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1. INTRODUCTION

The ordering in spin systems is usually associated
with the standard magnetic order for which the mean
spins 〈Sn〉 at the sites are nonzero and form various
magnetic structures (ferromagnets, antiferromagnets,
etc.; see [1, 2]). The main property of magnetically
ordered systems is symmetry breaking with respect to
time reversal, 〈Sn〉  –〈Sn〉 when t  –t. However,
the possibility of the existence of a spin�nematic state
for which the mean spins at the sites 〈Sn〉 are zero, but
the spontaneous symmetry breaking in the spin system
is associated with the anisotropy of some higher spin
projection correlators was pointed out fairly long ago
[3]. The spin�nematic state can arise from the correla�
tion of spins at various sites, such that the symmetry
with respect to time reversal for the entire system is not
broken [3]. Such states were probably detected for the
low�dimensional LiCuVO4 magnet [4, 5]. The possi�
bility of the realization of nematic states through the
existence of spin multipole order parameters including
the products of the mean spin operator projections at
the same site is no less interesting. Such order is attrib�
utable to nontrivial means of the form 〈 … 〉;
for spin S, it makes sense to consider n ≤ 2S. Here, n =
1 corresponds to the dipole order parameter, i.e., the
mean spin 〈S〉, n = 2 corresponds to the quadrupole
one, n = 3 corresponds to the octupole one, etc. An
example of a spin nematic with quadrupole order for a
system with spin S = 1 was considered in [3]. The
problem of such (single�site) spin nematics is closely
related to the problem of quadrupole ordering and

Sα1
Sα2

Sαn

peculiar quadrupole dynamics that has long been dis�
cussed in the literature (see, e.g., [6–14]).

The nematic order associated with the nontrivial
spin multipole order parameters at a single site at 〈S〉 =
0 is a purely quantum phenomenon. Its description is
outside the scope of the so�called spin coherent states
or coherent states of the Lie group SO(3) ~ SU(2) (see
[13, 14]). For these states, the absolute value of the
mean spin operator is always nonzero, with |〈S〉| = S
for spin S. The spin coherent states give an accurate
description of the system for a Hamiltonian contain�
ing only the terms linear in spin operators at a given
site, in particular, for an ordinary bilinear exchange
interaction of the form –J(Sl · Sl'). For such a Hamil�
tonian in the case where the initial state is an SU(2)�
coherent state, the spin dynamics is defined by the sys�
tem of Landau–Lifshitz equations for the spins [13,
14]. Therefore, for the nematic states to be realized,
apart from the bilinear interaction, the Hamiltonian of
a system with spin S = 1 must also include higher
(non�Heisenberg) terms. A biquadratic exchange
interaction of the form –K(Sl · Sl')

2 is possible for an
isotropic system with spin S = 1, where Sl and Sl' are
the spin operators at neighboring sites l and l', J and K
are, respectively, the Heisenberg and biquadratic
exchange constants, and it is the constant K that deter�
mines the existence of a nematic state [3].

The systems with magnetic�ion spin S = 1 have
been studied most extensively, and we will discuss their
properties to the extent to which this is necessary for
the purposes of our paper—the analysis of nematic
states for systems with higher spins. The spin�nematic
state with S = 1 in which the dipole spin ordering

ORDER, DISORDER, AND PHASE TRANSITION
IN CONDENSED SYSTEM

Dynamic Properties of Magnets with Spin S = 3/2
and Non�Heisenberg Isotropic Interaction

O. A. Kosmacheva, Yu. A. Fridmana*, E. G. Galkinab, and B. A. Ivanovc

aVernadsky Taurida National University, pr. Akademika Vernadskogo 4, Crimea, Simferopol, 295007 Russia
bInstitute of Physics, National Academy of Sciences of Ukraine, Kiev, 03028 Ukraine

cInstitute of Magnetism, National Academy of Sciences of Ukraine, Kiev, 03142 Ukraine
*e�mail: yuriifridman@gmail.com

Received August 4, 2014

Abstract—The dynamic properties of a magnet with magnetic�ion spin of 3/2 and an isotropic spin interac�
tion of a general form have been investigated. Only four phase states can be realized in the system under con�
sideration at various relationships between the material parameters: the ferro� and antiferromagnetic phases
with saturated spin and the states with tensor order parameters, the nematic and antinematic ones. For these
phases, the spontaneous symmetry breaking is determined by the octupole order parameter containing the
mean values trilinear in spin operator components at a given site. The spectra of elementary excitations have
been determined in all phases. Additional branches of excitations arise in all four phase states

DOI: 10.1134/S1063776115010021



282

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 2  2015

KOSMACHEV et al.

parameter is zero, 〈S〉 = 0, is characterized by sponta�
neous rotational symmetry breaking associated with
the spin quadrupole parameters Sik = 〈SiSk + SkSi〉, i,
k = x, y, z [10, 15]. This state is invariant with respect
to time reversal, but spontaneous rotational symmetry
breaking associated with the quadrupole means takes
place for it.

The quadrupole ellipsoid, i.e., the ellipsoid with
the directions of its principal axes e1, e2, and e3 chosen
in such a way that 〈SiSk + SkSi〉 = 0 at i ≠ k, i, k = 1, 2,

3 and with its semiaxes being 〈 〉, 〈 〉, and 〈 〉 can
be chosen as a geometric image of these means. At
zero temperature T = 0, the spin state at each site is
determined by the pure quantum states of spin S = 1.
In the mean�field approximation, the nematic phase
of a magnet with the bilinear and biquadratic exchange
interactions of the nearest neighbors is stable at J < K
and J > 0. Using the states |0〉 and |±1〉 with a specified
spin projection onto some quantization z axis, it can be
shown that the state at the site |ψSN〉 = |0〉 corresponds
to the spin�nematic phase at T = 0 in this approxima�
tion [3]. This is probably the simplest case of nematic
order: the quadrupole ellipsoid degenerates into a flat

disk, 〈 〉 = 〈 〉 = 1 and 〈 〉 = 0. At a temperature
that is nonzero but below the critical one, T < TC, 0 <

