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1 1. INTRODUCTION

At first sight, it appears that it should be easy to
understand the behavior of an electron immersed in
liquid helium. Because a helium atom has a closed
shell of electrons, there is a strong repulsion between a
helium atom and an electron. As a result, in order to
enter liquid helium, an electron has to overcome an
energy barrier of approximately 1 eV [1a]. An experi�
ment performed earlier [1b] gave the result 1.3 eV. This
barrier, together with the very low surface energy α of
the liquid (0.375 erg cm–2) [2], makes it favorable for
an electron to force open a cavity in the liquid and
become trapped there, rather than moving freely
through the bulk liquid. The size of this bubble can be
estimated, to a reasonable accuracy, from the approx�
imate expression for the energy

(1)

where R is the bubble radius, m is the electron mass,
and the last term represents the energy associated with
forming the bubble when a pressure P is applied to the
liquid. In the absence of an applied pressure, we find
from Eq. (1) that the energy should be a minimum for
the radius

(2)

These “electron bubbles” have been studied in
many experiments.

1—Measurements have been made of the photon
energies required to excite the electron to a higher

1 The article is published in the original.
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energy state [3–5]. Since these energies are dependent
on the bubble size (approximately proportional to the
inverse square of the radius), the experiments provide
information about the radius.

2—The mechanical properties of the bubble can be
studied by applying a negative pressure [6]. If a nega�
tive pressure larger than a critical value Pc is applied,
the bubble becomes unstable and grows rapidly. It can
then be detected optically. From Eq. (1), the critical
pressure is found to be [7]

(3)

3—Measurements have been made of the mobility
μ of these bubbles [8–10]. The mobility is limited by
the drag force exerted on a moving bubble by thermally
excited phonons and rotons. In superfluid helium�4
above 1 K, the drag is primarily due to rotons and the
mobility can be expected to vary as

(4)

where Δ is the roton energy gap. The results of the
mobility experiments give a temperature dependence
in reasonable agreement with this. If a sufficiently
large electric field is applied, the velocity reaches a
critical value vc at which a quantized vortex ring is
nucleated. The bubble then becomes attached to this
vortex ring [11].

4—The effective mass of the bubbles has been
measured under the saturated vapor pressure [12] and
under elevated pressure [13]. The results of the mea�
surements are in good agreement with the values pre�
dicted from the bubble model.

Surprisingly, the experiments have revealed that in
addition to the “normal” electron bubbles (NEB),
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there are other negatively charged objects of unknown
physical structure [14–21]. These have been called the
“exotic ions” [15]. The solid curve in Fig. 1 shows data
obtained in a recent time–of–flight mobility experi�
ment at 0.991 K [22]. In this experiment, ions entered
the liquid from a continuous electrical discharge in
helium vapor above the surface of the liquid. The dis�
charge was produced by a voltage applied between
electrodes positioned in the vapor. After the ions
entered the liquid, gate grids were used to allow a pulse
of negative ions to enter the upper part of the experi�
mental cell. These ions moved through the cell under
the influence of a uniform drift field and the charge
arriving at a collector at the bottom of the cell was
recorded as a function of time. In Fig. 1, we can see a
strong signal at a time of around 19 ms coming from
the NEB. In addition, there is a series of peaks at ear�
lier times coming from the exotic ions. Figure 1 clearly
shows at least ten exotic ions; more recent experi�
ments [23] have resolved 18 ions, each with a different
mobility.

We can make a fit to each peak and then subtract
the peak from the measured total signal. When this is
done, a smoothly varying background signal is
revealed as shown by the dashed curve in Fig. 1. The
continuous background has a cutoff at a time that is
approximately one half of the arrival time of the NEB.
The time at which the cutoff appears in the signal is
inversely proportional to the drift field, indicating that
the background arises from ions. These ions must have
a continuous distribution of mobility, and therefore
presumably a continuous distribution of size.

It is interesting that although the signal from each
individual exotic ion is much smaller than the signal
from the NEB, the total signal from the exotic ions

(including the continuous background) is of a magni�
tude comparable to the NEB signal (typically 20%
to 50%).

At a critical velocity vc, each of the exotic ions
(except the fastest ion F) nucleates a vortex ring and
becomes trapped on it [18]. The critical velocity is
larger than the critical velocity for the NEB, indicating
that the ions are smaller than the NEB. Since vc
increases progressively with an increase in ion mobil�
ity, each of the exotic ions appears to be singly charged.

