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Abstract—The analytical solution of the problem of the Laue diffraction of an X-ray spherical wave in a single
crystal with an inclined step on the exit surface has been obtained. The general equations are used for the spe-
cific case of plane wave diffraction in a thick crystal under the Borrmann conditions. It is shown that, pro-
vided that the crystal thickness increases from the side of the reflected beam, the reflected-wave relative
amplitude is determined by three complex terms. This may formally lead to interference and an increase in
the intensity in maxima by a factor of 9 as compared with the crystal without a step. The equation for the
transmitted beam contains only two terms, and the corresponding increase in intensity cannot be by more
than a factor of 4. The results of analytical calculations coincide with the results obtained by numerical meth-
ods and presented in the first part of the work.
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INTRODUCTION

In this paper, we report the results of the work the
first part of which was published in [1]. The problem
of spatial distribution (in the beam cross section) of
the intensities of transmitted and reflected waves is
solved theoretically for the case of Laue diffraction of
X rays in a thick single crystal with an inclined step on
its exit surface. This problem was solved numerically
in the first part of the work. A significant redistribu-
tion of the reflected-beam intensity was observed in
the transition region between the step boundary and
the boundary of Borrmann triangle with a vertex at the
lower step boundary: the intensity maxima increased
by a factor of more than 7 in comparison with the
intensity before the step. It should also be noted that
the transmitted-beam intensity, averaged over the
interference region, and the total intensity of the two
beams are reduced significantly, which indicates vio-
lation of the Borrmann conditions.

It was shown in [1] that the problem can be divided
for convenience into two stages. In the first stage, a
plate-shaped crystal is under consideration and the
solution is found using the Fourier transform method
(as was made in [2–6]). In the second stage, one must
solve the Takagi equations [7]. If the sample lattice is
not strained but the sample shape has a complex
boundary, these equations can be solved in the integral
form [8–14]. In some cases, the integral form of equa-
tions excludes a direct solution to the problem but

yields an equation that can sometimes be solved ana-
lytically.

Specifically this case is implemented in the prob-
lem of Laue diffraction in a single crystal with an
inclined step on its exit surface (the object of our con-
sideration). In this paper, we report the results of ana-
lytical solution for the second stage of the problem.
The method that was first applied in [15] is used.

FORMULATION OF THE PROBLEM 
AND ITS ANALYTICAL SOLUTION

The schematic of the numerical experiment was
reported in the first part of the work. It is assumed that
a monochromatic spherical wave from a point X-ray
source, located at a distance L from the sample, is
incident on a plate-shaped single crystal of thickness t
(maximum thickness). There is an inclined step of
height t0 on the exit crystal surface. We assume that the
wave functions E0(x) and Eh(x) for the transmitted and
reflected beams, respectively, are known at the thick-
ness z = t1 = t – t0.

In the second stage, one must solve the Takagi
equations [7]
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Fig. 1. (a) Exit crystal boundary in the form of step and a
Borrmann triangle, in which at least one field depends on
the x coordinate. (b) Different versions of step inclination
at different values of parameter R = tan θ/tan θB (with
indication of the values of parameter R).
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Here, X0,h,–h = Kχ0,h,–h, where K = 2π/λ is the wave
number; χ0, χh, and χ–h are the Fourier components of
the crystal polarizability for the reciprocal-lattice vec-
tors 0, h, and –h, respectively; the coordinates s0 and
sh are counted along the propagation directions of the
transmitted and reflected waves, respectively; u is the
displacement vector due to the possible lattice strain;
the parameter of deviation from the Bragg condition is
αq = K(θ – θ0)sin 2θB; and λ is the X-ray wavelength.
The angle θ–θ0 describes the crystal angular position
with respect to the incident beam.

Let us consider the case where αq = 0 and there are
no strains in the crystal (u = 0). For a perfect crystal,
one can solve Eqs. (1) and (2) in the integral form in
terms of known fields E0 and Eh at some boundary in
the Borrmann triangle, whose vertex is located at the
observation point and sides are oriented along the
directions of the transmitted (s0) and reflected (sh)
waves [8–14]. The case where the thickness t1 of crys-
tal planar part exceeds greatly the diffraction focusing
length [6, 16]: tdf = L|χh|F, where F = 1/(sin θBsin 2θB)
and θB is the Bragg angle. In this case, the wave func-
tion is almost constant on the horizontal x axis in the
step region (thickness t1), which corresponds to plane
wave was considered in [1].

In contrast to [1], we will consider the case of a
plane wave incident on a crystal, with the Bragg con-
ditions exactly satisfied. The distance between the
point source and crystal should be much larger than
the diffraction focusing length Ldf = t1C, where С =
(|χh|F)–1. For t1 = 1 mm, this length is Ld = 32.9 m.
Note that the incident beam can easily be collimated
CR
on third-generation synchrotron radiation sources
using a compound refractive lens [17].

