= STRUCTURE OF ORGANIC = COMPOUNDS

Crystal Structure and Computational Study of 5-Ethyl-4-(4-Methoxyphenethyl)-4,5-Dihydro-3*H*-1,2,4-Triazol-3-One and 4-(4-Methoxyphenethyl)-5-Propyl-4,5-Dihydro-3*H*-1,2,4-Triazol-3-One

H. Bülbül^{a,*}, S. Öztürk Yıldırım^b, Y. Köysal^c, D. Ünlüer^d, M. Serkan Soylu^e, and R. J. Butcher^f

^a Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200 Turkey

^b Department of Physics, Faculty of Sciences, Erciyes University, Kayseri, 38039 Turkey

^c Yeşilyurt Demir Çelik Vocational School, Ondokuz Mayıs University, Samsun, 55330 Turkey

^d Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080 Turkey

^e Department of Physics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey

^f Department of Chemistry, Howard University, 525 College Street NW Washington, DC 20059 US

* e-mail: hbulbul@omu.edu.tr

Received November 13, 2019; revised March 23, 2020; accepted April 20, 2020

Abstract—Molecular structures of compounds 5-ethyl-4-(4-methoxyphenethyl)-4,5-dihydro-3*H*-1,2,4-triazol-3-one, ($C_{13}H_{17}N_3O_2$) (I) and 4-(4-methoxyphenethyl)-5-propyl-4,5-dihydro-3*H*-1,2,4-triazol-3-one, ($C_{14}H_{19}N_3O_2$) (II) were studied by single crystal X-ray diffraction. Molecular compound I crystallizes in the monoclinic space group $P2_1$ with Z = 2, while molecular compound II crystallizes in the monoclinic space group $P2_1/c$ with Z = 4. The molecular geometries of the compounds I and II were optimized using computational quantum mechanical methods: the density functional theory and the Hartree–Fock approximation. Theoretical values of bond lengths, bond angles, and torsion angles were obtained using the BL3YP functional and the 6-31G+(d) basis. The results show that theoretical values are consistent with experimental values.

DOI: 10.1134/S1063774520070044

INTRODUCTION

Five-membered heterocycles are increasingly important in medical chemistry. Especially 1,2,4-triazole derivatives have a wide spectrum of biological activity, including anti-tuberculosis, antimalarial, antioxidant, antimicrobial, anti-inflammatory, antiviral, cytotoxic, anticonvulsant, antiproliferative, antidepressant, hypoglycemic, anticancer, antipyretic and analgesic activities [1–4]. In addition, flucanazole and itraconazole, which have a triazole nucleus, are effective against fungal growth in biological systems [5]. Due to the importance of the items researched in this work, the results of experimental and theoretical studies were compared to determine the structure details.

EXPERIMENTAL

Synthesis

The compounds were synthesized according to [6].

X-Ray Data Collection

X-ray diffraction patterns were obtained on a Bruker diffractometer [7, 8]. Single crystals of com-

pounds I and II were grown in the form of blocks. Crystals with approximate sizes of $0.500 \times 0.300 \times 0.200$ mm for I and $0.55 \times 0.50 \times 0.45$ mm for II were chosen for further measurements (Mo K_{α} radiation, $\lambda = 0.71073$ Å, ω scan technique at 293 K). Data reduction was performed using the APEX2 [8] and SAINT software [7]. The crystal structures of the title compounds were solved and refined by direct methods and full-matrix least square procedure using the SHELXS-97 [9, 10] and SHELXL-97 programs [9, 10]. The ORTEP-3 program [11] for MS Windows has been preferred for the visualization of figures. WinGX [11] was used to prepare data for publication.

The parameters of all atoms of compounds I and II, except hydrogen, were refined in the anisotropic approximation of atomic displacements. The H1 atoms attached to N1 and N2 atoms were localized from difference Fourier map and their parameters were refined in the isotropic approximation. Other H atoms were positioned with idealized geometry and refined using isotropic temperature factors and C–H distances of 0.93–0.96–0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C)$. Crystallographic data, struc-