〈 〉 < 〈 〉; the rotational symmetry Sαβ is restored
at T > TC [8, 16, 17]. Since the direction of the quanti�
zation z axis is arbitrary due to the isotropy of spin
interactions, the spin�nematic state can be described
by introducing a director vector n directed along the
rotation axis of the quadrupole ellipsoid. Clearly, the
states with n and –n are indistinguishable, and Sαβ is a
quantum analog of the de Gennes order parameter
that was introduced for ordinary nematic liquid crys�
tals [18]. The question about the nematic�phase stabil�
ity outside the scope of the mean�field approximation
in the two�dimensional case (or in the one�dimen�
sional case at zero temperature) is an open one (see
[15, 19–21]). However, in the three�dimensional case
of interest to us, there is no reason to doubt that the
nematic state is stable at a finite temperature, and the
mean�field approximation is suitable for its descrip�
tion far from the critical region [15, 19]. In the case
where the exchange integral J < 0, states with two mag�
netic sublattices arise for a crystalline magnet. (The
lattice is assumed to admit a breakdown into two
equivalent sublattices (a bipartite lattice).) If the
Heisenberg exchange exceeds the biquadratic one,
then an ordinary antiferromagnetic state is realized in
the magnet. In the opposite case, the situation is more
interesting, and the question about the ground state
becomes nontrivial, because the states with n and –n
are identical. It can be shown within the mean�field
approximation that an orthogonal�nematic state for
which the directions of n are orthogonal in the two
sublattices is realized in the system [19, 22, 23]. Since
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2 Sz
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2

there exist three such directions of the vector n, this
state is treated in the one�dimensional case as a semi�
ordered one [22], although the stability of the two�and
three�sublattice phases within the mean�field approx�
imation has been proven for square [23] and triangular
[24, 25] lattices, respectively (see Figs. 1 and 2 in [25]).
For low�dimensional systems, the question is still an
open one; numerical simulations of one�dimensional
systems point to states with trimerization [26, 27]. The
orthogonal nematic–ferromagnet and orthogonal
nematic–antiferromagnet phase transitions occurring
as the parameter J/K changes are degenerate first�
order phase transitions [23].

Thus, studies of the simplest spin�nematic model
suggest that such systems possess a number of unusual
properties. Such states have been actively studied in
crystalline magnets [9, 10], including low�dimen�
sional system [15, 19–21], over the last twenty years.
An additional interest in such states related to the
study of ultracold atomic gases with integer spins [28–
32], especially the Bose–Einstein condensation for
such gases in optical traps or lattices [28], has
appeared at present. It is also significant that such
condensates are characterized by a strong non�
Heisenberg spin interaction necessary for the exist�
ence of nematic states [30].

Thus, the nematic states for spin S = 1 have been
studied fairly extensively: the interactions of elemen�
tary excitations and the relaxation processes were
investigated for them [19, 33–36], and nonlinear exci�
tations, solitons, were found [37–40]. Both one�
dimensional solitons [37, 38] that resemble the Lieb
states of a nonideal Bose gas [41] discovered many
years ago and topological two�dimensional solitons
[39, 40] were obtained. These solitons also resemble
the corresponding excitations in antiferromagnets, see
[42–44] (in both cases, an approximate description
based on the sigma�model [15] can be used), but they
have unique properties near the nematic–ferromagnet
transition point [40] and at this point itself [40, 45].
A phenomenological theory of the relaxation dynam�
ics [36] and nonequilibrium thermodynamics [46, 47]
of spin nematics was constructed. The inelastic scat�
tering of neutrons was studied theoretically, and it was
shown how it could be used to analyze the elementary
excitations in these systems [25].

The question about the existence of nematic states
in systems with spins S > 1 is more complex, although
it has been studied for a fairly long time [19, 48, 49].
The most interesting feature of such systems is the
possibility of the appearance of nontrivial correlators
from an odd number of spins (for example, three) that
are not invariant with respect to time reversal even at
〈S〉 = 0. Although the states invariant with respect to
the substitution t  –t are usually called the spin
nematics [3, 48], using the term “spin nematic” for
such states [19, 50] in this paper will not lead to any
misunderstanding. Great interest in analyzing the
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nematic states in an ultracold Bose gas with spin S = 2
has arisen recently [51–55].

The possibility of the existence of spin nematic
states for systems with half�integer spins (the mini�
mum half�integer spin that admits a non�Heisenberg
interaction and nontrivial higher spin correlators is
S = 3/2) is no less interesting. Such states have been
studied less extensively, although this question is of
great importance for investigating the physical proper�
ties of ultracold Fermi gases, with the 132Cs, 9Be, and
135Ba gases with spin S = 3/2 in optical lattices in
which there is one atom per cell being examples
[56⎯59].

The nematic states of a magnet with spin S = 3/2
for which 〈S〉 = 0 and the means cubic in spin projec�
tion operators are nontrivial were obtained fairly long
ago [19, 49]. For the general model of an isotropic
magnet with spin 3/2 (see Eq. (1) below), a nematic
state was shown [19] to exist in the immediate vicinity
of the phase transition to the ferromagnetic state.
Fridman et al. [50] constructed the phase diagram of
an isotropic magnet with magnetic�ion spin 3/2 in the
mean�field approximation and found antinematic
states with two sublattices. The spin states in different
sublattices differ, but they transform into one another
in the case of time reversal. Thus, in addition to spon�
taneous rotational symmetry breaking, all nematic
phases of a magnet with spin S = 3/2 also exhibit sym�
metry breaking with respect to time reversal.

The static properties of the nematic phases of a
magnet with spin S = 3/2, in particular, the antine�
matic phases, give hope for the existence of nontrivial
properties of collective excitations in such systems.
However, the question about the dynamic properties
of non�Heisenberg magnets, especially about the
physical meaning of various branches in the spectrum,
has been barely investigated (the spectra in [50] were
discussed only to the extent to which they were impor�
tant for studying the stability of phases). The goal of
this paper is to investigate the spectrum of elementary
excitations for an isotropic magnet with magnetic�ion
spin 3/2 at various relationships between the exchange
integrals and to analyze the question about the com�
pleteness of all those spin states that were found in [19,
48, 50].

2. THE MODEL, THE GROUND STATES, 
AND THE METHODS

FOR ANALYZING THE SPECTRA

Consider an isotropic magnet with magnetic�ion
spin S = 3/2. Generally, the Hamiltonian of a system
with spin 3/2 and an isotropic exchange interaction
between the nearest neighbors is

(1)

where Sl is the spin operator at the lth site, J, K, and L
are the exchange integrals between the nearest spins,

� JSlSl' K SlSl'( )2 L SlSl'( )3+ +[ ],

l l'≠

∑–=

the summation in Eq. (1) is over all pairs of nearest
neighbors and each pair of nearest neighbors is taken
into account once. We will restrict our analysis only to
the lattices that admit a breakdown into two equivalent
sublattices, for example, cubic or square. We will per�
form our subsequent calculations for the case of low
temperatures (T  0), because it is in this case that
the quantum properties of the system are most con�
spicuous. The system described by Hamiltonian (1) is
invariant with respect to the transformations of the
rotation group SO(3) ~ SU(2). It is convenient to rep�
resent Hamiltonian (1) in terms of Stevens operators,
which are a set of irreducible combinations of the
operators of spin components [60]. For spin 3/2, these
operators are chosen in the form

where S± = Sx ± iSy, [A, B]+ = AB + BA denotes the
anticommutator of the corresponding operators.