A rough estimate of the ion size can be made from
the measured mobility. Since the mean free path of a
roton at temperatures around 1 K is large compared to
the bubble size, the drag exerted on a moving bubble
should be proportional to the cross�sectional area of
the bubble. Hence, the mobility should vary approxi�
mately as the inverse square of the radius. Based on
this, the radius of the fastest ion is found to be around
8 Å [17].

Presently, there is no accepted theory of the
makeup of the exotic ions. Three ideas and their asso�
ciated difficulties are as follows.

1—Impurity model. Impurity atoms that have
acquired an extra electron could form bubbles with a
size in the range of the exotic ions. However, an elec�
tron that is bound to an impurity with a high electron
affinity (e.g., greater than 2 eV) would have a wave
function that decreases very rapidly with distance.
This would result in a snowball [24] or a bubble of a
very small radius. Thus, in order for impurities to be
the explanation of the exotic ions, the impurities have
to have low electron affinity. It is also possible that
there are impurities that do not form negative ions in
the vacuum but which bind an electron in a bubble
when in liquid helium. A serious difficulty with the
impurity model is that the number of impurities that
might be present in liquid helium is very small; it is dif�
ficult to believe that there can be 18 different impuri�
ties with the required electron affinity, and that the
same impurities occur in different labs in different
countries. Also, a theory based on impurities cannot
explain the continuous background.

2—Helium ion model. Negative ions of a helium
atom [25] or helium dimer [26] have been studied and
their lifetime measured in a number of experiments.
A negative ion immersed in liquid helium should form
a bubble state if the binding of the electron to the atom
(or dimer) is sufficiently weak. One problem is that the
lifetimes of the known ions of helium atoms or dimers
are much less than the time to traverse the mobility
cells used in the experiments where exotic ions have
been detected. Thus, the ions should decay before
reaching the collector. In addition, the number of dif�
ferent ions is not sufficient to explain the observation
of 18 distinct species of exotic ions. Also this model
would not provide an explanation of the continuous
background.
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Fig. 1. Results from a time�of�flight mobility experiment
performed at 0.991 K as reported in [22]. The solid curve
shows the signal arriving at the collector as a function of
time. The dashed curve is the signal after an algorithm has
been used to remove the peaks. The length of the experi�
mental cell is 6.15 cm and the drift field is 82.1 V cm–1.
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3—Fission model [27]. An electron entering the
liquid has a complicated wave function. We can ask
whether all of this wave function ends up in a single
bubble. If the wave function ends up divided between
two or more bubbles, it is not clear what would hap�
pen. One possibility is that the helium would make a
measurement and determine that the electron is in one
of the bubbles (call this bubble A). Then according to
the Copenhagen interpretation of quantum mechan�
ics, the wave function will suddenly change such that
it is nonzero only in bubble A. The other bubbles,
which contain no wave function, will collapse. But if
this does not happen and the bubbles containing only
a fraction of the wave function are stable, these should
be smaller than the NEB and could provide an expla�
nation of the exotic ions. Since the fraction of the wave
function ending up in a bubble could have any value,
this theory could explain the continuous distribution
of mobility. In addition, it has been pointed out [27]
that there is a mechanism that could lead to bubbles
containing particular discrete fractions of the wave
function, and this might explain the 18 ions with dis�
crete values of mobility.

In this paper, we discuss how the possible experi�
ments may allow distinguishing between these three
models.

2. THEORETICAL MODEL

Shikin has written an excellent review of the prop�
erties of ions in liquid helium [24], and more recently
there have been detailed calculations for ions of par�
ticular interest [28–33]. We first review a procedure
for calculating the properties of a normal electron
bubble. As already mentioned, the size of an NEB can
be estimated from the expression for the energy given
in Eq. (1). However, there are some limitations of this
formula.

(a) The electron wave function penetrates into the
bubble wall. This is neglected in the derivation of
Eq. (1).

(b) In Eq. (1), the energy of the bubble surface is
taken to be the surface area times the surface tension
as measured in a macroscopic experiment. There
should be corrections to the energy due to the curva�
ture of the surface, and also because the interaction of
the electron with the helium would modify the density
profile of the surface.

