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1. INTRODUCTION

Spin echo discovered by Hahn [1] underlies many
applications of magnetic resonance, on one hand, as a
method for studying the local properties of solids and
fluids [2, 3] and, on the other hand, as an imple�
mented example of the Loschmidt echo when study�
ing nonequilibrium processes in multispin systems [4,
5]. Interest in studying quantum information has been
recently grown [6–9], primarily in view of its proper�
ties promising fundamentally new possibilities in the
speed of a quantum computer for the development of
communication and metrology. Because of technical
difficulties, real devices implementing these possibili�
ties on multiparticle quantum systems have not yet
been developed. However, the physical properties of
quantum information can be studied on such systems
by traditional methods, including the spin echo
method. The system of an electron spin surrounded by
nuclear spins is practically important and well�studied
by this method. In particular, references to the meth�
ods used, results obtained, and their analysis can be
found in theoretical works [10–14]. Such a system
seems to be also promising for the implementation of
quantum information processing devices [15].

The system of the electron spin surrounded by
nuclear spins is close in structure to quantum systems
used to implement the deterministic quantum calcula�
tion model with one polarized qubit interacting with a
system of qubits in a mixed state (DQC1) [16]. It is
known that the computer of the DQC1 model can the�
oretically solve some problems reduced to the calcula�
tion of the trace of a matrix faster than a classical com�
puter [16–23]. The operation of such a computer was

demonstrated on simple systems: e.g., molecules in a
solution controlled by the NMR method [18, 20, 23]
and Ce3+ impurities in a CaF2 crystal observed by the
EPR method [24]. It is assumed that quantum corre�
lations play an important role in the speed of the
DQC1 model. Quantum discord [9] is the most popu�
lar measure of quantum correlations at high tempera�
tures. In order to reveal the role of quantum correla�
tions, quantum discord in the operation of the DQC1
computer was estimated in [17, 19, 21–23]. However,
a certain conclusion has not yet been made [19, 21–
23, 25] and the dynamics of such systems requires fur�
ther investigations.

The time evolution of quantum discord under the
conditions of electron spin echo and free�precession
decay in the system of an electron surrounded by
nuclei is considered in this work. It is shown that the
dynamics of such a system is similar to the dynamics of
the DQC1 model. These two systems differ in the con�
trol methods: in the DQC1 model, each nuclear spin
should be controlled individually in order to imple�
ment a quantum algorithm, whereas the evolution of
nuclear spins in the case of spin echo is caused by the
internal interactions and an external magnetic field.
Any calculations of discord under the conditions of
spin echo are unknown among numerous calculations
of discord in various systems. There are several similar
works. The time and temperature dependences of dis�
cord for two S = 1/2 spins were calculated in [26]
under the conditions of multiquantum coherence and
in [27] under the conditions of free induction decay
(FID) of an impurity spin interacting with a chain of
nuclear spins. The evolution of quantum correlations
between two large spins (S > 1/2) under the conditions
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of FID was calculated in [28] in the high�temperature
approximation. Finally, the authors of [29] prepared a
special (Bell) state of an ensemble of two�spin elec�
tron–nucleus systems with nonzero discord on a
phosphor impurity in solid silicon and observed its
decrease under the action of surrounding spins of 29Si
nuclei considered as a random field (noise).

Quantum effects were considered in many works
concerning spin echo. In particular, the authors of [30,
31] related change in the decay of the electron spin
echo of an NV center in diamond with an increase in
the magnetic field to attenuation of quantum fluctua�
tions. They think that, if the decay of echo is due to
changes in the states of nuclei caused by flip of the
electron spin (back action), the action of the system of
nuclei should be considered as quantum (quantum
reservoir) [30–32]. On the contrary, if changes in the
states of nuclei responsible for the damping of echo are
independent of the state of the electron spin, this res�
ervoir is treated as classical. For comparison of two
characteristics of quantization, quantum discord is
calculated in this work under the same conditions.

The paper is organized as follows. Analytical results
describing the time evolution of the quantum discord
of the spin echo and the FID for the central�spin
model are obtained in Section 2 in the high�tempera�
ture approximation with allowance for only the polar�
ization of electron spin. The dependence of discord on
the number of nuclei and on the magnetic field, as well
as its relation to the quantization characteristic of the
reservoir of nuclei determined by the back action
property, is discussed. The contribution from the
polarization of nuclear spins is additionally taken into
account in Section 3, where related changes in the
time dependence of discord are also analyzed. The
calculation is performed for the total density matrix
and a matrix reduced to a pair of spins. The results of
two approaches are compared. The general conclu�
sions on the dynamics of the system under consider�
ation are summarized in Section 4. The details of the
calculations are presented in Appendices A, B, and C.

