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1 1. INTRODUCTION

The prediction about the accelerated expansion of
the universe is a revolutionary change in modern cos�
mology. The debate on this topic has been extensive in
the last decade in both observational and nonobserva�
tional terms. The main focus of this discussion
remained on the unknown type of matter, which is
assumed to be the major factor of the accelerating uni�
verse. A consensus has been developed on dark energy
(DE), but its nature is still unclear. In order to resolve
this problem, a plethora of work has been done within
two main approaches: modification of the gravita�
tional part and of the matter part of the Einstein field
equations.

The modification approach in the matter part has
led to different dynamical DE models such as the
Chaplygin gas [1], holographic [2, 3], agegraphic [4],
new agegraphic [5], and scalar field DE models [6–
13]. The holographic DE (HDE) model is one of the
famous models developed in the framework of quan�
tum gravity. The main motivation behind this model is
to achieve consensus about the ambiguous nature of
DE. The holographic principle is the origin of this
model, according to which the number of degrees of
freedom of a physical system should scale with its
bounding area rather than its volume [14].

Later on, Cohen et al. [15] developed a relation
between ultraviolet (UV) and infrared (IR) cutoffs
using the idea of black hole formation in quantum
field theory. They argued that the total energy of a sys�
tem of size L should not exceed the black hole mass of

1 The article is published in the original.

the same size. Using this argument, Hsu [2] developed
a model for the density of HDE in the form

where λ is an arbitrary constant and mp is the reduced
Planck mass. Different expressions for the IR cutoff L
have been proposed such as Hubble, event, particle
horizons [3], Ricci scalar [16] and its generalized form
[17]. However, the HDE model with an event horizon
has been discussed extensively in the absence [3, 18,
19] and presence [20–22] of interaction with dark
matter (DM). These models have also been tested in
the framework of different observational schemes and
used to develop reliable constraints on different cos�
mological parameters such as the equation�of�state
(EoS) parameter, Hubble parameter, fractional energy
densities, etc. [23, 24].

Li [3] explored HDE with a future event horizon
using the logarithmic approach and found the present
value of the EoS parameter wϑ = –0.90. Huang and Li
[18] used this approach to examine the evolution of
the universe by checking all possible values of the
HDE parameter λ and also found that a generalized
second law of thermodynamics (GSLT) is preserved
for HDE with a future event horizon in a flat as well as
closed universe for λ < 1. They also revealed that HDE
with this horizon can cross the phantom region. Jamil
et al. [19] investigated the HDE scenario with a vary�
ing gravitational constant (G) in both flat and nonflat
universes by using the logarithmic approach. They
found corrections to the evolution of the EoS param�
eter in [3] due to variation of G. Lu et al. [24] checked
these results within observational schemes and argued
that the scenario of HDE with a varying G is compati�
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ble with the present observations. They also found the
present values of different cosmological parameters in
this scenario within a 1σ error range.

Recently, the holographic, agegraphic, and new
agegraphic DE models (with event and particle hori�
zons) have been extended to the most general class
characterized by dimensionless constant parameters
(m, n). The behavior of these models in terms of the
EoS parameter, noninteracting and interacting with
DM in a flat universe, was investigated in [25]. Cos�
mological behavior of the universe for a general class
of HDE with a particle horizon was explored in [26]
within observational schemes in a flat universe. In this
paper, we choose an (m, n) type DE model with a gen�
eralized cosmological horizon (GCH) (a generalized
form of the HDE model with a future event horizon)
in flat and nonflat universes. We use the logarithmic
approach to evaluate the EoS parameter in the context
of interaction with cold DM (CDM). We also discuss
the ωϑ–  plane and the validity of the GSLT.

The rest of the paper is arranged as follows. In Sec�
tion 2, we investigate the EoS parameter, ωϑ– , and
the GSLT in a flat universe. Section 3 explores the EoS
parameter, ωϑ– , and the GSLT in a nonflat uni�
verse. In the Section 4, we summarize our results.

