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Abstract—The polarization azimuths and ellipticities of the reflected and transmitted light have been calcu-
lated as functions of the angle of incidence for transparent crystals of classes 2m and . Analytical expres-
sions for these parameters are obtained. It is shown that in the general case the polarization azimuths and
ellipticities for a plate cut parallel to the optical axis differ for positive and negative angles of incidence of light.
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INTRODUCTION

Although the optical activity in uniaxial crystals has
been well studied, there are still some open questions.
Investigations have generally been performed at nor-
mal incidence of light onto a crystal. The influence of
the optical activity at oblique incidence of light has
been considered much more rarely. This is especially
holds true for crystals of classes 2m and , in which
the optical activity manifests itself in a peculiar way
[1]: the rotation of the plane of polarization in the
direction of the optical axis is absent. The optical
activity in these classes was found for the first time for
AgGaS2 (class 2m) and CdGa2S4 (class ) crystals,
which have an isotropic point [2, 3]. In this case, the
refractive indices of the ordinary and extraordinary
waves coincide at a certain wavelength, and one can
observe rotation of the plane of polarization in the
directions different from the optical axis. A new
method for determining the components of the gyra-
tion tensor was later proposed, which can be applied
for crystals without an isotropic point [4, 5]. Manifes-
tation of the optical activity in crystals of classes 2m
and  under at incidence of light was theoretically
described in detail in [6–8].

Polarization of transmitted light at oblique inci-
dence for 2m crystals was considered in [9]; however,
no analytical expressions were given therein. In this
paper, we report the results of a more thorough inves-
tigation of polarizations of the reflected and transmit-
ted light for such crystals at oblique incidence of light.

POLARIZATION OF REFLECTED LIGHT 
IN 2m AND  CRYSTALS

Gyration Tensor in 2m and  Crystals

For crystals of classes 2m and , the gyration ten-
sor has the form [1]

(1)

For class 2m, we have α12 = 0 if the X and Y coordi-
nate axes are directed along the second-order symme-
try axes oriented parallel to the [100] and [010] crystal-
lographic directions. If X and Y are chosen as perpen-
diculars to the symmetry planes, we obtain α11 = 0 and
α12 ≠ 0. The symmetry elements for this crystal and cut
of the gyration surface by a plane oriented perpendic-
ular to the  axis are shown in Fig. 1a [10, 11].

A crystal of class  has only the  symmetry axis.
The gyration surface has the same form as for crystal of
class 2m; however, the symmetry axes of the gyration
surface for class  do not coincide with the [100] and
[010] crystallographic directions (Fig. 1b). Gyration
tensor (1) takes a diagonal form (α12 = 0) after rotation
of the coordinate system around the Z axis by an angle
determined by the condition tan2ψmax = –α12/α11;
here, diagonal elements of (1) are equal to

. It is obvious that, after the rotation, the
X and Y axes will coincide with the symmetry axes of
the gyration surface. Thus, the directions correspond-
ing to the maxima of the gyration-surface cross section
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deviate from the [100] and [010] directions by angle
ψmax.

Polarization of Reflected Light

Let us calculate the polarization azimuths χr and
ellipticities Kr of reflected light for p- and s-polarized
incident light. To this end, one should know compo-
nents Er of the reflected-wave electric field.

To find the Er values, we should solve the boundary
problem of light reflection and transmission through a
crystalline plate. The Maxwell equations, coupling
equations, and boundary conditions are required.
Exact solutions to the boundary problem were

obtained by the Berreman method [12, 13] using the
Wolfram Mathematica 7.0 program package. How-
ever, the exact solutions are too complex and cannot
be written explicitly. To obtain simpler dependences,
we performed the solution within the approximation
of light reflection from a semi-infinite medium with
only first-order values with respect to αij retained
(because αij is a small value).

The polarization azimuths χr and ellipticities Kr of
reflected light can be written as [1]

(2)

Here, Er(pp), Er(ps), Er(sp), and Er(ss) are the components
of the reflected-wave electric field (the first subscripts
p and s indicate polarization of the incident wave,
while the second subscripts indicate polarization of
the reflected wave).