To within an additive constant, Hamiltonian (1)
can be represented in terms of Stevens operators as a
sum of bilinear combinations:

(2)

where the following notation is used:

O2
0 3 Sz( )

2
S S 1+( ), O2

1– Sz Sx,[ ]+,= =

Õ2
1

Sz Sy,[ ]+, O2
2 1

2
�� S+( )

2
S–( )

2
+( ),= =

Õ2
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This form allows us to use the representation of the
coherent states for the group SU(4) that were used in [50].

The system under consideration has no preferential
direction, and the direction of the quantization (z) axis
can be chosen arbitrarily. Separating out the mean
fields associated with the mean magnetic moment (per

site) 〈Si〉 and the mean multipole fields  = 〈 〉 in
Hamiltonian (2), we will obtain a single�site Hamilto�
nian in the form

(3)

where z is the number of nearest neighbors.
To diagonalize Hamiltonian (3), we will use the

method developed in [61] that is based on the algebra of
Hubbard operators [62]. We will construct the Hubbard
operators Xij ≡ |i〉〈j|, where the state vectors |i〉 comprise
the standard complete set of eigenstates of the spin
operator with a given z spin projection [62, 63], on the
basis of eigenfunctions of the operator Sz. The relation
between the spin and Hubbard operators is

(4)

Formally, the single�site Hamiltonian can be writ�
ten in the representation of Hubbard operators as

where εi and Vij are the diagonal and off�diagonal
amplitudes, respectively. As a result of the unitary
transformation

the single�site Hamiltonian can be brought to the
diagonal form

with the parameters of the unitary transformations
being defined by the system of equations

The diagonalization problem is simplified consid�

erably by the fact that all of the means, except 〈Sz〉, ,

, and , are zero. This condition follows from the
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system’s symmetry and can be tested directly. The sin�
gle�site Hamiltonian then takes the form

(5)

where the following notation is used:

(6)

To diagonalize Hamiltonian (5), it will suffice to
make one “unitary rotation” α3/2, –3/2 that has the
meaning of Bogoliubov’s generalized u–ν transforma�
tion. Our analysis shows that the states |ψ(1/2)〉 and
|ψ(–1/2)〉 are never the “extremal” ones; the states
obtained by the unitary rotation from |3/2〉 and |–3/2〉
always correspond to the minimum and maximum
eigenvalues. Let us choose the states |ψ(3/2)〉 and
|ψ(⎯3/2)〉 in such a way that the smallest and largest
eigenvalues denoted by Emin and Emax correspond to
them and write the complete set of states as

(7)

where the energy levels are defined by the formulas

(8)

The parameter α of the generalized u–ν transfor�
mation is defined by the equation

(9)

The order parameters of the system can be deter�
mined at arbitrary relationships between the exchange
integrals from the relation between the spin operators
and the Hubbard operators constructed on the basis of
eigenfunctions (7):
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It is easy to see that, given equalities (6) and (10),
Eq. (9) can be transformed to Λ1sin2αcos2α = 0,
where we designate

(11)

It follows from the derived equation that in the case
where the combination of exchange integrals Λ1 does
not become zero, the Hamiltonian diagonalization
parameter α can take on only the values that are mul�
tiples of π/4.

Since we consider the case of low temperatures, the
system’s free energy (per spin) in the mean�field
approximation coincides with the lowest magnetic�
ion energy level Emin. Thus, for the free energy density
we obtain

which, given Eqs. (6) and (10), yields

(12)

By minimizing the free energy density in α, we
again arrive at the expression Λ1sin2αcos2α = 0 (see
(11)), i.e., only α = 0 and π/4 can correspond to the
minimum of the free energy density.

If Λ1 > 0, then the state with α = 0 is favorable; if
Λ1 < 0, then the state with α = π/2 is favorable. At α =

0, 〈Sz〉 = 3/2,  = 3,  = 3/2, and  = 0, corre�
sponding to the ferromagnetic phase with the maxi�
mum possible magnetic moment at the site. Similarly,
at α = π/2, we obtain the same saturated state but with
the opposite spin direction, 〈Sz〉 = –3/2. These states
are equivalent, and below we discuss only the case of
α = 0.

For the state with α = π/4, 〈Sz〉 = 0 and  = 0. The
nonzero quadrupole mean has the same value as that

for the ferromagnetic phase,  = 3, but, in this case,

the nontrivial means 〈(S+)3〉 and 〈(S–)3〉 arise and  =
3 (see (6)). Thus, a nematic state with zero mean mag�
netic moment at the site is realized at α = π/4. Note
that the situation here is significantly different than
that for a magnet with spin 1, for which the ferromag�
netic and nematic phases differed not only by the
mean spin but also by the quadrupole means. As will be
shown below, this difference between the static prop�
erties leads to a fundamental difference between the
spectra of collective modes in these two cases.

Thus, there exist phases with a considerable differ�
ence between the parameters when Λ1  ±0; in par�
ticular, 〈Sz〉 = 3/2 when Λ1  +0 in the ferromag�
netic phase, while 〈Sz〉 = 0 when Λ1  –0 in the
nematic phase (see (10)). At Λ1 = J – K/2 +
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103L/16 = 0, the energies of the phases coincide.
These two properties are typical of a first�order phase
transition. This result coincides with what was
obtained previously by different methods [19, 50], in
particular, by calculating the free energy based on the
coherent states of the group SU(4). However, in con�
trast to the standard situation, the parameter α at Λ1 =
0 is indefinite, i.e., all states with α ≠ 0 and π/4 have
the same energy at this point. These two phases are
also known to lose their stability as the point Λ1 is
approached: the ferromagnetic one when Λ1  +0
and the nematic one when Λ1  –0 [50]. In the lan�
guage of standard models of magnets, this means the
existence of a degenerate first�order transition point.
Such degeneracy is usually removed by generalizing
the model (usually by taking into account the higher
invariants); as a result, either a finite domain of exist�
ence of the phases or a “splitting of the point” into two
second�order transitions through an intermediate
phase with a low symmetry (in our case, α ≠ 0 and π/2)
is obtained (see [64]). However, this way is impossible
for the quantum model (1), because the higher terms
like (SlSl')

n with n > 3 are reduced to those that have
already been written out in (1). Such a behavior is
atypical of a first�order phase transition and is deter�
mined by an increase in model symmetry (from the
rotational symmetry SU(2) to at least SU(3) at Λ1 = 0),
i.e., this value corresponds to a quantum critical point
(see [50, 65]). The same situation also takes place for the
transitions between other phases in this model (the anti�
ferromagnetic and antinematic ones) and is also known
for an isotropic magnet with spin S = 1 [22, 23, 49].