2. FLAT UNIVERSE

In this section, we elaborate a basic cosmological
scenario in a flat Friedman–Robertson–Walker
(FRW) universe for DE with a GCH. The generalized
form of the cosmological horizon is defined as [25, 26]

(1)

where a(t) is the cosmic scale factor. We can recover
the original HDE with a future event horizon for m =
n = –1. The time derivative of the above relation yields

(2)

where H is the Hubble parameter. The first FRW equa�
tion leads to

(3)

where ρϑ and ρm are the respective DE and CDM den�
sities, while

are the corresponding fractional energy densities. The
continuity equations in the interacting case become

(4)

(5)

where u2 is an interaction parameter.
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Currently, there are no prior conditions imposed
on the possible interactions between DM and DE
because neither DE nor DM is understood fundamen�
tally. However, without violating the observational
constraints, DE can interact with DM in various fash�
ions by means of energy transfer between each other.
The interaction between DE and DM yields a richer
cosmological dynamics as compared to noninteract�
ing models and it is possible to solve the cosmic coin�
cidence problem within this framework. However, we
cannot describe interaction between these vague
nature components from first principles. Therefore,
we have to take a specific interaction or set it from phe�
nomenological requirements.

The DE density with a GCH is defined as

(6)

and its evolutionary form is given by

(7)

where the prime denotes differentiation with respect
to x = lna. By taking the derivative of Eq. (3) with
respect to the cosmic time, we obtain

(8)

Differentiating Ωϑ with respect to x and using Eqs. (7)
and (8) yields

(9)

2.1. Cosmological Implications

We now evaluate the EoS parameter within the log�
arithmic approach. The DE density is obtained from
Eq. (5) in the form

(10)

where ρϑ0 serves as the current value of the DE density.
We use a Taylor series expansion for ρϑ about the
present value of a0 = 1 as follows:

(11)

The series is terminated at the second�order derivative
because of the small�redshift approximation, i.e.,
lna = –ln(1 + z) ≈ –z, and it follows from (10) and
(11) that
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where

(13)

Here, the derivatives are taken at the present value of
a0. Expressing ρϑ in terms of fractional densities as
ρϑ = Ωϑρm/Ωm, after some calculations, we obtain

(14)

Using Eqs. (12)–(14), we obtain the EoS parameter as
follows:

(15)

Using the observational dataset from WMAP +
SNIa + BAO + H0, the best�fit values for the coupling
parameter u2 were presented in [27]. It was also com�
mented there that positive values of this parameter
alleviate the cosmological coincidence problem.
Here, we take u2 = 0.058 [27] for the interacting case
and plot the EoS parameter versus z in the noninter�
acting case as well (Fig. 1). We choose three different
well�settled pairs of the values of m and n by using well�
known observational data [26]. It is found that for a
given n, the models with n – m = 1 are most suitable
for discussing the cosmological parameters. For this
purpose, we take n = –1, 0, 1, which yield n = –1, m =
–2 (Fig. 1a), n = 0, m = –1 (Fig. 1b), and n = 1, m = 0
(Fig. 1c). In addition, the case (n = 0, m = –1) is the
most favorable model, also compatible with the
ΛCDM model. In Fig. 1a, the present values of the
EoS parameter are –0.80 and –0.86 in the noninter�
acting and interacting cases. The EoS parameter
remains in the quintessence region for the near past as
well as later time in the noninteracting case, while
phantom crossing is observed in the interacting case.
In Fig. 1b, the present values of the EoS parameter are
approximately –1.46 (in the noninteracting case) and
–1.53 (in the interacting case). The universe then
exhibits phantom�like behavior in the near past,
present, and future cosmic time. However, the large�
phantom behavior is observed in the near past com�
pared to the present and later time. In Fig. 1c, we see
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that the EoS parameter attains the present values in
the range –2.14 and –2.20 in the noninteracting and
interacting cases. In Fig. 1c, the EoS parameter also
exhibits phantom behavior in three different epochs.