Optical Axis is Oriented Perpendicular to the Plate 
Surface

Using the solution to the boundary problem of light
reflection from a semi-infinite medium, we obtained
the following expressions for the components of the
reflected-wave electric field for p- and s-polarized
incident light:
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Here, no and ne are the principal refractive indices of
the crystal, ni is the refractive index of the environ-
ment, ϕ is the angle of incidence of light, and Eip and
Eis are the components of the incident-wave electric
field for p and s polarizations. It can be seen that there
are not only a reflected wave with the same polariza-

tion as for the incident one (Er(pp) and Er(ss)) but also a
reflected wave with a different polarization (Er(ps) and
Er(sp)); however, the amplitude of the latter is small
(proportional to α11).

Using the calculated Er(pp), Er(ps), Er(sp), and Er(ss)
values, we can write κrp and κrs in the form

Fig. 1. Cut of the gyration surface and symmetry elements
of the crystals of classes (a) 2m and (b) . The  axis
(optical axis) is oriented perpendicular to the drawing
plane. For the crystal of class , only the  axis is retained,
and the [100] and [010] directions are shifted with respect
to the maxima of the gyration surface cut by angle ψmax.
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(4)

The χr and Kr values are determined by formula (2). It
follows from (2) and (4) that χr = 0 and Kr = 0 at
α11 = 0 and χr = 0 and Kr ≠ 0 at α12 = 0. With this ori-
entation, the relations χr(–ϕ) = χr(ϕ) and Kr(–ϕ) =
Kr(ϕ) are always valid.

Let us consider a crystal of class 2m. We assume
that light is incident in the XOZ plane. If the X axis is
oriented parallel to the [100] axis and the Y axis is ori-
ented parallel to the [010] axis (Fig. 1a), tensor α has a
diagonal form (α12 = 0) according to (1). If the X and
Y axes deviate from the [100] and [010] directions by
angle ψ, we find for tensor α in the XYZ coordinate
system that

(5)

Thus, formula (4) for a crystal of class 2m can be
obtained by replacing (in correspondence with (5)) α11
and α12 with α11cos2ψ and α11sin2ψ, respectively.

For a crystal of class , we have the following
expressions for the components of tensor α in the XYZ
coordinate system if the X and Y axes make angle ψ
with the [100] and [010] directions:

(6)

We find from (2) and (4) that Kr ~ α11 and χr ~ α11α12;
therefore, the χr and Kr values are very small in most
cases. The χr and Kr values would be rather large if one

considers incidence of light from a medium with a
refractive index close to the principal refractive index
of the crystal rather than from air. Large χr and Kr val-
ues occur only for p-polarized incident light and
angles of incidence close to the Brewster angle, which
is equal in this case to

An example of the dependences χr(ϕ) and Kr(ϕ) for
KH2РО4 crystal is shown in Fig. 2. The refractive indi-
ces for KH2РО4 and the α11 value were taken from [14]
and [4], respectively. The Brewster angle is ϕB = 79.8°.
At  = 0 (ψ = 0°), we have χr(ϕ) = 0 and Kr(ϕ)
reaches ±1 in the vicinity of ϕB (Kr(ϕB) = 0) (Figs. 2a,
2b, curves 1). At ϕ = ϕB and ψ ≠ 0, the χr value is max-
imum (Fig. 2a, curve 2). At ψ ≠ 0, the maxima of
Kr(ϕ) are not equal to ±1 anymore (Fig. 2b, curve 2).
In the vicinity of angle ϕ = –ϕB, the dependences
χr(ϕ) and Kr(ϕ) have the same form. For s-polarized
incident light, the values to be found are small at any
angles of incidence.

For a crystal of class  at ψ = ψmax = arctan(–α12/α11)/2,
we obtain  = 0, χr(ϕ) = 0, and Kr(ϕ) ≠ 0; the depen-
dence Kr(ϕ) near the Brewster angle has a form similar
to that presented in Fig. 2b (curve 1). At ψ = ψ0 =
arctan(α11/α12)/2, we have  = 0 and, accordingly,
χr(ϕ) = 0 and Kr(ϕ) = 0. In the general case of position
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Fig. 2. Dependences of the (a) azimuth χr and (b) ellipticity Kr of reflected light for the p polarization of incident light on the
angle of incidence ϕ in the vicinity of the Brewster angle for the KH2РО4 crystal (class 2m): (1) ψ = 0°,  = 1.48 × 10–4, and

 = 0 [4] and (2) ψ = 30°,  = 0.74 × 10–4, and  = 1.28 × 10–4. Refractive indices of the crystal are no = 1.5095 and
ne = 1.4684 [14], light is incident from a medium with the refractive index ni = 1.467, and wavelength is λ = 0.589 μm. 
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of the plane of incidence of light (at ψ ≠ ψmax ± πl/2
and ψ ≠ ψ0 ± πl/2, where l is integer), we obtain the
dependences χr(ϕ) and Kr(ϕ) that are similar to those
presented in Fig. 2 (curves 2).