The method of Green’s functions for the Hubbard
operators [62, 66], which is most appropriate to the
study of strongly correlated systems, can be used to
analyze the elementary excitations in a magnet with
S = 3/2. In our case, this approach requires cumber�
some calculations, but it admits an analytical calcula�
tion of the spectra in the entire domain of parameters
of the Hamiltonian and wave vectors when using some
approximations. The energy spectra of excitations for
strongly correlated systems are defined by the poles of
the Green’s function [66–68]. Just as in [68], the
reciprocal interaction radius is used as a small param�
eter that allows the perturbation theory to be applied.

Let us define the Matsubara Green’s functions as
follows [49]:

where  is the Wick operator, (τ) =

exp(�τ) exp(–J) is the Hubbard operator in the
Heisenberg representation, λ = α1, α2, …, α2S + 1, M1,
M2, …, M2S + 1; � = �0 + �int.

Since we will perform our subsequent calculations
in the mean�field approximation, we will need only
the “transverse” part of the exchange Hamiltonian
�int that can be represented as

Gλλ' n τ; n' τ', ,( ) T̂X̃n
λ

τ( )X̃n'
λ̃

τ'( )〈 〉 ,–=

T̂ X̃n
λ

Xn
λ
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where the components of the vector c(λ) are deter�
mined from the relation between the spin and Hub�

bard operators, and the matrix  can be repre�
sented as

The Fourier transform of the system of equations
for the Green’s functions can then be written as

and the Fourier components Gλλ'(k, ωn) are nonzero
only for even frequencies ωn = 2πnT, n = 0, ±1, ±2, …,
while the Larkin�irreducible graphs can be of the fol�
lowing types:

However, the system of equations for the Green’s
functions is simplified considerably in the zeroth
approximation in reciprocal interaction radius,
because in this approximation

where (ωn) = [iωn + α ⋅ E]–1 is the zeroth Green
function, b(α) = 〈α ⋅ X〉0 is the end factor, α is the root
vector whose components are determined by the alge�
bra of Hubbard operators [62, 65]. Thus, in the zeroth
approximation in reciprocal interaction radius, the
dispersion equation is

where

Since the technique of Hubbard operators allows
the single�site correlators to be accurately taken into
account, the dispersion equation is valid at arbitrary
relationships between the exchange integrals, i.e., in
various phase states. The results of our analysis of the
spectra in various phases are presented below in Sec�
tions 3–6.

�int
1
2
�� c λ( ) Ânn'c λ'( ),{ }Xn

λXn'
λ'

,

n n' λ λ', , ,

∑–=

Ânn'

Ânn'
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2
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2
��Σλλ

1

k ωn,( )–=

× c λ1–( ) Â k( )c λ2( ),{ }G
λ2λ'

k ωn,( ),

Σαβ k ωn,( ) ΣαM k ωn,( ) ΣMα k ωn,( ) ΣMM' k ωn,( )., , ,

Σαβ k ωn,( ) δαα'b α( )G0
α ωn( ),=

ΣαM k ωn,( ) ΣMα k ωn,( ) 0,= =

ΣMM' k ωn,( )
nMM'

T
��������δωn 0, ,–=

G0
α

det δi j xij+ 0; i j, 1 2 … 15,, , ,= =

xij G0
α ωn( )b α( )cij α( ), cij α β,( ) aik α β,( )Akj;= =

aik α β,( ) ci α( )ck β–( ).=

After discussing the general approaches and formu�
lating the problem, we will turn to a specific analysis of
the spin states and the spectra of elementary excita�
tions in the various phases of a magnet described by
Hamiltonian (1).

3. THE FERROMAGNETIC PHASE

Consider a system in the ferromagnetic phase.
As has been pointed out above, the solution of Eq. (9)
α = 0 corresponds to this phase state. The spin means
characterizing the ferromagnetic phase are

Emin is the lowest energy level in the ferromagnetic
state, while the ground�state wave function is the state
with the maximum spin projection, |ψ(3/2)〉 = |3/2〉.
In addition, the quadrupole means in this state are
defined by the expressions

Thus, the geometric image of the quadrupole
means in the ferromagnetic phase (quadrupole ellip�
soid) is an ellipsoid of revolution in spin space. The
symmetry of this ellipsoid is determined by the direc�
tion of the magnetic moment that coincides with the
direction of the principal axis of the ellipsoid. In con�
trast to a magnet with spin S = 1, the shape of the qua�
drupole ellipsoid is the same for the ferromagnetic and
nematic phases. In addition, the nontrivial octupole

mean  is zero, while  is a trivial constant and does
not affect the system’s dynamics. Consequently, in the
ferromagnetic phase, just as for a system with spin
S = 1, the symmetry of the quadrupole means is com�
pletely determined by the symmetry of the magnetic
moment. The presence of “nondipolar” means does
not manifest itself in the symmetry of the ground state
of the ferromagnetic phase.

However, the possibility of the existence of such
nondipolar means changes fundamentally the system’s
dynamics compared to the case of S = 1. Let us deter�
mine the spectra of excitations in the ferromagnetic
phase using the general dispersion equation. In the low�
temperature approximation, there will exist three mag�
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non branches of excitations [6] in the system whose
spectra in the nearest�neighbor approximation are

(13)

Here and below, Jk = JC(k), Kk = KC(k), and Lk =
LC(k) define the Fourier components of the corre�
sponding exchange integrals,

the summation is over all z vectors of the nearest
neighbors a, and k is a dimensionless wave (to be more
precise, quasi�wave) vector. For our estimates of a
hypercubic lattice, C(k) = 1 when k  0 and C(k) =
–1 at the edge of the Brillouin zone (this value is
k = kB = π in the one�dimensional model and the
boundary of the zone in a direction of type (111) in the
three�dimensional model), C(k) = 1/3 and –1/3 at the
boundary of the zone in the (100) and (110) direc�
tions, respectively. Note a common property of the

ε1 k( ) 3z
4
���� J Jk– 3

2
�� K Kk–( ) 63

16
���� L Lk–( )+ + ,=

ε2 k( ) 3z
2
���� K Kk– 5

4
�� L Lk–( )–=

+ J 1
2
��K– 103

16
�������L+ ,

ε3 k( ) 9z
4
���� L Lk–( ) J K

2
���– 103

16
�������L+ + .=

zC k( ) a k⋅( ),cos

a

∑=

spectra: the frequencies ε1(k) and ε2(k) at all parame�
ters of the problem coincide at the edge of the Bril�
louin zone, where C(k) = –1 (see Fig. 1).