2.2. ωϑ–  Analysis

A phenomenon called ωϑ–  for analyzing the
behavior of quintessence DE models and the corre�
sponding constraints for these models in the ωϑ–
plane were proposed in [28]. It was pointed out there
that the area of this phase plane can be divided into
thawing and freezing regions for these models. These
regions can be characterized by the values of  with
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Fig. 1. Plots of ωϑ versus z with u2 = 0, 0.058 in the flat case
for n = –1, m = –2 (a), n = 0, m = –1 (b), and n = 1, m =
0 (c). We use the present value of the fractional DE density
Ωϑ0 ≈ 0.73 and choose λ = 0.91.
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respect to ωϑ, i.e.,  > 0, ωϑ < 0 for a thawing region

and  < 0, ωϑ < 0 for a freezing region. Many authors

explored the nature of different DE models (a gener�
alized form of quintessence [29], the phantom [30],
quintom [31], polytropic DE [32], and PDE [33, 34]
models) using this phenomenon. Here, we analyze
the behavior of the DE model with a GCH in a flat
universe. The evolution of the EoS parameter turns
out to be

(16)
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The plots of  versus ωϑ for three different val�
ues of m and n are shown in Fig. 2. The Fig. 2a
shows that both curves do not meet the ΛCDM limit

(  = 0 at ωϑ = –1). However, the present values of

 are approximately equal to –0.15 and –0.20 in
the noninteracting and interacting cases with
respect to present values of ωϑ (as mentioned in
Section 2.1). It is also observed that the thawing and
freezing regions exist in this plane for both nonin�
teracting and interacting cases. In Fig. 2b, we are
able to achieve the ΛCDM limit in the noninteract�
ing case only. In this case, the present values are

= –0.8, –0.12 for u2 = 0, 0.058 according to the
present values of ωϑ. The curve corresponding to
u2 = 0 characterizes the thawing region initially,
then the freezing region, and finally the thawing

region of the –ωϑ plane. However, in the inter�
acting case, the curve starts from the thawing region
and then goes toward the freezing region. In Fig. 2c,
the ΛCDM limit cannot be achieved in both cases of

u2, and the present values of  with respect to ωϑ

are –0.02 and –0.04 for the respective values u2 = 0
and 0.058. In this case, both the curves provide
thawing as well as freezing regions.

2.3. Generalized Second Law of Thermodynamics

In general relativity, a pioneering relation
between thermodynamic quantities and the Ein�
stein field equations has been developed by Jacob�
son [35]. It is constructed from the entropy–hori�
zon�area proportionality relation by using the first
law of thermodynamics dQ = TdS, where dQ, T, and
dS represent the exchange in energy, temperature,
and the entropy change of a given system. Later on,
it was argued in [36] that for any spherically sym�
metric spacetime, the field equations can be written
in the form

(17)

where T, S, E, and p are the basic entities of a thermo�
dynamical system: the temperature, entropy, internal
energy, and pressure.

The GSLT is originated from the black hole
mechanics, where the second law states that the
total area of the outer boundary of a family of black
holes cannot decrease even as they swallow or col�
lide with each other. In the case of a thermodynam�
ical system, the entropy plays the role of area and
the GSLT states that the sum of the entropy of sur�
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Fig. 2. Plots of  versus ωϑ for n = –1, m = –2 (a), n =

0, m = –1 (b), and n = 1, m = 0 (c). Also, the solid and
dashed curves correspond to u2 = 0, 0.058.
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rounding constituents of matter and the entropy of
the black hole itself would increase [37]. Here, we
are interested in discussing the GSLT for a system
containing the interaction of DE and CDM on the
GCH. For this purpose, we need the quantities

(18)

The time rate of Eq. (17) for DE and CDM yields

(19)

We check the GSLT for a system in equilibrium. Using
Eqs. (4), (5), (18), and (19), we can obtain the final
form of the GSLT:

(20)

At present time, this expression becomes

(21)

Here, T does not violate the validity of the GSLT. We

analyze the validity of the GSLT by plotting T  in
the well�established range 0.3 ≤ λ ≤ 1 at the present
cosmic time in Fig. 3. Also, we use observationally set�
tled values of m, n, and u2. In Fig. 3a, we can observe
that the GSLT violates its validity in the range 0.3 ≤
λ < 0.88 and preserves its validity for 0.88 ≤ λ ≤ 1.
In Fig. 3b, the GSLT does not remain valid for both
noninteracting and interacting cases. It is observed
that the GSLT remains valid for 0.82 ≤ λ ≤ 1 in the
noninteracting case and for 0.78 ≤ λ ≤ 1 in the inter�
acting case (Fig. 3c).