Optical Axis of the Crystal Is Oriented Parallel 
to the Surface and Perpendicular to the Plane 

of Incidence of Light

The plate can be cut differently with respect to the
[100] and [010] crystallographic directions to be ori-
ented parallel to the optical axis. Let ψ' be the angle
between the [100] direction and the crystal surface.
Figure 3 shows the position of the symmetry elements
of 2m crystal with the orientation under consider-
ation. The [100] and [010] directions coincide with the
second-order axes for crystals of class 2m (Fig. 3).
For a crystal of class , only the  symmetry axis
remains.

The components of the reflected-wave electric
field for p- and s-polarized incident light waves were
calculated by solving the boundary problem of light
reflection:
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The polarization azimuth χr and ellipticity Kr of the
reflected light are calculated from formula (2). Using

the calculated electric-field components, we have the
following expressions for the transparent crystal:
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(Kr)p,s = –iκrp,rs if |κrp,rs| ≤ 1 or (Kr)p,s = i/κrp,rs if
|κrp,rs| > 1.

At ψ' ≠ 0°, the gyration-tensor components used
in (8) are calculated from formula (5) replacing ψ with
ψ' (for a crystal of class 2m) and from formula (6) (for
the crystal class ).

It can be seen that the contribution from parameter
α12 is opposite for positive and negative angles of inci-
dence; therefore, we have |Kr(–ϕ)| ≠ |Kr(ϕ)| at α12 ≠ 0.
Component α12 affects the result to a less extent in
comparison with α11, because it is multiplied by η1 – η2
(which is proportional to the birefringence). It follows
from (8) that α12 does not affect the Kr(ϕ) value if the
refractive indices are equal (isotropic point). Figu-
res 4a and 4b show the dependences Kr(ϕ) for

4
4

KH2РО4 crystal (class 2m) in the case of p-polarized
incident light and angles ϕ close to the Brewster
angle (tan2ϕB = ). In this case, the dependences
Kr(ϕ) have two narrow peaks in the vicinity of the
Brewster angle with maximum values equal to ±1. At

 = 0 (ψ' = 45°), we obtain Kr(–ϕ) = –Kr(ϕ); the
peaks are very narrow in this case (Figs. 4a, 4b, curves 1).
At ψ' = 30°, we have |Kr(–ϕ)| ≠ |Kr(ϕ)|; however, the
difference between the Kr(–ϕ) and Kr(ϕ) values is very
small and imperceptible in the figure (Figs. 4a, 4b,
curves 2). The corresponding dependences for s polar-
ization are shown in Fig. 4c. As for p polarization, the
dependences Kr(ϕ) are antisymmetric at  = 0 (ψ' =
45°) (Kr(–ϕ)) = – Kr(ϕ), curve 1 in Fig. 4c), whereas
at ψ' = 30° we have |Kr(–ϕ)| ≠ |Kr(ϕ)| (Fig. 4c, curve 2).
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The values obtained at  = 0 are much smaller than
those in the presence of both gyration-tensor compo-
nents.

For the crystal of class , we obtain antisymmetric
dependences Kr(ϕ) (Fig. 4, curves 1) at  = 0 and
ψ' = ψ0 = arctan(α11/α12)/2. At ψ' = ψmax =

arctan(–α12/α11)/2, we have  = 0 and Kr(–ϕ) =
Kr(ϕ). In the general case, the Kr(–ϕ) and Kr(ϕ) values
differ in magnitude; however, this difference is small
(Fig. 4, curves 2).

POLARIZATION OF TRANSMITTED LIGHT 
IN 2m AND  CRYSTALS

Expressions for the polarization azimuths χt and
ellipticities Kt of the transmitted light can be obtained
from formulas (2) by replacing subscripts r with t and
components of the reflected-wave electric field with
the corresponding components for the transmitted
wave. To calculate components Et of the transmitted-

wave electric field, we first solved the problem of light
reflection and transmission for the isotropic
medium–semi-infinite crystal interface. The obtained
refracted-wave amplitudes, multiplied by the corre-
sponding phase factors, were considered as amplitudes
of the waves incident on the second interface and used
for determining Et. Multiple light reflections in the
plate were disregarded, and the calculation was per-
formed in the first order with respect to the αij values.