It follows from expression (13) that the branch ε1
is a gapless Goldstone mode with a parabolic disper�
sion law at small k typical for an isotropic ferromag�
net. Our analysis shows that the “transverse” spin
density oscillations in this mode are associated with
the rotations of the direction of the principal axis of
the quadrupole ellipsoid.

Let us now discuss the remaining modes with the
frequencies ε2 and ε3. It is easy to see that in the case
where the bicubic interaction constant is zero (L = 0),
only two branches of excitations, ε1 and ε2, remain the
well�determined modes, while the frequency ε3
becomes a purely local state, ε3(k)  9(2J – K)/8
when L  0. Note that for a magnet with S = 1 at K =
0, when the specificity of a non�Heisenberg magnet
disappears (in particular, the nematic phase is absent),
the situation is analogous: one of the modes loses its
dispersion and becomes a purely local state. In the
limiting case of L = 0, the form of the branches ε1 and
ε2 is the same as that of the two collective modes in the
spectrum for a magnet with S = 1 (cf. (13) and the for�
mulas in [15, 22, 37]). All of this leads us to conclude
that the physical meaning of the mode ε2 is the same as
that for a ferromagnet with spin S = 1, i.e., the mode
with ε = ε2 describes the “longitudinal” spin dynamics
[37, 69]. This mode includes the longitudinal oscilla�
tions of the magnitude of the magnetization vector
whose direction remains parallel to the principal axis

4

0.2

2
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ε1, 2, 3/J

0.4 0.6 0.8 1.00
k/kB

ε3

ε2

ε1

ε3, L = 0

8
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Fig. 1. Dispersion laws for elementary excitations in the
ferromagnetic phase, the frequencies are normalized to J,
kB defines the boundary of the Brillouin zone. Here and
below, the construction was made for the one�dimensional
case (we chose z = 2) for simplicity, the generalization to
the case of an arbitrary dimension for a symmetric direc�
tion k presents no difficulty. The solid lines indicate the
spectra of elementary excitations at the center of the stabil�
ity region for the ferromagnetic phase (we chose K = J and
L = J/10). The dashed line indicates the absence of any
dispersion of the mode with ε3(k) at L = 0.
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Fig. 2. Dispersion law for the “octupole” branch of ele�
mentary excitations ε3(k) in the ferromagnetic phase near
the phase transitions to the nematic (Λ1  0) and anti�
nematic (Λ2  0) phases. For the case under consider�
ation, it is convenient to normalize the frequencies to |L|
(L is positive when Λ1  0 and negative when Λ2 
0). The segments of the thin dashed lines at k ~ 0 and in the
corner of the Brillouin zone k ~ π/a schematically repre�

sent the dependence (k) at Λ1 < 0, L > 0 and Λ2 < 0, L <

0, corresponding to the phase instability region.

ε3
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of the quadrupole moment ellipsoid (for more details,
see [69] and Fig. 2 in it). On the other hand, the mode
ε3 is determined by the specificity of the dynamics of a
magnet with spin S = 3/2 that is attributable to the
nontrivial octupole means.

Let us now consider the stability of the ferromag�
netic phase to arbitrary perturbations that correspond
to spectra (13). As is easy to see from the form of the
elementary excitation spectra in the ferromagnetic
phase, the magnon branches ε2, 3 at k = 0 have an
energy gap proportional to

Hence it follows that the condition for the stability to
homogeneous perturbations is Λ1 > 0, which coincides
with the well�known result [19]. This result is also
obtained by analyzing the free energy written out
above with respect to a variation of the parameter α.
Thus, the line Λ1 = 0 is the line of the phase transition
between the ferromagnetic and nematic phases.

Our analysis of the complete dispersion laws (13)
shows that their extrema are reached at symmetric
points of the Brillouin zone and the loss of stability
(frequency sign reversal) is associated with the behav�
ior of the spectrum either at k = 0 or at the edge of the
Brillouin zone, where C(k) = –1. At this point, the fre�
quency of the mode ε3 is

(14)

ε3, edge  0 when Λ2  0, with the other frequencies
being positive. Thus, the stability condition includes
the inequality Λ2 > 0. Below, we will make sure that the
line Λ2 = 0 is the line of the phase transition from the
ferromagnetic phase to the antinematic one.

Thus, the stability region for the ferromagnetic
state is defined by the inequalities

(15)

In Fig. 1, the collective excitation energies ε1, ε2,
and ε3 for the system being investigated are plotted
against the wave vector in the ferromagnetic phase far
from the boundaries of the stability region for the fer�
romagnetic phase. It can be seen that the spectrum ε1
determines the Goldstone mode, while the branches
ε2 and ε3 are the activation ones.

The stability of the system far from the phase transi�
tion lines is described by the “octupole” mode ε3. The
latter softens near the lines of the loss of ferromagnetic
phase stability, namely the lines of the phase transition to
the nematic phase Λ1 = 0 and to the antinematic phase
Λ2 = 0, corresponding to a softening of the spectrum at

the center of the Brillouin zone k  0 and in the corner
of the Brillouin zone (at C(k) = ⎯1) (see Fig. 2).

4. THE NEMATIC PHASE

Let us now investigate the dynamic properties of
the system in the nematic phase. As has already been
pointed out above, the α = π/4 in this case. As follows
from Eq. (10), the order parameters in this state are

Emin is also the lowest energy level in the nematic state,
and the ground�state wave function is

A simple calculation shows that the quadrupole means
define some anisotropy of the system,

and an ellipsoid of revolution is the geometric image of
the quadrupole means for the nematic state in spin space.
The shape of this ellipsoid is the same as that in the ferro�
magnetic phase. Within the framework of the general
phenomenological approach [2], one might expect the
existence of two degenerate non�activation modes for the
collective oscillations of the system of such ellipsoids. In
fact, however, the symmetry of the nematic state does not
contain the C

∞
 axis; it is lower than that determined by

the quadrupole ellipsoid. Indeed, in contrast to the ferro�
magnetic state, the cubic means of the form

are nonzero in the nematic phase, while the mean

〈 〉 = 0. The angle χ actually defines the rotation of
the spin system around the z axis; therefore, the non�
zero cubic means define the third�order axis (and a
combined transformation, i.e., rotation through π/3 in
combination with time reversal). In this case, one
might expect the appearance of yet another mode
associated with the rotation of the “octupole triangle.”
Note that the same symmetry elements are present for
an antiferromagnet with three magnetic sublattices
located in a plane and making angles of 2π/3, and the
behavior of these significantly different systems must
be similar from a macroscopic point of view [48, 49].