2. QUANTUM DISCORD 
IN THE CENTRAL�SPIN MODEL

2.1. Theory

We consider the system of an electron spin and n
nuclear spins in a strong static magnetic field
described by the Hamiltonian [10–14, 24, 29–31]

(1)

where ωe and ωj are the Larmor frequencies of the
electron, S = 1/2, and nuclear, I = 1/2, spins, respec�

Ĥ ωeŜe ωj Îjz

j
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tively; the system of units with � = 1 is used;  is the
α component of the jth spin operator (α = x, y, z); Ajα

is the hyperfine coupling constant; and  is the
operator of the dipole–dipole interaction between
nuclear spins.

The polarization for electron spins in the strong
static magnetic field at room temperature T is small,
βS = ωe/kT ~ 10–3 � 1, and the polarization for
nuclear spins βI is three orders of magnitude smaller;
for this reason, the equilibrium density matrix is ini�
tially taken in the form [24, 29, 33, 34]

(2)

where Z = 2n + 1 is the partition function. The effect of
nuclear polarization will be considered in the next sec�
tion. The subsequent calculations will be performed in
the reference frame rotating with the frequency ωe

(below, rotating reference frame) in which the first
Zeeman term in Eq. (1) disappears. An microwave
field pulse applied to the system induces the rotation
of the electron spin by an angle of 90° about the y axis
of the rotating reference frame. After the application
of the pulse, an FID signal gf(t) will be observed in the
xy plane. If the system after time t is subjected to the
second microwave pulse rotating the electron spin by
an angle of 180° about the x axis of the rotating refer�
ence frame, the spin echo with the amplitude ge(t) will
be observed at time 2t. The density matrix describing
the evolution of the state of the system can be written
in both cases in the form

(3)

where  =  ± i ;

(4)

 and  are Hamiltonian (1) for the projections of
the electron spin Sz = +1/2 and –1/2, respectively;

and  is the operator that is Hermitian conjugate

to . Similar transformations of evolution opera�
tors (4) are often used to describe spin echo in elec�
tron–nuclear systems. Details can be found in Appen�
dix A. The FID signal or echo amplitude is obtained
from Eq. (3) in the form

where 〈 (t)〉 = Tr{ ρ(t)} is the average value of the x
projection of the spin.
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Density matrix (3) has the same form as the quan�
tum calculation matrix in the DQC1 model [16, 17].

In the latter case, the unitary operator  whose trace
should be calculated to solve the problem is prepared
instead of unitary operators (4). The real or imaginary
part of the desired trace is determined by measuring

the average projection 〈 〉 or 〈 〉 on the x or y axis,
respectively. In view of the similarity of these systems,
the approach developed in [17, 19, 21–23] for the
DQC1 model can be used to analyze quantum corre�
lations in the state described by Eq. (3).

Correlation between two systems is measured by
mutual information [8, 9]

(5)

where S( ) = –Tr{ log2 } is the von Neumann
entropy and  = TrI  and  = TrS  are the reduced
density matrices obtained after the calculation of the
trace of matrix (3) over the states of the nuclear spins
and electron spin, respectively. Classical correlations
are determined in terms of mutual information

I( ( )) of the state after the von Neumann projec�
tive measurement of the electron spin [9, 17, 19]. In
the case of the system with S = 1/2, the complete set of
mutually orthogonal projectors consists of two projec�
tors of the general form [9, 17]

(6)

where aα (α = x, y, z) are the direction cosines. The
measure of classical correlations is obtained after the
determination of a maximum in the measurement
directions. For the state given by Eq. (3), az = 0, ax =
cosϕ, and ay = sinϕ are taken following [17]. Quantum
discord is defined as the difference of these two quan�
tities [9, 17, 19]

(7)

For the DQC1 model, it was shown in [17] that dis�
cord for a quite complex system with a broad spectrum

of the eigenvalues of the operator  reaches a certain
value that becomes independent of the number of
qubits (nuclei) n; in our high�temperature limit, this
value is (see Appendix C)

(8)

For the DQC1 model, it was shown in [19, 21, 22] that
discord determined after the measurement of the sec�
ond (nuclear) subsystem is zero. It is sufficient to take

the eigenstates of the operators  (  in our case)
as a basis on which the state (t) is projected.
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D I ρ̂( ) I Π̂S ρ̂( )( ).
a
α

max–=

Un
+

D
βS

2

16 2ln
������������.≈

Ûn
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We note that the discord value calculated by means
of orthogonal measurements (6) is an upper bound for
discord determined with the use of generalized nonor�
thogonal positive�operator�valued measurements [9,
19, 22, 35]. In the case of measurements on a two�level
system, the difference between these discord values is
very small (see, e.g., [35]). Qualitative analysis of the
properties of dynamic quantum correlations is of pri�
marily interest; for this reason, a simpler orthogonal
measurement will be used following [17, 19–22, 27].