Optical Axis Is Oriented Perpendicular to the Plate 
Surface

Let us consider the polarization azimuths χt and
ellipticities Kt of transmitted light at oblique incidence.
To find χt and Kt, we calculated the transmitted-wave
electric field components Et(pp), Et(ps), Et(sp), and Et(ss)
(the first subscripts p and s indicate the polarization of
the incident wave, while the second subscripts indicate
the polarization of the transmitted wave) in the follow-
ing form:

(9)

where ηt = , Δ = , and nt is the

refractive index of the lower medium; the other
parameters are the same as in formula (4).

The χt and Kt values can be calculated from formu-
las (2). Having retained only αij in the first power, we
obtain the following expressions for transparent crys-
tals of classes  and 2m at p and s polarizations:
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(10)

It can be seen that parameter α11 enters expression (10),
whereas component α12 does not. The χt and Kt values
have different signs for the p and s polarizations. With
this orientation, χt and Kt are always identical at posi-
tive and negative angles of incidence: χt(–ϕ) = χt(ϕ)
and Kt(–ϕ) = Kt(ϕ).

For a crystal of class 2m, we replace α11 with
α11cos2ψ according to (5) (ψ is the angle between the
[100] direction and the X axis). At ψ = 0°, the plane of
incidence of light is oriented parallel to one of the sec-
ond-order symmetry axes and the [100] direction. In
this case, as follows from expressions (5) and (10), the
χt(ϕ) and Kt(ϕ) values (Fig. 5) vary in the widest range.
At normal incidence of light, χt = 0 and Kt = 0. At ψ =
90°, the plane of incidence of light is oriented parallel
to the other second-order axis and the [010] direction.
In this case, χt(ϕ) and Kt(ϕ) also reach maximum val-
ues but with opposite (in comparison with ψ = 0°)
signs. This fact follows from formulas (5) and (10) and
from the cut of the gyration surface in Fig. 1a. If ψ =
45°, the plane of incidence of light is oriented parallel
to one of the symmetry planes; in this case, χt(ϕ) = 0
and Kt(ϕ) = 0.

For a transparent crystal of class , the depen-
dences χt(ϕ) and Kt(ϕ) do not radically change. At
incidence of light in the planes oriented parallel to the
[100] and [010] directions, the χt(ϕ) and Kt(ϕ) values
are not maximum anymore (Fig. 1b). It follows from
the gyration-surface form that one can choose the
plane of incidence of light in which the optical activity
does not manifest itself and χt(ϕ) = Kt(ϕ) = 0. These
planes of incidence make angles ψ01 = arctan(α11/α12)/2
and ψ02 = arctan(α11/α12)/2 + 90° with the [100]
direction. At incidence of light in the planes rotated by
45° with respect to the planes in which χt(ϕ) = Kt(ϕ) = 0,
the χt(ϕ) and Kt(ϕ) values will be maximum (at an
identical Δ value). These planes make angles ψmax1 =
arctan(–α12/α11)/2 and ψmax2 = arctan(–α12/α11)/2 +
90° with the [100] direction.

Optical Axis of the Crystal Is Oriented Parallel 
to the Surface and Perpendicular to the Plane 

of Incidence of Light Refractive Indices
Let us calculate the refractive indices of the waves

propagating in crystals of classes  and 2m with the

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

+ +
=

− + +
⎡ ⎤+ + − + +⎣ ⎦=

− + +
+ +

= −
− + +

= −

2
11 1 2 2

2 1 1
2 2

11 1 2 2 2 1 1

2 1 1
2

11 2 1 1

2 2
1 2 2

1

α η ε η ε η η ε η sin Δ
χ ,

ε η ε ε η η η η

α η ε η ε η η ε η cosΔ ε η η η η ε η
,

ε η ε ε η η η η

α ε η η ε η η η sin Δ
χ ,

η ε ε η ε η η ε η

α

e o i t o t
tp

o t e o i t

e o i t o t o i t e t
tp

o t e o i t

t o i e i t
ts

e o i o i t o t

ts

n

n

n n
K

n

n n

n n

K
( ) ( ) ( ) ( )

( ) ( ) ( )
⎡ ⎤+ + − + +⎣ ⎦

− + +

2 2
1 2 1 1 1 2 2

2 2
1 2 2

ε η η ε η η η cosΔ η η ε η ε η ε η
.