(c) Equation (1) does not account for any variation
of the surface energy per unit area with the pressure in
the bulk liquid.

(d) The electric field of the electron polarizes the
liquid surrounding the bubble and gives an inward
force reducing the size of the bubble.

These effects can be taken into account by using a
density functional for the helium. In previous work
[6], we have used a simple density�functional model to
calculate the properties of a normal electron bubble

allowing for these effects. The Schrödinger equation
for the electron was taken to be

(5)

where the potential V(r) was given by Uintρ(r), with
ρ(r) being the helium density at position r. The coeffi�
cient Uint was set to have the value 1.1 × 10–11 cm5 s–2,
such that the potential acting on the electron when it
is in bulk helium at zero pressure is 1 eV. The free
energy of the nonuniform liquid was taken to be [6]

(6)

where f(ρ) is the free energy per unit volume of the liq�
uid with a uniform density ρ, and the term λ|∇ρ|2 is the
extra energy per unit volume present when there is a
gradient in density. The function f(ρ) was determined
by making a fit to the sound velocity at positive pres�
sures; the details of this are given in the Appendix. The
pressure is related to f by

(7)

The plots of the variations of f(ρ) and P(ρ) with ρ are
presented in Fig. 2.

It can be shown [6] that in this model, the density
of the liquid satisfies the equation

(8)

where ρ1 is the density of bulk liquid and λ is a param�
eter related to the surface tension (see the Appendix).
Thus, to find the energy of the electron and the density
distribution of the liquid around the bubble, we have to
solve two coupled differential equations (Eqs. (5) and
(8)) with appropriate boundary conditions. The solu�
tion of these equations is straightforward to find by
numerical methods. This calculation has been
improved in [34] through the use of a more sophisti�

cated density functional scheme.
2
 Once the density

profile around the NEB was calculated, it was possible
[34] to find the photon energies E1S–1P and E1S–2P

required to excite the electron from the ground 1S
state to the 1P and 2P states. These energies were cal�
culated for liquid pressures up to the freezing pressure.
The results were in excellent agreement with experi�
ment [3–5]. More recent calculations suggest that

there may also be a loosely bound 3P state [35].
3
 How�

ever, the properties of this state are very sensitive to the
exact height of the barrier provided by the helium, but
this height has a substantial uncertainty [1]. In a sub�
sequent paper, the same model was used to calculate
the negative pressure Pc at which the NEB became
unstable against explosion [36].

2 Note that in these calculations, the effect of the polarization
energy was not included.

3 In addition, the matrix element to this state is very small.
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One would like to extend this type of calculation to
find the size of a bubble containing a negative impurity
ion. However, this appears to be difficult. Ideally, such
a calculation needs to take account of (a) the Van der
Waals attraction between the ion core and the liquid
helium, (b) the polarization of the liquid due to the
charge of the extra electron, (c) the interaction of the
extra electron with the ion core, (d) the repulsive
interaction between the electron with the surrounding
helium, and (e) the surface energy of the helium.
Using a density functional approach, it would be
straightforward to include all of these effects except
(c), the interaction of the extra electron with the ion
core. One approach would be to model this interaction

by means of some form of pseudo�potential and set the
strength of this potential so as give the correct magni�
tude for the electron affinity, i.e., so as to give the cor�
rect binding of the “last electron” to the free atom.
This would seem an appropriate approach because one
expects that the electron with the weakest binding to
the atom would generally have a wave function that
extends out the furthest and is therefore most impor�
tant in pushing the helium away and determining the
radius of the bubble. However, this is complicated
because for different atoms, the last electron can be in
states of different angular momentum. For most

atoms, the angular momentum is nonzero,
4
 and hence

the shape of the bubble in helium would be nonspher�
ical.