Let us determine the spectra of elementary excita�
tions in the nematic phase. Note that two excited
energy levels degenerate in this state,  = . As a

result, three branches of excitations with the following
frequencies are realized in the system:
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(16)
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The dispersion laws for the first two modes coin�
cide; their frequencies remain finite at L = 0. It follows
from expression (16) that the frequency of the “octu�
pole” branch ε3 = 0 at L = 0, while for the modes with
ε = ε1, 2(k) in the limit L  0 we obtain

i.e., their spectrum resembles the spectrum of elemen�
tary excitations in the nematic phase of a magnet with
S = 1 [22, 23]. Consequently, the branches ε1, 2

describe the oscillations of the quadrupole ellipsoid,
which determines the double degeneracy of these
modes. Thus, the main specificity of the system with
S = 3/2 is determined by the branch ε3 related to the
exchange integral L and attributable to the dynamics

of the octupole order parameters . It is associated
with the rotation of the “octupole triangle” around the
z axis (see above).

Figure 3 shows the spectra of elementary excita�
tions in the nematic phase ε1, 2 and ε3 far from the
boundaries of the phase stability region as well as the
spectrum of “quadrupole” modes near the transition
to the ferromagnetic phase (when Λ1  0). It can be
seen that the modes ε1,2(k) soften under the condition

ε1 2, k( ) 3z/2( ) K Kk–( ) 2K Jk 3Kk/2+( )–{ },=

q3
3

Λ1  0 and determine the nematic phase instability
at Λ1 > 0. However, the complete conditions for the
loss of nematic phase stability can be obtained only by
investigating the “octupole” branch ε3(k). Indeed, the
dispersion laws for all modes at the center of the Bril�
louin zone are linear, ε1,2,3  c1,2,3k at k = 0. The

speed of the octupole mode c3 is proportional to 
(see Fig. 4) (the speed c1 = c2 also possesses the same
property; see Fig. 3). Hence follows the necessary
condition for the nematic phase stability Λ1 < 0. In
addition, it is easy to show that at the corner point of
the Brillouin zone (at C(k) = –1),

(17)

i.e., the branch ε3 is stable at LΛ2 > 0 and softens near
the line of the transition to the antiferromagnetic
phase, Λ2 = 0 (see Fig. 4). Taking into account the
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ε3 edge,
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Fig. 3. Dispersion law for elementary excitations in the
nematic phase (in units of L; recall that this phase is stable
only at L > 0). The spectra of elementary excitations at the
center of the stability region for the nematic phase under
the condition Λ1 + Λ2 = 0, i.e., Λ1 = –L and Λ2 = L, are
indicated by the solid lines. For definiteness, we chose K =
2L when constructing the functions ε1,2(k). The dashed
line indicates the spectra of the modes ε1,2(k) near the
nematic–ferromagnet phase transition (when Λ1  0).
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Fig. 4. Dispersion law for the “octupole” branch of ele�
mentary excitations ε3(k) in the nematic phase near the
phase transitions to the ferromagnetic (Λ1  0) and
antiferromagnetic (Λ2  0) phases in units of L (in the
stability region L > 0). The segments of the thin dashed
lines at k ~ 0 and in the corner of the Brillouin zone k ~ π/a

schematically represent the dependence (k) at Λ1 > 0

and Λ2 < 0; the negative  correspond to the nematic

phase instability. The dashed line is shown for comparison
at the same parameters as those in Fig. 3 and defines the
spectrum far from the critical lines.
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condition written out above, we find that the nematic
phase stability region is defined by the inequalities

(18)

which can hold only at L > 0.

5. THE ANTINEMATIC 
AND ANTIFERROMAGNETIC PHASES

The question arises as to what ordering takes place
outside the stability regions for the two phases
described above. In a Heisenberg magnet with only
one bilinear exchange interaction at a negative
exchange integral J < 0, there exists antiferromagnetic
order associated with the appearance of two sublat�
tices. The antiferromagnetic state also takes place for
non�Heisenberg magnets with spins S = 1 and 3/2.
The possibility of the existence of an antinematic spin
state that is also associated with the formation of two
different sublattices was also pointed out for a system
with spin S = 3/2. Thus, one might expect all states for
the general model (1) to be exhausted by either simple
one�sublattice or two�sublattice structures in the dis�
tribution of local spin states. The realization of both
antiferromagnetic and antinematic orderings [50] is
possible in the system we investigate.

The order parameters in the antinematic phase are

while the parameters of the generalized u–ν transfor�
mation are α1 = π/4 and α2 = –π/4 for the first and
second sublattices, respectively. The ground�state

Λ1 0, Λ2 0,><

S1
z〈 〉 0, q2 1( )

0 3, q3 1( )

0 0, q3 1( )

3 3,= = = =

S2
z〈 〉 0, q2 2( )

0 3, q3 2( )

0 0, q3 2( )

3 3– ,= = = =

wave functions for the first and second sublattices in
the antinematic phase are, respectively,

(19)

Naturally, the form of the quadrupole means for
each sublattice is the same as that in the nematic
phase. However, the cubic correlators for the first and
second sublattices differ by the sign:

where i = 1, 2 are the sublattice numbers. The angle χ
defines the rotation around the z axis in spin space.
Thus, the third�order axes for the spin states of the
sublattices coincide, while the cubic correlators defin�
ing a planar structure transform into one another after
rotation through the angle χ = π/3, which is equivalent
to time reversal.

Let us investigate the spectra of elementary excita�
tions in the antinematic phase. To simplify our math�
ematical calculations when calculating the spectrum
for one of the sublattices (to be specific, for the second
one), we will make a rotation around the z axis,

(20)

through the angle ϕ = π in spin space. This corre�
sponds to an operator transformation of the form

corresponding to the spin structure of the antinematic
sublattices.