For further, more detailed analysis, model (1) is
simplified by setting Ajz = Ajy = 0 and HII = 0. In this
case, we obtain (see Appendix A)

(9)

Omitting the subscript j, the functions entering into
Eq. (9) for the FID and spin echo can be represented
in the from

(10)

where

In this model, the FID signal or echo amplitude is
represented in the form

(11)

Substituting these functions (omitting the super�
scripts f and e) into general formulas (5) and (7) and
retaining the first nonzero term of the expansion in βS,
we obtain (see Appendix B)

(12)
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where

(14)

The maximum in Eq. (13) is reached at ϕ = 0 if K < 0
and at ϕ = π/2 if K > 0. Therefore, discord (7) can be
represented in the form

(15)

(16)

Estimate (8) is obtained from Eq. (15) when all prod�
ucts with respect to j are zero. This is the case at quite
large times for a fairly large number of nuclei. In this
case, K = 0 and the dependence on the angle ϕ disap�
pears in Eq. (13).

To complete this subsection, it is noteworthy that,
since mutual information and discord do not change
under a unitary transformation of one of two sub�
systems [9], Eqs. (9)–(16) describe systems with
Hamiltonians obtained from Eq. (1) by the rotation of
nuclear spin components. For example, if Ajx = Ajy = 0,
but Ajz ≠ 0, the nuclear Zeeman interaction has the

form . In particular, such hyperfine interac�

tion is used to describe phosphor impurities in silicon
[11, 29].

2.2. Discussion

To analyze the dependences of Eqs. (12), (15), and
(16) on the parameters, we consider a homogeneous

K Uj0
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case of equal constants Ajx = A and Larmor frequencies
ωj = ω for n nuclei. In this case,

(17)

Consequently, at even n values,

K ≥ 0 at 1/3 ≤ (t) ≤ 1,

K ≤ 0 at 0 ≤ (t) ≤ 1/3.

At odd n values, K ≥ 0 at any possible (t) value. In

both cases, discord is maximal at (t) =1/3,

(18)

where m = n at even n values and m = n – 1 at odd n
values. In both cases,

(19)

The function (t) can be represented in the form

(t) = (1 – v)2, where

(20)

according to Eqs. (10). In both cases, the parameter v
is a periodic function of the time. The magnetic�field
dependences of the amplitude of these oscillations are
different. With an increase in the magnetic field, this
amplitude for the FID decreases from 2 to 0, whereas
the amplitude for echo increases first from 0 at ω = 0
to a maximum value of 2 at ω = A/2 and then
approaches zero in the limit ω  ∞. The depen�
dences of mutual information (12) and discord (16) on
parameter (20) are shown in the figure. They are spec�
ified by the same functions of v for both free�preces�
sion decay and spin echo.

At v = 0, e.g., at the initial time, (t) = 1 and D =

0. We consider the case where (t) is close to unity. At
vn � 1, we obtain

(21)

If v � 1, but vn > 1, the estimate expression follows
from Eqs. (12), (16), and (17) in the form

(22)

which describes an increase in discord to maximum
value (8) at a quite large number of nuclei.

With a further increase in the time to tΩ/2 = π,
again v = 0 and D = 0. If the number of nuclei n is
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(Solid and dash�dotted lines) Mutual information Iρ =

I(ρ)8ln2/  at numbers of nuclei n = 10 and 2, respec�

tively, and (dashed and dotted lines) the relative fraction of
quantum discord Dρ = D/I(ρ) at numbers of nuclei n = 10
and 2, respectively, versus parameter v (20).
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insufficient, satisfying the conditions following from
Eq. (20),

(23)

discord D will periodically be smaller than Eq. (8).
At the same time, inequalities (23) can be considered
as conditions for the magnetic field at a limited num�
ber of nuclei. When the magnetic field increases above
the boundary value determined by inequalities (23),
the achievable value of discord decreases because
nx  0 (decrease for echo also occurs in the other
limiting case of weak magnetic fields because nz  0
in this case).

Under certain conditions, which can be derived from

Eqs. (20), v = 1 and, therefore, (t) = (1 – v)2 = 0. In
this case, according to Eq. (17), g(t) = 0 and |K| = 1;
consequently, mutual information I(ρ) is maximal,
whereas D = 0.

To physically explain these properties, we consider
density matrix (3). According to Eq. (9), the imaginary

part of the operator  contains the product of an

odd number of operators  and , whereas the real
part includes the product of an even number of these
operators. Therefore, terms with the electron�spin

operators  and  are responsible for different cor�
relations. The quantum part of correlations is lost
when density matrix (3) is projected on one direction
at measurement (6). The exception is the case of one
nucleus n = 1 in which all correlations are in the term

of one direction . For this reason, projection on this
direction is not accompanied by loss of correlations
and quantum discord is zero (with the accuracy under

consideration to the terms , whereas higher�order
terms are nonzero, as can be seen in the general solu�
tion for the two�qubit DQC1 model [23]). The term of

one direction—  at even n values and  at odd n
values—retains in Eq. (3) with operators (9) under the

condition (t) = 0. At vn � 1, the preferential y

direction ( ) is conserved for correlations; conse�
quently, discord (21) is small.