3. RESULTS AND DISCUSSION

For the reasons just discussed, we restrict attention

to detailed calculations for the fission model.
5
 We

solve Eqs. (5) and (8) with ψ normalized such that the
integral of |ψ|2 takes a value F that is less than unity.
Results for the bubble radius as a function of F are
shown in Fig. 3; these results are for the electron in the
lowest�energy 1S state. Examples of the density profile
around the bubble and the electron wave function are
shown in Fig. 4. We then calculate the energies of the
1P and 2P states using the helium density profile found

for the 1S state.
6
 The photon energies needed for exci�

tation to the 1P and 2P states are plotted in Fig. 5 and

4 For a review of negative ions, see [37].
5 We do not include the effect of the polarization energy in these

calculations since it is a small effect.
6 The calculation of E1S–1P and E1S–2P is based on the Franck�

Condon principle.
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Fig. 3. Bubble radius on the fission model as a function of
the fraction F defined in the text (rs is the radius at which
the helium density first becomes nonzero and r1/2 is the
radius at which the density equals half of the bulk density).
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the dependence of the critical explosion pressure on F
is shown in Fig. 6.

We now want to discuss how comparisons of the
results of the calculations in this paper with experi�
ment may be used to test the different possible theories
of the exotic ions.

We first note that the mobility measurements are of
limited use in testing the theories. For each exotic ion,
one can use the mobility to estimate the radius. As a
first approximation, it is expected that the mobility of
an ion should be inversely proportional to the square
of the radius. Thus, for a particular exotic ion with
mobility μi, one can estimate the radius as

(9)

where μNEB and RNEB are the mobility and the radius of
the NEB. At first sight, it might appear possible to

Ri RNEB
μNEB

μi

���������,=

compare this radius with the results presented in
Fig. 3. However, the accuracy of formula (9) is
unknown. For example, Eq. (9) takes no account of
the effective mass of the ion, while it is well known that
the mobility of an ion moving through a gas of atoms
depends on the mass of the ion (see, for example,
[38]). For positive impurity ions in helium, the effect
of a mass variation has been explicitly demonstrated in
[39] by means of experiments with different isotopes of
calcium. Even if a radius could be estimated from
Eq. (9), it would not be clear how to relate this to the
theoretical calculations made in this paper. Should
this radius be compared with the calculated rs, or with
r1/2, or something else? As far as we can see, the most
important results coming from the mobility experi�
ments are that there are at least 18 ions with different
mobility and that there are, in addition, ions with a
continuous distribution of mobility.

Measurements of the optical absorption would
provide the following information.

1. For the fission model, a measurement of either
E1S–1P or E1S–2P would determine the value of the frac�
tion F. The calculations presented here would then
give a definite prediction for the other energy and
would provide a test of the theory.

2. In the fission model, the bubble is spherical. For
a spherical bubble, the transitions are limited to Δl =
±1 and the matrix element for a transition to the 3P
state (if it is indeed a bound state) is very small. Hence,
there should be only two photon energies that can be
absorbed, and if more than two photon energies are
found, this indicates that the fission model must be
incorrect.
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Measurements of the explosion pressure could be
used to determine the fraction F in the fission model.
Using the results of measurements of Pc in conjunction
with optical measurements would provide much more
stringent tests. In Fig. 7, we show how the excitation
energies E1S–1P and E1S–2P are predicted to vary with the
explosion pressure Pc based on the fission model.

It is a great pleasure to contribute this article to the
Festschrift for Alexander Andreev, and we wish him
many more years of happy science. We thank M. Bar�
ranco, L. N. Cooper, and G. M. Seidel for helpful dis�
cussions. This work was supported in part by the
United States National Science Foundation under
Grant No. DMR 0965728.

APPENDIX

The free energy function f(ρ) was estimated by the
method described in [40]. The estimate used the
results for the pressure dependence of the sound veloc�
ity as measured in [41]. We have applied a small cor�
rection to the formulas for f(ρ) given in [40] because in
that paper the pressure was incorrectly taken to be in
bars whereas in [41], in fact, atmospheres were used as
the unit of pressure [42]. With this change, we find

(A.1)

where, in cgs units,

f ρ( ) fc ρ ρc–( )f1 ρ ρc–( )3f3+ +=

+ ρ ρc–( )4f4, ρ ρc,<
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, ρ ρc,>

(A.2)

The parameter λ is related to the surface tension by the
formula

(A.3)

where ρ0 is the density of the liquid at zero pressure.
This relation can be used to set the value of λ. At the
time of publication of [40], the accepted value [43] of
α was 0.355 erg cm–2, which gave the result λ = 6.8 ×
10–7 g–1 cm7 s–2. Since then, the accepted value has
changed [27] to 0.375 erg cm–2, which leads to the
value λ = 7.5516 × 10–7 g–1 cm7 s–2.
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