator [35].

Very interesting is the class of models in which the
holographic duality is not associated with the confor�
mal infinity of the AdS spacetime but is realized for
dynamically evolving (cosmological) branes that are
nontrivially embedded into the spacetime with extra
dimensions [1, 32–34]. One such model is the large�N
CFT�driven 4D cosmology whose partition function
serves as a source of quasi�thermal initial conditions
for the Universe [36]. It is dual to the 5D Schwarzs�
child�de Sitter spacetime with an embedded spherical
shell carrying the 4D Einstein action [37]—a realiza�
tion of the dS/CFT correspondence [38] rather than
the AdS/CFT one. It is important that this 4D shell
surrounding the Euclidean bulk black hole is not

δS Φ0[ ]
δΦ0

��������������� 0, Φ0 ϕ S Φ0 ϕ( )[ ] S ϕ( ).= = =
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static, but rather its radius is periodically oscillating.
This oscillatory dynamics in the bulk incorporates a
dual description of the self�consistent 4D cosmologi�
cal evolution driven by the large�N CFT in a quasi�
thermal state, the amount of its quasi�equilibrium
radiation being related to the bulk black hole mass.
Without a doubt, there are many more potential reve�
lations and applications within this approach in per�
turbative and nonperturbative quantum gravity.
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