Finally, if v � 1, but vn > 1, discord (22) tends to
the maximum value. The structure of this state can be
analyzed using representation (C.3) in Appendix C for
the density matrix in the basis of the eigenfunctions
|Θk〉 of evolution operators (4). This mixed state is rep�
resented in the form of the superposition of states with
certain values of the evolution operator, which are in
turn determined by the states of electron and nuclear
spins. Each such state corresponds to a certain orien�
tation of the electron spin vector 〈S〉k in the xy plane.
Owing to the condition vn > 1 at v � 1, the vectors

n 1/ 2nx
2( ) for FID,<

n 1/ 8nx
2nz

2( ) for echo,<

U0
2

Û f e,( )
+

Îjx Îjy

Ŝy Ŝx

Ŝy

βS
2

Ŝx Ŝy

U0
2

Ŝy

〈S〉k are uniformly distributed over all directions. In
this case, in Eq. (C.6),

(24)

and τRe ≈ τIm ≈ 0. Spin operators in different direc�
tions do not commute with each other and, conse�
quently, cannot be measured simultaneously. Under
condition (24), half the correlations are lost at projec�
tion (6) on any direction and quantum discord reaches
the maximum according to Eq. (22). In this case, since
the states under consideration are separable states,
quantum entanglement characterizing quantum cor�
relations of another type is absent [6–9, 17, 19, 21–
23]. The analysis of the operation of the DQC1 com�
puter shows that entanglement appears at low temper�
atures when βS > 1 [17]. Under these conditions, the
high�temperature approximation is inapplicable.

We return to the case of different hyperfine cou�
pling constants in Eqs. (11)–(16). At small vj values,

vn in Eqs. (21) and (22) should be replaced by .

When these parameters increase, the conditions vj = 1
will be satisfied for different nuclei at different times;
consequently, the common point v = 1, as well as the
minimum of discord at it observed in the figure, will be
absent. A quite uniform distribution of electron spins
in the xy plane once appearing will further be con�
served; therefore, achieving the maximum value, dis�
cord holds this value at large times.

Correlations can be measured without losses if the
unlocking procedure for classical correlations pro�
posed in [36] is used. To this end, the projective mea�
surement of the nuclear system should be performed
in the basis of the eigenfunctions |Θk〉〈Θk| of the evolu�
tion operator (see Appendix C). The use of this infor�
mation at the measurement of the spin S makes it pos�
sible to choose the correct direction ϕk = –Θk in pro�
jector (6). To obtain complete information, the
measurement should be performed for each Θk value,
i.e., for each element of the ensemble of systems in dif�
ferent classical states. After that, the traces of matrices
and mutual information can be calculated on a classi�
cal computer. Now,

in Eq. (C.6) instead of 1/2 in Eq. (24). This means that
such a measurement provides complete information.
It should be emphasized that the trace of the evolution

matrix is obtained in one measurement of 〈 〉 or 〈 〉
in the quantum system. In this case, quantum infor�
mation unknown to an observer is summed on spin S.
The summation of classical information known to the
observer requires N = 2n operations of summation of
matrix elements on a classical computer.

2 n– ϕ Θk+( )cos
2

k

∑ 1/2,≈

vjj∑

2 n– ϕ Θk+( )cos
2

k

∑ 1=

Ŝx Ŝy



822

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 119  No. 5  2014

ZOBOV

The above analysis obviously refers not only to par�
ticular conditions of spin echo, but also to other quan�
tum systems, including the DQC1 model. To imple�
ment this model on a classical system (on the classical
computer), an ensemble of N = 2n classical systems is
required. One of the operations Uii, i = 1, …, N is per�
formed on each element of the ensemble. Then, these

results are sequentially summed: . In the case

of the implementation on a quantum system (on a
DQC1 quantum computer), a quantum superposition

of N = 2n states is prepared and the operator  is
applied on all states simultaneously. The results are
summed on spin S “without reading” and only the
final result is measured. Thereby, the advantage of the
DQC1 quantum computer over the classical computer
is possibly due to the indicated property of quantum
information in a superposition state. This property of
the quantum system (quantum information) is charac�
terized by quantum discord, which is equal to locking
classical correlation, as was shown in [37]. However,
the relation is ambiguous because quantum calcula�
tions can be performed at zero discord [21].