The single�site Hamiltonian in terms of the new

operators  has a form similar to expression (5) with

the substitution   – . Our analysis shows that
for the calculations of the elementary excitation spec�
tra, the Hamiltonian can be considered in terms of

both old, , and new, , operators using the same
quasi�momentum for both operators. In fact, this
means using the extended zone scheme. In the case
under consideration, it turns out that this representa�
tion is fairly convenient and clear, because the sublat�
tices are equivalent. For this reason, no singularities
arise at the boundary of the “magnetic” Brillouin
zone, and the “magnetic” Brillouin zone does not
manifest itself at all for the spectra of all modes in the
antinematic phase (see Fig. 6 below). For the prob�
lems of lattice dynamics, such a situation arises if the
crystal consists of different particles that, however,
have the same mass and interaction constants.
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Fig. 5. Dispersion laws for elementary excitations in the
antinematic phase (in units of |L|, the phase is stable only
at L < 0) constructed in the extended zone scheme at the
center of the region of existence of the antinematic phase,
i.e., under the condition Λ1 + Λ2 = 0, Λ1 = –L = |L| and
Λ2 = L = –|L| (solid lines). For definiteness, we chose K =
0 when constructing the functions ε1,2(k). The dashed line
represents the dispersion law for the modes with ε1,2(k)
near the critical line Λ1 = 0.
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Just as in the nematic phase, two excited energy
levels degenerate in this state,  = , and, as aE1

2
��

E 1
2
��–

result, the two branches of excitations coincide. As a
result, the spectra are defined by the expressions

(21)
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Note that the energy of the branch ε = ε3(k), which
is related to the exchange integral L and is determined

by the dynamics of the octupole parameters , is
obtained from the formula for the nematic phase by
changing the sign of the second parenthesis under the
root. Therefore, a peculiar behavior of this branch is
easy to see from the graphs for ε = ε3(k) for the nem�
atic phase presented in Fig. 4 if the indices Λ1  0
and Λ2  0 are interchanged on them. Clearly, just as
in all the previous examples, the system’s stability for
the antinematic phase is determined precisely by this
branch. Additionally, the antinematic phase instability
near the critical line Λ1 = 0 is also seen from the
dependence ε1, 2(k) (see Fig. 5).

Analysis of the behavior of the spectra allows the
stability region for the antinematic phase to be deter�
mined in the form

(22)

which can hold only at L < 0 (recall that the nematic
phase can exist only at L > 0). In the model with L =
0, both nematic phases are absent (to be more precise,
they exist only on the line Λ1 = Λ2 = 0). If this higher
invariant is disregarded, then Λ1 = Λ2 and no phases
with tensor order parameters are realized.

Note that the use of the extended zone scheme man�
ifests itself in the fact that the modes ε1, 2(k) and ε3(k)
have a gapless behavior at different points of the Bril�
louin zone (see Fig. 5). Previously, such a behavior was
established for the spectra of elementary excitations in
the orthogonal�nematic phase of a magnet with spin
S = 1 [23]. Clearly, when passing to the reduced zone
scheme natural for a two�sublattice system, the stan�
dard form of the spectrum is restored (see Fig. 6).

Passing to the reduced “magnetic” Brillouin zone
constructed for one sublattice is a simple geometric
problem; as a result, the number of branches doubles.
As a consequence, the Goldstone behavior is restored
for both types of collective modes, and analogs of
“acoustic” and “optical” collective modes appear for
both curves. Here, the following important question
arises: should we pass to the reduced magnetic Bril�
louin zone in this case? In other words, does it make
sense to consider the oscillations in the reduced Bril�
louin zone and to talk about the existence of acoustic

q3
3

Λ1 0, Λ2 0,<>

and optical branches and resonances associated with
the latter at small wave vectors?

In the language of ordinary lattice dynamics, this
question arises for a crystal consisting of particles that
have the same mass and interaction constants but dif�
fer physically by the value of some parameter. The
answer to this question is as follows. Clearly, if the par�
ticles in the crystal differ by a particular physical prop�
erty, then there exists some field that acts differently on
these particles of two types (if no such field exists in
principle, then it makes no sense to talk about the dif�
ference between the particles). The action of a spa�
tially uniform variable field (waves with zero wave vec�
tor and a finite frequency) on this system will leads to
a different action on the particles from different sub�
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lattices, and, as a result, a linear resonant excitation of
the normal mode in which these particles of two types
oscillate in antiphase is possible.

Such a behavior is well known for optical phonons
and some types of collective modes in magnetic super�
lattices [70]; it also takes place in the case of an anti�
nematic. The differences between the magnetic states
of the sublattices in an antinematic are not too signif�
icant to give rise to a gap at the boundary of the Bril�
louin zone of the main lattice. However, the optical
methods for analyzing the nematic phases proposed in
[50] lead to different effects for different sublattices.
Antiphase oscillations corresponding to a finite fre�
quency at k = 0 in Fig. 6 will then be excited in the case
of a spatially uniform action on the system.

Let us now turn to analyzing the antiferromagnetic
state for which the spins in the two sublattices are anti�
parallel and collinear to the z axis. Using expressions
(10), it is easy to find that the order parameters of the
sublattices in the antiferromagnetic phase are

while the parameters of the generalized u–ν transfor�
mation for the first and second sublattices are α1 = 0 and
α2 = π/2, respectively. The ground�state wave functions
for the sublattices in this state are, respectively,

and .

Just as for the antinematic state, it is convenient to

make a rotation U(ϕ) =  through the

angle ϕ = π in spin space for one of the sublattices (to
be specific, the second one). Then,

and a “uniform” distribution of the mean values of the

operators  corresponds to the ground state. The
single�site Hamiltonian is derived from Eq. (5) by the
substitution

for the spins of the second sublattice. However, the mod�
ification of the Hamiltonian for the problem in terms of

the new operators  is more significant than that for the
case of an antinematic considered above. Since the signs

of the effective field  for the two sublattices differ, their
dynamics is not equivalent (this property takes place for
“standard” antiferromagnets), and the reduced zone
representation arises naturally. A simple but cumbersome
calculation of the spectra leads to the expressions

(23)

Note that only the squares of the Fourier trans�
forms of the exchange constants enter into all these
expressions, which formally determines a shorter
period in the dependences ε1,2,3 = ε1,2,3(k). The disper�
sion laws for elementary excitations in the antiferro�
magnetic phase are presented in Fig. 7. The solid lines
ε1,2,3 describe the spectra at the “center” of the phase
stability region: the dashed line describes the softening
of the mode ε = ε2(k) near the phase transition to the
nematic phase (Λ1  0).

In the applied reduced zone scheme, the apparent
number of curves defining the branches in the spec�
trum is three, just as for a single sublattice. This is
because each curve corresponds to two degenerate
branches of spin excitations. On the whole, this pic�
ture is typical for magnons in a standard Heisenberg
antiferromagnet without an external field. Note that

the standard magnon branch with the Goldstone
behavior when k  0 shows no instabilities, reflect�
ing the fact that the antiferromagnetic phase, just as
the ferromagnetic one, loses its stability according to
the “multipole” scenario. As regards the branch ε2(k),
as in the case of a ferromagnet, it is associated with the
oscillations of the quadrupole ellipsoid. It is this
branch that softens near the phase transition to the
antinematic phase.