	Compound I	Compound II
Formula	C ₁₃ H ₁₇ N ₃ O ₂	$C_{14}H_{19}N_3O_2$
M	247.30	261.32
<i>Т</i> , К	293	293
Crystal system, sp. gr., Z	Monoclinic, $P2_1$, 2	Monoclinic, $P2_1/c$, 4
a, b, c, Å	7.3529(2), 7.7617(2), 11.3557(2)	7.9592(7), 6.4084(4), 28.7320(19)
β, deg	95.142(2)	104.787(7)
$V, Å^3$	645.47(3)	1416.96(18)
μ , mm ⁻¹	0.088	0.084
<i>F</i> (000)	264	560
$\theta_{\min}, \theta_{\max}, \text{deg}$	1.80, 26.50	3.26, 26.48
Limiting indices h, k, l	$-9 \le h \le 8, -9 \le k \le 5, -13 \le l \le 14$	$-9 \le h \le 9, -7 \le k \le 6, -36 \le l \le 29$
Reflections used	1739	2822
R_1	0.038	0.075
S	1.079	1.019
$\Delta \rho_{min} / \Delta \rho_{max}, e / Å^3$	-0.285/0.208	-0.163/0.126

Table 1. Crystal data, details of data collection, and results of structure refinement for the compounds $C_{13}H_{17}N_3O_2$ (I) and $C_{14}H_{19}N_3O_2$ (II)

ture solution and refinement results are listed in Table 1, the CCDC reference numbers are 1957024 and 1957025 for crystals I and II, respectively.

used as initial atomic parameters in theoretical calculations.

Theoretical Analysis

The geometry was optimized for the compounds I and II of triazole derivatives in gas phases using the density functional theory (DFT) with the B3YLP functional and Hartree–Fock (HF) approximation with the 6-31G+(d) basis [12–15]. Theoretical calculations were performed using the Gaussian03 program [16]. For this aim, X-ray diffraction (XRD) data are

RESULTS AND DISCUSSION

X-Ray Diffraction Study

The molecular structures of compounds I and II were obtained by single crystal XRD technique. Compound I crystallizes in the monoclinic sp. gr. $P2_1$ with Z = 2, while compound II crystallizes in the sp. gr. $P2_1/c$ with Z = 4. The asymmetric unit in both compounds contains one molecule (Fig. 1). The bond lengths and

Fig. 1. Molecules of (a) $C_{13}H_{17}N_3O_2$ and (b) $C_{14}H_{19}N_3O_2$.

<i>D</i> –H···A	<i>D</i> —Н, Å	H… <i>A</i> , Å	<i>D</i> … <i>A</i> , Å	$D-H\cdots A$, deg
N2–H1…O1 ^{<i>i</i>}	0.85(3)	1.90(3)	2.754(2)	175(2)
C5–H5 <i>A</i> …O1 ^{<i>ii</i>}	0.97	2.60	3.513(2)	157.2
C6–H6A····O2 ⁱⁱⁱ	0.97	2.56	3.457(2)	153.5
C8–H8…O1 ^{<i>ii</i>}	0.93	2.53	3.392(2)	154.1

Table 2. Hydrogen bond geometry for compound I

Symmetry code: (*i*) -x + 1, y - 1/2, -z + 1; (*ii*) -x + 1, y + 1/2, -z + 1; (*iii*) x + 1, y, z.

Table 3. Hydrogen bond geometry for compound II

<i>D</i> –H··· <i>A</i>	<i>D</i> –H, Å	H… <i>A</i> , Å	<i>D</i> …A, Å	D−H…A, deg
N2-H1…O1 ^{<i>i</i>}	0.91(2)	1.89(2)	2.789(2)	167(2)
Symmetry code: (i) $-x + 2, -y + 2, -z + 1$.				

angles in I and II have normal values [17, 18]. In I, the triazole ring is twisted by $63.17(1)^{\circ}$ with respect to the benzene ring, whereas in compound II the corresponding dihedral angle is only $2.71(1)^{\circ}$, which indicates that both ring systems are almost coplanar.

In I, the crystal packing is consolidated by the N–H···O and C–H···O hydrogen bonds, namely, N2–H1···O1, C5–H5A···O1, C6–H6A···O2, and C8–H8···O1, which generate eight-membered ring, producing $R_2^2(9)$ and $R_2^1(7)$ motifs [17] (Table 2). In II, molecules are joined by hydrogen bonds of the N–H···O type (Table 3), namely, N2–H1···O1 (symmetry code: -x - 1, -y - 2, -z - 1), which links molecules into centrosymmetric pairs, forming a $R_2^2(8)$ motif [19]. The molecule packing in both compounds is shown in Fig. 2.