Figure 1а shows the sample shape in the region of
step on the exit surface, as well as the Borrmann trian-
gle in which at least one wave function depends on the
x coordinate. We apply the approach that was pro-
posed for the first time in [15]. It implies consideration
of the difference in the wave functions for the sample
under study, Ek(r), and for the plate-shaped sample,
Ak(z), rather than the real wave functions. Note that
the function Ak(z) for a plane wave is known in the
analytical form. Obviously, the integral equations for
the differences will be the same; however, the bound-
ary conditions differ significantly, because the differ-
ence in the wave functions is zero in the region where
the crystal is homogeneous along the x axis.

Thus, we consider the functions

(3)

where

(4)

Here, γ0 = cos θB and the coefficients Ck depend on
the normalization. For a plane wave, they are equal to
± 0.5 at k = 0, h, respectively. Note that the fields ek(r)
are nonzero only in the acd triangle (Fig. 1а).

According to the integral formulation of theory
[12], the function eh(p) at a point p on the segment ab
can be expressed in terms of the functions on the ad
and db lines. Taking into account that the field differ-
ences on the ad line are zero, we obtain a solution in
the form

(5)

(6)

where X = (XhX–h)1/2 and s0p and shp are the coordinates
of point p. Hereinafter, we denote the nth-order Bessel
function as Jn(x). At the same time, the function e0(p')
on the db line is a solution to the integral equation

(7)

if the function eh(r) is known on this line. In the case
under consideration, the db line is straight. We intro-
duce coordinates ξ and ξη for the points on the dp' line
and at the point p'. The old and new coordinates are
interrelated as follows:

(8)

Let us denote the argument of the Bessel function
in (6) as A. Taking into account (8), one can easily find
that, on the db line,
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(9)

where

(10)

(11)

Here, ξη and η are the lengths of segments dp' and pb,
respectively. Then we determine the dependence of
the intensities of transmitted and reflected waves on
the parameter η.

The integral in (7) is calculated over the coordinate
ξ in the range from zero to ξη. For simplicity, we will
make a replacement of variables ξ → ξη – ξ, which
does not change the integration limits. Then the deriv-
ative can be written as

(12)

As a result, Eq. (7) takes the following form after the
replacement of variables:

(13)

On the right-hand side there are integrals in the form
of convolutions. Integral equation (13) can be solved
applying the Laplace transform

(14)

and using its property, according to which a convolu-
tion of two functions is transformed into the product
of their transforms. Then we arrive at

(15)

The square brackets indicate a Laplace transform of
the function they contain; this transform depends on
the argument q. The handbook [18] contains integral
no. 6.646.1, which can be transformed as follows:
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where

(17)

Then we substitute (16) at a = n = 0 into (15) and make
the following calculations, using the designation W =
iX–hγ1/2:

(18)

It can be shown that the denominator in the right-
hand side of (18) is equal to (u + q)/2 and the inverse
function 2/(u + q) is the Laplace transform of function
U(bξ), where

(19)

After the inverse replacement of variables ξ → ξη – ξ,
we obtain a solution to integral Eq. (13) in the form

(20)

Let us consider Eq. (5). In this case, the situation is
more difficult, because the argument of the Bessel
function depends on the coordinates of point p on the
ab line. These coordinates are zp = t0 = ξ0cos θ and
xp = –ξ0sin θ – η. The coordinates of the point on the
segment dp' are determined by (8). As a result of sim-
ple calculations we easily arrive at
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Taking into account the above-described relations,
Eq. (5) can be written as
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These integrals are also convolutions of two functions;
therefore, it is convenient to use the Laplace transform
(however, we have functions of more complex argu-
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to the third term in (24) and substitute (18). Taking
into account formula (16), we obtain

(25)

Having made a transition from the q space back to
the ξ space and added the first term, we obtain the fol-
lowing expression for the sum of the second and the
third terms:

(26)

Performing calculations for the wave function of the
reflected beam on the ab line, we obtain a more con-
venient formula instead of (24):

(27)

This formula expresses the unknown function eh(η) on
the ab line in terms of the known function eh(ξ) on the
bd line. This function is known, because the function
Eh(r) on this line is simply transferred from the de line
in the reflected-beam direction (i.e., its values at
points p' and p'' are identical, and the difference can
easily be calculated).

The formula for the function e0(η) on the ab line
can be obtained similarly to (24) with some evident
changes:

(28)

Let us apply a Laplace transform to the first term on
the right-hand side, taking into account (25), and sub-
stitute expression (18) for e0(q). As a result, we obtain
an expression equal to the second term if J0(bσξ) is

replaced by J2(bσξ)ζ . Correspondingly, we arrive at
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Here, the relation J0 + J2 = U is used. The solution can
be written as
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where

(31)
The functions on the bc line can be calculated more

easily. In particular, the field Eh(r) on this line is sim-
ply transferred from the de line in the reflected-beam
direction; in the case of incident plane wave, it is inde-
pendent of the x coordinate. The field E0(r) is trans-
ferred from the bd line in the transmitted-beam direc-
tion. Therefore, the fields at points p0 and p' are simi-
lar. The field E0(r) on the bd line is calculated from
formula (20).