3. NONFLAT UNIVERSE

In this section, we repeat the above analysis for a
nonflat universe. We define the corresponding gener�
alized form of the cosmological horizon as
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whose time derivative takes the form
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The first FRW equation in a nonflat universe becomes
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Fig. 3. Plots of T  versus λ, at the present time, for n =
–1, m = –2 (a), n = 0, m = –1 (b), and n = 1, m = 0 (c).
Also, the solid and dashed curves correspond to u2 = 0,
0.058.
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cosmic time yields

(25)

The corresponding evolution of the DE density turns
out to be

(26)

Equations (25) and (26) yield
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In the nonflat universe, the derivatives required for
the EoS parameter at the present time take the form
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Here, we have used the current values

while the values of other constant parameters are the
same as in the preceding section. Inserting the above
derivatives in Eq. (13), we obtain the EoS parameter as
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The plot of the above parameter is shown in Fig. 4
versus the same parameters as in Section 2. The
present values ωϑ0 are approximately equal to –0.82
and –0.88 in the noninteracting and interacting cases,
as shown in Fig. 4a. In the interacting case, the EoS
parameter lies in the quintessence for the near past,
present, and later epoch. However, the EoS parameter
behaves like a phantom in the near past; after a short
interval of time, it crosses the vacuum era and then
goes toward the quintessence region in the noninter�
acting case. In Fig. 4b, the present values of the EoS
parameter are –1.48 and –1.54 corresponding to the
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Fig. 4. Plots of ωϑ versus z with u2 = 0, 0.058 in the nonflat
case for n = –1, m = –2 (a), n = 0, m = –1 (b), and n = 1,
m = 0 (c). We use the present value of the fractional DE
density Ωϑ0 ≈ 0.73 and choose λ = 0.91.
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noninteracting and interacting cases. However, the
universe behaves like a phantom in this model in all
epochs. In Fig. 4c, the present values of ωϑ correspond
to –2.13 and –2.19 for the noninteracting and inter�
acting cases. However, the universe also remains in the
phantom region but attains more negative values as
compared to preceding case.

For ωϑ– , we differentiate Eq. (29) as

(30)

The ωϑ–  plane is shown in Fig. 5 with the same

constant parameters. The present values of  are
⎯0.15 and –0.20 (Fig. 5a), –0.9 and –0.14 (Fig. 5b),
and –0.03 and –0.05 (Fig. 5c) for the noninteracting
and interacting cases, respectively. The ACDM limit is
only attained in the noninteracting case in Fig. 5b. In
addition, thawing and freezing regions exist in all
cases.

In this context, the expression of the GSLT turns
out to be

(31)

We plot it at the present state versus λ in Fig. 6. We
observe that the GSLT is valid for 0.86 ≤ λ ≤ 1 (Fig. 6a
in the noninteracting and interacting cases), 0.80 ≤
λ ≤ 1 (Fig. 6b in the noninteracting case), and 0.76 ≤
λ ≤ 1 (Fig. 6c in the interacting case).

4. CONCLUDING REMARKS

The purpose of this work is to study the cosmic
acceleration within the interacting DE model with
CDM in flat and nonflat universes. We have explored
the EoS parameter in terms of different cosmological
and constant parameters in the logarithmic approach
with the Taylor series expansion up to the second
order. The reason is that we would like to make correc�
tions in the behavior of the EoS parameter and reduce
the deficiencies. In the discussion of this parameter,
three constant parameters play the crucial role, i.e.,
GCH parameters (m, n) and the interaction parameter
u2. We have observed the behavior of the EoS parame�
ter with respect to m, n, u2 and obtained some con�
straints on the present values of ωϑ. We have chosen
the observation�ally settled values of constant param�
eter like m, n [26], and u2 [27].