η ε ε η ε η η ε η
t o i e i t i o i e o t

e o i o i t o t

n n n

n n

4

4

4 4

Fig. 5. Dependences of the (a) azimuth χt and (b) ellipticity Kt of the transmitted light on the angle of incidence ϕ for p-polarized
incident light and the KH2РО4 crystal (class 2m). The optical axis is oriented perpendicular to the plate plane, ψ = 0°, ni = 1,
nt = 1, d = 200 μm, and λ = 0.589 μm. 

χt, deg

0.05

0.10

0.10

0.05

50 50 ϕ, deg

(а)
Kt

0.0005

0.0010

0.0035

0.0030

0.0025

0.0020

0.0015

50 50 ϕ, deg

(b)

4



CRYSTALLOGRAPHY REPORTS  Vol. 62  No. 3  2017

MANIFESTATION OF OPTICAL ACTIVITY 425

orientation shown in Fig. 3. Using the equation of nor-
mals for optically active crystals [1], at an arbitrary
angle of incidence of light, we obtain a quartic equa-

tion with respect to parameter x = η = 
(n is the refractive index), which has the following
form at ni = nt = 1:

(11)

The found equation has four roots. Under normal
incidence of light (ϕ = 0°), the equation of normals is
biquadratic [1]. At ϕ ≠ 0°, Eq. (11) is not biquadratic,
because coefficients B and D at x and x3 are nonzero.
In addition, B and D are small values because they are
proportional to the product α11α12. Positive and nega-
tive solutions to Eq. (11) correspond, respectively, to
the refracted waves and to the waves reflected from the
second face of the plate back into the crystal.

For optically inactive crystals (α11 = α12 = 0), the
equation of normals has the roots

For optically active crystals, we obtain x1,2 = x01,02 +

δx1,2, δx1,2 ~ , and the refractive indices have the

form  = (x01,02)2 + 2x01,02δx1,2 + sin2ϕ.
The expressions for the refractive indices can be

written as
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The plus and minus signs correspond, respectively, to
the refracted waves and to the waves reflected from the
second face. In follows from the obtained expressions
that the refractive-index component containing α11α12
is opposite for the refracted waves and the waves
reflected from the second face. It can also be seen that
the refractive indices n1,2+ and n1,2– swap when replac-
ing ϕ with –ϕ.

For the crystal of class 2m, one can replace α11

with α11cos2ψ' and α12 with α11sin2ψ' in formula (12),
where ψ' is the angle of deviation of the second-order
axis oriented parallel to the [100] direction from the
surface (Fig. 3); ψ' and positive values of angle ϕ are
counted in the same quarter.

Figure 6 shows the refractive indices for the
refracted waves in the crystal, depending on the angle
of incidence. Since the difference of the indices from

no and ne, being proportional to , is very small, it is
of interest only at large α11 and α12 values.
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Polarization Azimuths and Ellipticities 
of the Transmitted Light

Transmitted-wave electric field components for
p- and s-polarized incident waves were obtained from
the solution to the boundary problem with multiple
reflections neglected:

(13)

(14)

The polarization azimuths χt and ellipticities Kt of the
transmitted light for the crystals of classes 2m and 
are calculated from formulas (2) and can be written (in
the first order with respect to αij) as
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At normal incidence of light, the χt and Kt values have
different signs for p- and s-polarized incident light (at
ϕ = 0°, we have p1, p4 > 0, p2, p3 < 0, q1, q4 < 0, q2,
q3 > 0). If ni = nt = 1, then p1 = q3, p2 = q4, p3 = q1,
p4 = q2.

To determine the α11 value in the crystal of class
2m at normal incidence of light, one should use a

plate cut parallel to the [010] direction (ψ' = 90°);
here, the light is incident in the [100] direction. Then,
one can find α11 from the χt and kt values at ϕ = 0° using
the following approximate formulas for χt and kt [15]:

(17)

where k is the ellipticity of eigenwaves. A plate cut par-
allel to the [100] direction (ψ' = 0°) can also be used;
in this case, the –α11 value is obtained.