RESULTS AND DISCUSSION
Let us consider the same parameters as in the first

part of the study: the photon energy E = ħω = 10 keV,
t1 = 1 mm, silicon crystal, reflection 220, and Bragg
angle θB = 18.84°. Taking into account (4), one can
obtain the following expression for the function eh(ξ)
on the bd line:

(32)
It is convenient to analyze the ratio of the beam inten-
sities over the total thickness t in a crystal with a step
with respect to the corresponding ratio for a crystal
without a step. To this end, we will consider the ratio
Rh(η) = Eh(η)/Ah(t) on the ab line. Then, taking into
account (4), we derive from (27)
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It is also convenient to make a replacement of variables
ξ = ξη – ξ1 in the integral Gh(η) without changing the
integration limits. Finally, we arrive at
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Note that the second and third terms in (33) are zero
at η = ηm = t0/γD1, and the ratio is equal to unity (i.e.,
the solution is continuous at the Borrmann triangle
boundary). At η = 0, the parameter Rh(0) =
Fh(t0)/F0(t0), and the relative intensity depends only
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Fig. 2. Dependences of the relative intensity of the (T)
transmitted and (R) reflected beams on the element of exit
surface coinciding with the Borrmann triangle base (ac
line in Fig. 1а) at x0 = 68.2 μm and R = (a) 0.5, (b) 0, and
(c) –0.5.
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slightly on the step height; however, the real intensity
is independent of the step height and equals to the field
intensity at the thickness t1.

Thus, the formula for the relative intensity contains
three terms; the second and the third are complex.
Therefore, if the absolute values of all three terms are
close, they in sum can formally increase the intensity
by a factor of 9. As was shown in [1], a numerical cal-
culation leads to an increase in the intensity peaks by a
factor of more than 7. The mechanism of this increase
can be understood by analyzing formula (33).

Taking into account (4), one can derive from for-
mula (30) a formula for R0(η) = E0(η)/A0(t) ratio on
the ab line:

(37)
where

(38)

Formula (37) contains only two terms; i.e., the inten-
sity maximum can formally increase by a factor of 4.

Let us consider the ratio R0(η) = E0(η)/A0(t) on the
bd line. In this case, the coordinate η is counted from
the point b to the point d, and ξη = ξ0 – ηD2. The point
p' corresponds to the point p0 in Fig. 1a. Having made
the same transformations as before, we obtain

(39)
where

(40)

Formula (39) was derived taking into account that
field strength E0 at the points η on the segment bc and
ξη on the segment bd is the same and that Ch = –C0. At
η = 0, formula (39) yields the same value as (37), and
at η = ηm = t0/γD2 the expression can be written as
Fh(t0)/F0(t0) (i.e., it slightly exceeds unity, because a
real field is not absorbed at height t0 and the denomi-
nator in the ratio corresponds to the thickness t).

Figure 1b shows three types of step inclination,
which can be characterized by different values of
parameter R = tan θ/tan θB when the angle θ is
counted as shown in Fig. 1а. Figure 2 presents the dis-
tributions of the relative intensity I/I0 = |R0,h|2 of the
transmitted (T) and reflected (R) beams on the Borr-
mann triangle base ac, calculated from formulas (33),
(37), and (39) at t0 = 0.2 mm and R = 0.5, 0, and –0.5,
respectively. The calculation results obtained by the
numerical method [1] for the same parameters coin-
cide with the data of this study. It is of interest that the
calculation result of [1] for L = 2 m barely differs from
the result shown in Fig. 2a. The reason is that a thick
crystal forms a divergent spherical wave at a small dis-
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tance from a point radiation source, which almost
coincides in the step region with a plane wave.

The calculations showed that the most interesting
results are obtained at a positive, close-to-unity value
of parameter R. In this case, the reflected-beam inten-
0
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sity oscillates with a short period and has the largest
values (close to 9) in maxima. However, this does not
occur always but depends periodically on the step
height.

The relative reflected-beam intensity exceeds that
of the incident beam at |R| < 1. At |R| > 1, formulas (33),
(37), and (39) are not applicable, and the calculation
must be performed in a different way. Note that there
is some correlation between the intensity maxima and
minima of the transmitted and reflected beams (they
occur simultaneously). That is why these oscillations
differ from the extinction oscillations of plane wave
intensity in dependence on the crystal thickness, when
the transmitted-beam intensity is transferred into the
reflected-beam intensity and vice versa.
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