ωϑ
'

ωϑ
' Ωϑ0 6λ( ) 1– 2m 2n– 3u2Ωϑ03–([–=

+ 1 Ωϑ0– 3 1– Ωk+( ) 2λ 1– Ωϑ 1 Ωϑ–( ) )+

+ 2 0.013( )2Ωϑ0λ 2– ].

ωϑ
'

ωϑ
'

TS· total = 3λ2

2Ωϑ

�������� 1 Ωk ωϑΩϑ+ +( ) n 1+( )λ

Ωϑ

����������������� am n– ycos+⎝ ⎠
⎛ ⎞–

– nλ

Ωϑ

��������� am n– ycos+⎝ ⎠
⎛ ⎞ .

In the flat case (Fig. 1), the approximated present
values of ωϑ in the respective noninteracting and inter�
acting cases are –0.80, –0.86 (Fig. 1a), –1.46, –1.53
(Fig. 1b), and –2.14, –2.20 (Fig. 1c). We note that the
phantom behavior cannot be achieved in the noninter�
acting case in the left plot. However, phantom crossing
was observed in the interacting case, i.e., the EoS
parameter starts from the phantom region in the near
past and goes toward the quintessence region by evolv�
ing the vacuum region. In Figs. 1b, 1c, totally phan�
tomlike behavior has been observed, but a greater
phantom effect has been observed in Fig. 1c. In the
nonflat case, the approximated present values of the
EoS parameter in the noninteracting and interacting
cases are ωϑ0 = –0.82 and –0.88, ωϑ0 = –1.48 and
⎯1.54, and ωϑ0 = –2.13 and –2.19, as shown in
Figs. 4a, 4b and 4c. However, the behavior of the EoS
parameter is similar to that in the flat case.

ωϑ'

0.10

−2.5 ωϑ

0.25

0.05

0.15

−1.0

(c)

−1.5−2.0

0

−0.05
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0.2

−1.0
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−1.5−2.0

0

−0.1

0.3

0

0.2

−1.0

(a)

−0.5 0.5

0

−0.2

0.4

−0.5 0

Fig. 5. Plots of  versus ωϑ in a nonflat universe for n =

–1, m = –2 (a), n = 0, m = –1 (b), and n = 1, m = 0 (c).
Also, the solid and dashed curves correspond to u2 = 0,
0.058.

ωϑ'
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By taking different combination of observational
schemes, Ade et al. [38] have put the following con�
straints on the EoS parameter:

ωϑ = – (Planck + WP + BAO),

ωϑ = –1.09 ± 0.17 (Planck + WP + Union 2.1),

ωϑ = –  (Planck + WP + SNLS),

ωϑ = –  (Planck + WP + H0)

at 95% confidence level. It can be seen from the a and
b panels in Figs. 1 and 4 that the EoS parameter
approximately represents the above values for all cases
of the interaction parameter, which shows consistency

1.13 0.25–
+0.24

1.13 0.14–
+0.13

1.24 0.419–
+0.18

of our results. We also observe that as n increases, this
parameter deviates from –1 for chosen pairs of (n, m).

We have also explored ωϑ–  in both flat and non�
flat universes and found coincidence of the DE model
with the ΛCDM model. The ACDM limit is achieved
only in the noninteracting scenario for n = 0, m = –1
in flat as well as nonflat universes (Figs. 2b and 5b).
The present values of  with respect to ωϑ are also
obtained. Finally, we have explored the GSLT in this
scenario at the present epoch with respect to λ for
three different choices of n and m by setting the well�
established values of the remaining constant parame�
ters. It is found that the GSLT remains valid in the spe�
cific ranges of λ.

We thank the Higher Education Commission,
Islamabad, Pakistan, for its financial support through
the Indigenous Ph.D. 5000 Fellowship Program
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