Finally, as was mentioned in the Introduction, the
capability of changing the state of the reservoir after a
change in the state of the electron spin (back action) is
used as a quantization characteristic of the reservoir of
nuclear spins surrounding the electron spin. Such a
change results in an incomplete recovery of echo and
in a decrease in its amplitude g(e)(t). As a result, corre�
lations appear between the electron and nuclear spins;
these correlations are characterized by mutual infor�
mation (12) expressed in terms of the echo amplitude
squared. The features of the time and magnetic�field
dependences of g(e)(t) described in [30] will be mani�
fested in mutual information, which is accepted [8, 9]
as a measure of total correlations. The quantum part of
correlations is characterized by discord whose behav�
ior was analyzed above (see figure). In particular, a
decrease in ratio (21) with a decrease in parameter v
(20) can be considered to a certain extent as the con�
firmation of the conclusion made in [30] about a
decrease in quantization with an increase in the mag�
netic field, but the total amount of correlations
decreases in this case. It is noteworthy that the authors
of the cited work considered two�quantum transitions
between levels with the spin projection +1 and –1 of
the S = 1 spin in the NV center in diamond. After the
replacement of Ajx by 2Ajx, the above formulas
obtained for S = 1/2, as well as the above conclusions
followed from them about the behavior of quantum
correlations, can be applied to this transition. How�
ever, they cannot be directly used for quantitative cal�
culations because the conditions of the high�tempera�
ture approximation are violated for the electron spin of
the NV center.

Uiii 1=
N

∑

Ûn

3. INCLUSION OF THE POLARIZATION 
OF NUCLEAR SPINS

The effect of the polarization of nuclear spins on
discord is examined in this section. To this end, equi�
librium density matrix (2) is supplemented by the term

The evolution of this part under the same conditions
that Eqs. (3)–(10) can be represented in the form

(25)

Thus, evolution transforms the multispin system
under consideration to the state

(26)

Mutual information (5) for this state is found in the
form (see Appendix B)

(27)

and mutual information of the state after the von Neu�
mann measurement with projectors (6), where az =
cosθ, ax = sinθcosϕ, and ay = sinθsinϕ, is given by the
expression

(28)

At small times, when (t) is close to unity and has

the form (t) = (1 – vj)
2, where vj � 1 is specified by

Eqs. (20), the cross term in Eq. (28) can be neglected
because, according to Eq. (10),

Then,

(29)

βIΔρ̂IS/Z βI Îjz/Z.

j

∑=

Δρ̂IS t( ) Uj0
f e,( ) t( )Îjz{

j

∑=

+ ŜzÎjyUjx
f e,( ) t( ) ŜzÎjxUjy

f e,( ) t( ) }.+

ρ t( ) 1 – βSΔρ̂SI t( ) βIΔρ̂IS t( )+{ }/Z.=

I ρ( )

=  1
8 2ln
��������� βS

2
1 Uj0

2 t( )
j

∏–
⎝ ⎠
⎜ ⎟
⎛ ⎞

βI
2

1 Uj0
2–( )

j

∑+ ,

I Π̂S ρ̂( )( ) 1
16 2ln
������������=

× βS
2 θ 1 Uj0

2 t( )
j

∏– K 2ϕ( )cos–sin
2

⎩
⎨
⎧

+ 2βI
2 θ 1 Uj0

2–( )
j

∑cos
2

2βIβS ϕ θ θcossinsin+

× Ujx t( )Ujy t( )( ) Uk0 t( )
k ≠j( )

∏
j

∑
⎭
⎬
⎫

.

Uj0
2

Uj0
2

Ujx t( )Ujy t( ) 1 Uj0
2 t( )–< 2vj.≈

I Π̂S ρ̂( )( )8 2ln

=  βS
2 1 2ϕ( )cos–( ) θsin

2 βI
2 θcos

2
+[ ] vj.

j

∑
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In the same approximation,

(30)

Function (29) reaches a maximum at ϕ = π/2. In this
case,

This expression is maximal at θ = π/2 if  >  and

at θ = 0 if  < . For this reason, discord (7) can be
represented in the form

(31)

It is noteworthy that higher powers of the time in the
expansion, which leads to contribution (21), should be

taken into account at very small  values.

Under other conditions at quite large times for a
sufficiently large number of nuclei, when all products
with respect to j in Eqs. (27) and (28) can be approxi�
mated by zero, K = 0 and the dependence on the angle
ϕ disappears in Eq. (28):

(32)

Function (32) is maximal at θ = π/2 if

and at θ = 0 if

In the former case,

(33)

whereas in the latter case,

(34)

We compare these expressions to the results
obtained in the preceding section. When the polariza�
tion of nuclear spins is taken into account, additional
terms appear in I(ρ) and D. As a result, the behavior at
small times changes: D/I(ρ) tends to finite value (31)
rather than to zero as would be according to (21). This
ratio increases at large times, as follows from the com�

I ρ̂( )
βS

2 βI
2+

4 2ln
�������������� vj.

j

∑=

I Π̂S ρ̂( )[ ]4 2ln βS
2 θsin

2 βI
2 θcos

2
+[ ] vj.

j

∑=

βS
2 βI

2

βS
2 βI

2

D

βI
2

4 2ln
��������� vj

j

∑ I ρ( )
βI

2

βS
2 βI

2+
�������������� at βS

2= βI
2
,>

βS
2

4 2ln
��������� vj

j

∑ I ρ( )
βS

2

βS
2 βI

2+
�������������� at βS

2= βI
2
.<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

βI
2

I Π̂S ρ̂( )( )

=  1
16 2ln
������������ βS

2 θsin
2

2βI
2 θ 1 Uj0

2–( )
j

∑sin
2

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

.