Optimized Geometry

Geometric parameters, such as bond lengths, bond angles, and torsion angles, were tested with the basis set 6-31G+(d) using DFT/B3YLP and HF methods to determine if they are compatible with the experimental values. The results showed that, although most of the parametric values were almost close to the experimental data, the bridge C7–C6–C5–N3 torsion angle in compound I was calculated as 60.68° and 59.40° using DFT/BYLP and HF, respectively. The bridge torsion angle N3–C3–C4–C5 in compound II was calculated as 177.03° and 177.96° using DFT/BYLP and HF, respectively. The XDR values of these torsion angles are $63.3(4)^{\circ}$ and $172.47(15)^{\circ}$ for compounds I and II, respectively.

The root mean square errors were calculated for bond lengths and angles. The calculated values with the selected basis set of DFT/B3YLP and HF methods were 0.014 Å and 0.88°, 0.015 Å and 0.87° for compound I, 0.019 Å and 0.59°, 0.016 Å and 0.57° for compound II, respectively. The results showed that the HF method gives the best results for the studied molecular structures, although both methods give approximate results. Some selected geometric parameters are shown in Tables 4 and 5.

The structure determined by XRD and geometry optimized by DFT/B3YLP and HF methods with the

Fig. 2. Packing of the molecules of (a) $C_{13}H_{17}N_3O_2$ and (b) $C_{14}H_{19}N_3O_2$.

CRYSTALLOGRAPHY REPORTS Vol. 65 No. 7 2020

Table 4. The experimental and calculated values of selected bond lengths (Å), bond angles, and torsion angles (deg) for I

Table 5. T	he experimental	and calculated	values of	selected
bond lengt	hs (Å), bond ang	les, and torsion	angles (de	eg) for II

Parameter	XRD	DFT	HF	Parameter	XRD	DFT	HF
01–C1	1.240(3)	1.2252	1.2033	C1-N1	1.298(2)	1.3046	1.2723
N3-C1	1.381(3)	1.4054	1.3807	C1-N3	1.376(2)	1.3862	1.3786
N3-C2	1.378(3)	1.3871	1.3799	C2-O1	1.237(2)	1.2275	1.2056
N3-C5	1.465(2)	1.4572	1.4527	C2-N2	1.347(2)	1.3733	1.3485
C1-N2	1.349(3)	1.3739	1.3497	C2-N3	1.376(2)	1.4017	1.3772
N2-N1	1.391(2)	1.3784	1.3677	C3-N3	1.459(2)	1.4581	1.4539
C7–C6	1.515(3)	1.5135	1.5132	C3–C4	1.515(3)	1.5436	1.5333
O2-C10	1.374(2)	1.368	1.349	C4–C5	1.508(2)	1.5134	1.5132
O2–C13	1.427(3)	1.4206	1.3992	C11-O2	1.410(3)	1.4214	1.4001
C6-C5	1.529(3)	1.5452	1.5357	N1-N2	1.389(2)	1.3792	1.3688
N1-C2	1.297(3)	1.3041	1.2717	C8–O2	1.375(2)	1.3679	1.3489
C1-N3-C2	107.63(17)	108.1114	107.528	O1-C2-N2	129.57(17)	130.119	129.6601
C1-N3-C5	123.91(17)	122.3629	122.8555	O1-C2-N3	126.67(15)	127.870	127.5244
C2-N3-C5	128.32(17)	129.4806	129.5567	N3-C3-C4	112.49(14)	112.8912	112.5807
O1-C1-N2	128.3(2)	129.8808	129.3561	C5-C4-C3	110.91(14)	111.8208	111.9279
O1-C1-N3	127.91(19)	128.1759	127.9036	C7–C8–O2	124.71(18)	124.6518	124.6742
C10-O2-C13	117.02(17)	118.5115	119.8867	02-C8-C9	115.77(17)	115.8602	116.0141
C7-C6-C5	115.20(16)	114.7571	114.9528	C1-C12-C13	114.54(15)	113.7557	113.6713
O2-C10-C11	124.65(19)	124.6679	124.7299	C12-C13-C14	111.96(17)	111.9998	111.6656
02-C10-C9	115.43(18)	115.8176	115.9295	C1-N3-C2	107.95(13)	108.2598	107.6813
$N_{3}-C_{5}-C_{6}$	113.57(17)	114.6572	114.6259	C1-N3-C3	129.38(14)	129.4874	129.5919
$C_{2}-C_{3}-C_{4}$	113 9(2)	113 3728	113 2599	C2–N3–C3	122.36(15)	122.218	122.7105
$C_{12}^{-} = C_{7}^{-} = C_{6}^{-} = C_{5}^{-}$	-1090(4)	99 1841	103 2898	C8-02-C11	118.17(17)	118.537	119.9303
$C_{8}-C_{7}-C_{6}-C_{5}$	72 9(4)	80 0799	76 6462	$C_{3} = C_{4} = C_{5} = C_{6}$	-84.4(2)	85.6204	-86.8301
$C_{13} = O_2 = C_{10} = C_{11}$	-2.6(6)	1 7228	1 912	$C_{3} = C_{4} = C_{5} = C_{10}$	93.3(2)	92.6504	91.9281
$C_{13} = O_2 = C_{10} = C_{10}$	177 9(4)	178 5846	178 3356	N1 - C1 - C12 - C13	-2.2(3)	2.5558	3.4102
C1 N3 C5 C6	-1071(3)	107 5582	105 9452	$N_3 - C_1 - C_{12} - C_{13}$	1/0.15(10)	1/8.5//1	-1//.44//
$C_{1} = 103 - C_{2} - C_{0}$	76 1(4)	75 1977	77 2227	C4 = C3 = N3 = C1	δ0.3(2) -96.2(2)	93.3828	94.9801
$V_{2} = V_{3} = C_{3} = C_{4}$	67(6)	6 5560	2 0511	$C_4 - C_3 - N_3 - C_2$	-30.3(2)	0.0197	-03.3012
N1 - C2 - C3 - C4	0.7(6)	-0.3369	3.9311	$C_{1} = C_{2} = C_{1}$	5.1(3)	0.018/	-0.1684
N3-C2-C3-C4	-1/6.2(3)	172.2429	1/4.823	C9–C8–O2–C11	-1/4.6(2)	1/9.7383	1/9.6105