The branch of excitations with ε3(k) describes the

coupled oscillations of the octupole parameters  for
the sublattice spins whose equilibrium value in the
antiferromagnetic phase is zero, just as in the ferro�
magnetic one. Its dispersion is determined only by the
quantity L, just as for other phases. Note that its dis�
persion is very weak at sufficiently small L � J, K and
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far from the lines of stability loss, because it is qua�
dratic in small parameters L/J and L/K. However, the
linear dependence on L is restored near the lines of
phase instability, with the curves ε3(k) coinciding (in
the reduced zone scheme) at identical |Λ1| and |Λ2| (see
Fig. 8). This branch determines the antiferromagnetic
phase instability at both Λ1 > 0 and Λ2 > 0.

Thus, our analysis of the spectra confirms that the
loss of antiferromagnetic phase stability is associated
with the center of the reduced (magnetic) Brillouin
zone k = 0. The stability condition for the antiferro�
magnetic phase can be written as two inequalities:

(24)

6. DISCUSSION OF RESULTS

We analyzed the free energy density and the spectra
of elementary excitations for a non�Heisenberg isotro�
pic magnet with S = 3/2 and a dimension d ≥ 2, which
allows the mean�field approximation to be applied, and
a lattice that admits a breakdown into two equivalent
sublattices. The realization of only four phase states is
possible in the system under consideration at various
relationships between the material parameters. Apart
from the states with a dominant Heisenberg exchange
characterized by a vector order parameter (the ferro�
and antiferromagnetic phases), the realization of states
with tensor order parameters is possible in a magnet with
S = 3/2 and predominant higher exchange integrals (the

Λ1 0, Λ2 0.< <

nematic and antinematic phases). The means cubic in
spin operator components, primarily the octupole order

parameter  containing means like 〈(Sx ± iSy)
3〉, play a

major role in the properties of these phases. The octu�
pole order formation is associated with allowance for the
bicubic exchange interaction.

Using the results obtained, the phase diagram of a
non�Heisenberg magnet with S = 3/2 can be con�
structed for various relationships between the
exchange integrals. Since the general energy scale in
the case of zero temperature considered is unimpor�
tant, in fact, only the relationships between the
exchange integrals are important. Two independent
parameters can be introduced for a clear presentation
of the results; it is convenient to choose κ = K/J and
λ = L/J as these parameters. The phase diagram in
these variables for J > 0 is presented in Fig. 9.

The transitions between all phases occur on differ�
ent rays of the line Λ1 = 0 or the line Λ2 = 0. The fer�
romagnetic phase is stable in the region Λ1 > 0 and
Λ2 > 0, while the antiferromagnetic phase is stable at
Λ1 < 0 and Λ2 < 0. In Fig. 9, these are the regions lying
above or below both lines Λ1 = 0 or Λ2 = 0. The nem�
atic phase exist in the range of parameters Λ1 < 0 and
Λ2 > 0, while the antinematic phase is stable in the
region Λ1 > 0 and Λ2 < 0, i.e., between the rays of these
lines located, respectively, at L > 0 or L < 0. All phase
transitions in material parameters are degenerate first�
order transitions, i.e., the lines of mode stability loss
coincide with the phase transition lines. The same
property also takes place for a non�Heisenberg magnet
with spin S = 1. Just as in the case of S = 1, the transi�
tion lines for the model with S = 3/2 are characterized
by a higher symmetry. In our case, however, the situa�
tion is more interesting, because the regions of exist�
ence of all four phases touch at the point Λ1 = 0, Λ2 =

q3
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excitations in the stability region for this phase (K = J > 0
and L = –J/5 were chosen). The dashed line indicates the
spectrum of the quadrupole branch ε2(k) near the antifer�
romagnet–antinematic phase transition (for Λ1  0 and
Λ1 < 0). Here and in the next figure, the segment of the thin
dashed line at the center of the Brillouin zone schemati�
cally represents this dependence in the phase instability
region (for Λ1  0 and Λ1 > 0).
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0 or 2J = K, L = 0 (κ = 2, λ = 0 in Fig. 9). All four
phases have the same energy at this point and ε3(k) =
0, while the remaining perturbation spectra show a
strong degeneracy.

The phase states of the system under consideration
are characterized by nonzero quadrupole and octu�
pole means. In contrast to the system with spin S = 1,
the quadrupole means are not crucial for describing
the phase symmetry, while the octupole order param�
eter in vector phases is zero. However, these variables
turn out to have a significant influence on the dynamic
(spectral) properties of a magnet with S = 3/2 in all
phases, magnetic and nematic. As a result, three
branches of elementary excitations are present in all
phases. One of these branches, the octupole branch
whose energy is designated above as ε3(k), is associated
primarily with the oscillations of the octupole order
parameter. This branch describes the positions of all
phase instability lines, although the quadrupole
branch with ε = ε2(k) also loses its stability on some of
them. Interestingly, the energy at the point of coexist�
ence of all four phases 2J = K and L = 0 is ε3(k) = 0,
but the remaining modes have a finite hardness. The
perturbation spectra exhibit a strong degeneracy for all
phases, ε1(k) = ε2(k), and there is a universal depen�
dence on the quasi�momentum: ε1,2(k) ∝ (J – Jk) =
J[1 – C(k)] in the nematic and ferromagnetic phases,

while ε1,2(k) ∝  = J  in the antine�
matic and antiferromagnetic phases.

The experimental realization of the effects consid�
ered here seems more difficult than that for materials
with spin S = 1 (see the reviews [9, 10]). We know no
standard crystalline magnetic materials for which a

J2 Jk
2– 1 C2 k( )–

fairly large bicubic exchange has been established;
moreover, even the works where this parameter was
measured are not known. On the other hand, more
and more materials with the so�called “hidden” order
in which there is no magnetic order but whose proper�
ties also defy explanation in terms of simple spin�nem�
atic (SN) phases (URu2Si2 whose properties have
remained unexplained for almost ten years is cited as
an example) have been found in recent years [71, 72].
However, model (1) is applicable for describing the
purely spin states of ultracold Fermi gases with spin
S = 3/2 (132Cs, 9Be, 135Ba) in optical lattices with one
atom per cell [56–59]. Here, it is important to note
that considerable higher exchange integrals are a stan�
dard situation for ultracold gases. In particular, when
calculating the exchange integrals for a gas with spin
S = 3/2, the simplest approximation leads to a rela�
tionship close to the condition Λ1 = 0 [56]. Thus,
although the relative fraction of the regions on the
phase diagram occupied by the nematic phases is, on
the whole, small compared to the case of a system with
spin S = 1, these states can be significant for analyzing
ultracold gases of atoms with spin S = 3/2.
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