βS
2 2βI

2 1 Uj0
2–( ),

j

∑>

βS
2 2βI

2 1 Uj0
2–( ).

j

∑<

D 1
8 2ln
���������

βS
2

2
���� βI

2 1 Uj0
2–( )

j

∑+
⎩ ⎭
⎨ ⎬
⎧ ⎫

,≈

D
βS

2

8 2ln
���������.≈

parison of Eqs. (33) and (22). Finally, because of the
additional term Δ (t) given by Eq. (25), which does

not commute with Δ (t), the result of the von Neu�

mann measurement on nuclear spins changes. Now,
projector (C.2) composed of the eigenfunctions of the

unitary operator  given by Eq. (4) changes the
state ρ(t) specified by Eq. (26); consequently, discord
at the measurement on nuclear spins will be nonzero.

There is another approach to the analysis of corre�
lations in the multispin system. This approach involves
the reduction of density matrix (26) to the density
matrix of a pair of spins [9, 38]. We calculate the trace
over the spin variables of all nuclear spins except for
the jth spin of the environment. As a result, the
reduced density matrix of the two�spin system is
obtained in the form

(35)

To simplify the formulas, the following notation was
introduced:

(36)

After the cyclic change of spin variables ( , , )

to ( , , ), state (35) acquires the form of the X
state [9, 38]. Discord remains the same after such a
change. Discord for the X state was calculated in many
works. Instead of the analysis of complicated formulas
obtained in those works, it seems more reasonable to
obtain the result directly for our simple model in the
high�temperature approximation.

The mutual information of state (35) is obtained in
the form

(37)

In order to separate the classical part of correla�
tions, the orthogonal measurement with projectors (6)
for density matrix (35) is performed. The operator Sx

enters into this matrix separately from the nuclear spin
operator and, consequently, does not contribute to
mutual information both before measurements and

after them. Since I( ( (t))) is independent of ax,

to reach the maximum value, the sum of the squares of
two other direction cosines should be maximal, which

ρ̂IS

ρ̂SI

Û f e,( )
±

ρ̂Sj t( ) 1
4
�� 1 U0 –βS t( )Ŝx βIÎjz+[ ]+{=

+ βIŜz UxÎjy UyÎjx+[ ] βS t( )Ŝy UyÎjy UxÎjx+[ ]+ }.

βS t( ) βS Uk0
f e,( ) t( ), U0

k ≠ j( )

∏ Uj0
f e,( ) t( ),= =

Ux Ujx
f e,( ) t( ), Uy Ujy

f e,( ) t( ).= =

Ŝx Ŝy Ŝz

Ŝz Ŝx Ŝy

I ρ̂Sj t( )( ) 1
8 2ln
��������� 1 U0

2–( ) βS
2 t( ) βI

2+( ).=

Π̂S ρ̂Sj
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is achieved at ax = 0, az = cosϕ, and ay = sinϕ. As a
result,

(38)

The classical part of correlations can be separated
by another method of orthogonal measurements of the
nuclear spin by means of the projectors

where bα are the direction cosines. We take bz = 0, by =
cosψ, and bx = sinψ, because the operator Ijz appears
in matrix (35) separately from the electron spin oper�

ator and I( ( (t)))) does not contain a contribu�
tion with bz. In this case,

(39)

The desired amount of classical correlations is
found after the determination of the maxima of func�
tions (38) and (39) in the angles ϕ and ψ, respectively.
From the condition of maximum of Eqs. (38) and
(39), we obtain the equations

and

respectively.
Quantum discord Dj is determined by Eq. (7) after

the subtraction of classical correlations from total cor�
relations (37). At βI = 0 (or βS = 0), Dj = 0. Discord Dj

at nonzero polarizations is nonzero at measurements

both in S and in I. In particular, at (t) =  = β2, we
obtain

(40)

Discord at other values of the parameters can be cal�
culated numerically by the resulting formulas.

It is noteworthy that the ratio Dj/I( (t)) at small
times is specified by Eq. (31) with the replacement of

 by (t). In this case, discords in two cases are dif�

I Π̂S ρ̂Sj t( )( )( ) 1
16 2ln
������������ 1 U0

2–( ) βS
2 t( ) βI

2+( ){=

– 2ϕ( ) 1 U0
2–( ) βS

2 t( ) βI
2–( )cos

+ 2ϕ( )βS t( )βIUxUy }.sin

Π̂I±
1
2
�� bxÎjx byÎjy bzÎjx+ +( ),±=

Π̂I ρ̂Sj

I Π̂I ρ̂Sj t( )( )( ) 1
32 2ln
������������ βS

2 t( ) βI
2+( )��

⎩
⎨
⎧

=

× 2 1 U0
2–( ) 2ψ( )UxUysin+[ ]

+ 1
2
�� 2ψ( ) Uy

2 Ux
2–( ) βS

2 t( ) βI
2–( )cos

⎭
⎬
⎫

.