CRYSTALLOGRAPHY REPORTS Vol. 65 No. 7 2020

Fig. 3. Superimposed images of the structures of compounds (a, c) I and (b, d) II according to XRD (black) and theoretical values (grey) obtained using (a, b) DFT and (c, d) HF.

6-31G+(d) basis set are superimposed in Fig 3. Although the overall superimposition is in good agreement, most deviations from the superimposition were observed in the triazole ring for compound I. These deviations are assumed to occur because the theoretical calculations are based on the gas phase of the compound, while the experimental results are based on its solid phase.

ACKNOWLEDGMENTS

RJB is grateful to NSF for providing partial funding for this research (award No. 1205608), to Howard University Nanoscience Facility for access to liquid nitrogen, and acknowledges the NSF–MRI program (grant no. CHE-0619278) for funds to purchase the X-ray diffractometer.

REFERENCES

- Y. Ünver, S. Deniz, F. Çelik, et al., J. Enzym Inhib. Med. Chem. **31** (3S), 89 (2016).
- Y. Ünver and E. Bektaş, Lett. Drug Design Discovery, 15 (7), 706 (2018).
- Y. Ünver, E. Bektaş, and Ş. Direkel, Russ. J. Gen. Chem. 88, 2616 (2018).
- 4. Y. Ünver and H. Tanak, Crystallogr. Rep. 53, 585 (2018).
- F. Çelik, Y. Ünver, B. Barut, et al., Med. Chem. 14, 230 (2018).
- Y. Ünver, S. Meydanal, K. Sancak, et al., Turk. J. Chem. 35, 265 (2011).
- 7. Bruker, *SAINT* (Bruker AXS Inc., Madison, Wisconsin, USA, 2002).
- Bruker, *APEX2* (Bruker AXS Inc., Madison, Wisconsin, USA, 2005).
- 9. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).
- 10. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015).
- 11. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012).
- 12. A. D. Becke, J. Chem. Phys. 98 (7), 5648 (1993).
- 13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37 (2), 785 (1998).
- 14. H. B. Schlegel, J. Comput. Chem. 3 (2), 214 (1982).
- C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem. 17 (1), 49 (1996).
- 16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., *Gaussian 03* (Wallingford, Conn., USA, 2004).
- 17. S. Öztürk Yildirim, R. J. Butcher, D. Ünlüer, and Y. Köysal, Acta Crystallogr. E **68**, o1651 (2012).
- F. H. Allen, O. Kennard, D. G. Watson, et al., R. J. Chem. Soc. Perkin Trans. 2, S1 (1987).
- J. Bernstein, R. E. Davies, L. Shimoni, and N.-L. Chang, Angew. Chem. Int. Ed. Engl. 34, 1555 (1995).