2ϕ( )tan –
UxUyβIβS t( )

1 U0
2–( ) βS

2 t( ) βI
2–( )

����������������������������������������,=

2ψ( )tan
2UxUy βS

2 t( ) βI
2+( )

Ux
2 Uy

2–( ) βS
2 t( ) βI

2–( )
������������������������������������������.=

βS
2 βI

2

Dj
β2

16 2ln
������������ 2 1 U0

2–( ) UxUy–{ }.=

ρ̂Sj

βS
2 βS

2

ferent, because mutual information (30) in the case of
total density matrix (26) is the sum of the amounts of
mutual information for all pairs represented by
reduced matrices (35).

Thus, it has been shown that the method of reduc�
tion of the density matrix to a two�spin electron–
nuclear system provides a qualitatively correct
description of pair correlations and dynamics of their
quantum and classical parts. Such correlations play
the main role at βS ≈ βI and small times. Multispin cor�
relations become dominant at large times. Pair corre�
lations decay, which is manifested in a decrease in βS(t)
(36) in the results obtained for the reduced density
matrix. In this case, mutual information contains a

term proportional to , which does not include
quantum correlations. On the contrary, mutual infor�
mation (27), as well as discord given by Eq. (33) and
(34), is maximal when all correlations are completely
taken into account.

4. CONCLUSIONS

The dynamics of the system of an electron spin sur�
rounded by nuclear spins under the conditions of free�
precession decay and electron spin echo has been
studied. The damping of the observed signals is attrib�
uted to the formation of correlations between electron
and nuclear spins. In the central�spin and high�tem�
perature approximations, the density matrix is repre�
sented in the form of the sum of terms with different
numbers of nuclear spin operators responsible for dif�
ferent correlations. Under the conditions of the FID
and spin echo, the same combinations of spin opera�
tors appear, where the dependences of the coefficients
on the time and magnetic field are different for these
two cases. Some of these terms disappear after the pro�
jection on an orthogonal basis. Mutual information
calculated over all the terms of the density matrix
specifies the magnitude of total correlations, whereas
mutual information calculated over the terms remain�
ing after projection gives the magnitude of classical
correlations. Their difference determines the magni�
tude of quantum correlations characterized by dis�
cord. At the present time, the quantum properties of
the system under consideration are studied in the FID
signals and a decrease in the spin echo amplitude,
which are determined by terms with one spin operator.
There are more complex methods for measuring terms
with a large number of spin operators. In particular,
two�spin terms in the density matrix were measured in
[29] with the use of the quantum state tomography
method, while authors of [24] proposed to use multi�
quantum NMR spectroscopy to measure terms with a
large number of spin operators. The inclusion of mul�
tispin terms of the density matrix will allow finer stud�
ies of the quantum properties of the electron–nuclear
system.

βI
2
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APPENDIX A

EVOLUTION OPERATOR

The properties of raising and lowering operators
allow the following transformations of the evolution
operators of the FID and spin echo:

(A.1)

where  is the rotation operator of the spin S by
180° about the x axis of the rotating reference frame.

In the case  = 0, the operators given by Eqs. (4)
for different nuclear spins commute with each other;
as a result, the product of their contributions appears
in Eq. (9). We consider the contribution from the
interaction with one nuclear spin. The properties of
the Pauli matrices allow the following transformation
of exponential operators:

(A.2)

where  is the identity matrix. Successively applying
this formula to operators in Eqs. (4) and performing
necessary transformations, we obtain Eqs. (9) and
(10). Since the evolution operators are unitary, the
coefficients satisfy the relation

(A.3)

APPENDIX B

CALCULATION 
OF MUTUAL INFORMATION

For density matrix (3), we find the reduced matrices

(B.1)

itĤ–( )exp S+ itĤ( )exp itĤ+–( )exp=

× itĤ––( )Ŝ+exp Ûf
+

t( )Ŝ+,≡

itĤ–( )exp P̂180 itĤ–( )Ŝ–exp

× itĤ( )P̂180 itĤ( )expexp

=  itĤ+–( ) itĤ––( )expexp

× itĤ+( )exp itĤ––( )Ŝ+exp

=  itĤ+–( )Ûf
–

t( ) itĤ–( )Ŝ+expexp Ûe
+

t( )Ŝ+,≡

P̂180

ĤII

itΩnxÎx– itΩnzÎz–( )exp

=  Ωt/2( )Ê2cos i2 Ωt/2( ) nxÎx nzÎz+{ },sin–

Ê2

Ûj f e,( )
+

t( )Ûj f e,( )
–

t( )

=  Uj0
f e,( ) t( ) iÎjxUjx

f e,( ) t( ) iÎjyUjy
f e,( ) t( )+ +{ }

× Uj0
f e,( ) t( ) iÎjxUjx

f e,( ) t( )– iÎjyUjy
f e,( ) t( )–{ }

=  Uj0
f e,( ) t( )( )

2 Ujx
f e,( ) t( )( )

2

4
���������������������

Ujy
f e,( ) t( )( )

2

4
���������������������+ + 1.=

ρ̂I t( ) TrSρ̂ t( ) 2ÊI

Z
�������,= =

ρ̂S t( ) TrIρ̂ t( )=

=  1
2
�� ÊS –

βS

2
���� Ŝ+τ+ t( ) Ŝ–τ– t( )+{ } ,

where

and  and  are the identity matrices. In the high�
temperature approximation, the density matrices of
interest have the form

In the lowest order in the inverse temperature, the von
Neumann entropy is given by the expression [33, 34]

(B.2)

In this approximation, the following expression is
obtained for mutual information (5):

(B.3)

which for system (9) gives Eq. (12).

Performing projection of matrix (3) with the use of
projectors (6) by the formula

we obtain

(B.4)

In the lowest order in the inverse temperature, the
mutual information for matrix (B.4) is given by the
expression

(B.5)

τ± t( ) 1

2n
����TrIÛ f e,( )

±
t( ),=

ÊI ÊS

ρ̂ 1
Z
�� 1 βΔρ̂±[ ].=

S ρ̂( ) = Tr ρ̂ ρ̂2log{ }– Z β2

2Z 2ln
������������Tr Δρ̂( )2

.–
2
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I ρ̂( )
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2

2 2ln
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Z
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2
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⎩
⎨
⎧

=
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2n
����TrI Δρ̂I( )2

⎭
⎬
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2

8 2ln
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m ±=

∑=

× Δρ̂SI t( ) Π̂Sm ÊI⊗( ),

Π̂S Δρ̂SI t( )( ) 1
4
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+
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–
t( )+( ){=
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4
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Here,

(B.6)

where τRe and τIm are the real and imaginary parts of τ±,
respectively. For system (9), τIm = 0 and it follows from
Eqs. (B.6) that

(B.7)

where property (A.3) is used in the last equality. The
substitution of Eqs. (B.7) into Eq. (B.5) gives either
Eq. (13) or the corresponding contribution in Eq. (28)
depending on the choice of the direction cosines indi�
cated in the text.

Similar calculations can be performed for contri�
bution (25) from nuclei. First, calculating the reduced
matrices in this state

and the von Neumann entropy taking into account
that

we obtain Eq. (27). Second, the orthogonal von Neu�
mann measurement with projectors (6) gives

TrI ΠSΔρ̂I( )2
TrI Δρ̂I( )2

0,= =

TrS Π̂S Δρ̂S( )( )
2 axτRe ayτIm–( )2

2
�������������������������������,=

1
Z
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2

=  1

2n 4+
��������TrI ax Û f e,( )

+
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+
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2
,
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2

τReax( )2 ax
2 Uj0

2 t( ),

j

∏= =

8
Z
��Tr Π̂S Δρ̂SI( )( )

2
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2 ay
2+( ) ax
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2–( )+=

× Uj0
2 t( ) 1

4
��Ujx

2 t( )– 1
4
��Ujy

2 t( )–
⎩ ⎭
⎨ ⎬
⎧ ⎫
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∏

=  ax
2 ay
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2–( ) 2Uj0
2 t( ) 1–{ },

j

∏+

TrIρ̂IS t( ) 0,=

Δρ̂I t( ) TrSρ̂IS t( ) ÎjzUj0 t( )
j

∑= =

Tr ρ̂ t( ) ρ̂ t( )2log{ } Tr ρ̂ 0( ) ρ̂ 0( )2log{ }=

=
βS

2 nβI
2+

8 2ln
����������������� n 1+( ),–

and the corresponding contribution in Eq. (28) by for�
mula (B.5) rewritten for this case.

APPENDIX C

CALCULATION IN THE ORTHOGONAL BASIS
OF THE NUCLEAR SYSTEM

We introduce the basis |Θk〉 consisting of the N = 2n

eigenfunctions of evolution operators (4)

(C.1)

and projection operators on these states

(C.2)

Density matrix (3) in this representation has the
form

(C.3)

Mutual information is given by Eq. (B.3), where

(C.4)

The projection of matrix (C.3) by means of projec�
tors (6) with az = 0, ax = cosϕ, and ay = sinϕ gives

(C.5)

In this case,
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and Eq. (B.5) yields

(C.6)

It is noteworthy that, for model (9),

where  at various k values can be either

2arcsin  and –2arcsin .
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