Two plates are required to determine the gyration-
tensor components in the crystal of class . Using the
plate cut parallel to the [010] direction, we find α11
from formula (17); to determine α12, we should take
the plate cut at an angle of 45° with the [100] direction
(ψ' = 45°).

Figure 7 shows the dependences of χt and Kt on
angles ϕ and ψ' for a KH2РО4 crystal of class 2m. It
can be seen that the surfaces obtained are not symmet-
ric with respect to the ϕ = 0 plane. If the plate is cut
parallel to one of the second-order axes (ψ' = 0° or
90°), the χt and Kt values are identical for positive and
negative angles of incidence: χt(–ϕ) = χt(ϕ) and
Kt(–ϕ) = Kt(ϕ). At ψ' = 90°, the χt and Kt values have
equal magnitudes and opposite signs, as compared
with the values calculated at ψ' = 0°. If the plate is cut
parallel to one of the symmetry planes (ψ' = ±45°),
the χt and Kt values at positive and negative angles of
incidence are opposite: χt(–ϕ) = –χt(ϕ) and Kt(–ϕ) =
–Kt(ϕ). In the case where the plate is cut parallel to
none of the second-order axes and none of the sym-
metry planes, the χt and Kt values change in magnitude
with a change in the sign of the angle of incidence:
|χt(–ϕ)| ≠ |χt(ϕ)|, |Kt(–ϕ)| ≠ |Kt(ϕ)|.

Note that the investigations in [4, 5] were per-
formed only at normal incidence of light (ϕ = 0°).

In contrast to the crystal of class 2m, for which the
χt and Kt values at positive and negative angles of inci-
dence are identical at ψ' = 0° and opposite at ψ' = 45°,
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for class  we have the χt and Kt values at ϕ and –ϕ that
are different in magnitude for both ψ' = 0° and 45°, as
shown in Fig. 8 for a CdGa2S4 crystal (the refractive
indices and α11 and α12 values are taken from [16]). For
the crystal of class , we obtain symmetric depen-
dences χt(ϕ) and Kt(ϕ), i.e., χt(–ϕ) = χt(ϕ) and
Kt(–ϕ) = Kt(ϕ), at ψ' = ψmax = arctan(–α12/α11)/2
and antisymmetric dependences χt(–ϕ) = –χt(ϕ)
and Kt(–ϕ) = –Kt(ϕ) at ψ' = ψ0 = arctan(α11/α12)/2.
If the plate is cut parallel to the [100] direction
(ψ' = 0°), the α11 and α12 values can be calculated
from the formulas (for p polarization)

(18)
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Similar expressions can be written for the s polariza-
tion using (16).

Thus, in the crystals of classes 2m (Fig. 7) and 
(Fig. 8), the polarization azimuths and ellipticities of
the transmitted light generally differ at positive and
negative angles of incidence.

Manifestation of Optical Activity Near the Isotropic Point

Some crystals may have an isotropic point: the
refractive indices of the ordinary and extraordinary
waves coincide at a certain wavelength. Hobden found
the optical activity for classes 2m (AgGaS2, [2]) and

 (CdGa2S4, [3]) in specifically these crystals. Crys-
tals with an isotropic point were theoretically consid-
ered in detail in [6–8].

Let us consider the polarization azimuths χt of the
transmitted light in the crystals of classes 2m and  in
the presence of isotropic point. Figure 9a shows the
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Fig. 7. Dependences of the (a) polarization azimuth χt and (b) ellipticity Kt of the transmitted light for the KH2РО4 crystal (class
2m) and p-polarized incident light on the angle of incidence ϕ and angle ψ' between the [100] direction and the plate surface;

d = 268.7 μm, λ = 0.589 μm, ni = 1, and nt = 1. 
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dependence χt(ϕ, λ) for the CdGa2S4 crystal of class 
(the plate is cut parallel to the [010] direction (ψ' =
90°),and Fig. 9b shows the dependences χt(ϕ) at the
isotropic point (λ = 0.4907 μm) at ψ' = 90° and ψ' =
45°. The dispersions of the refractive indices and the
α11 and α12 values of the CdGa2S4 crystal, used in the
calculations, are taken from [16]. The χt(ϕ) value at
the isotropic point becomes much larger than that in
the presence of birefringence, and Kt(ϕ) tends to zero.
The dependences χt(λ) (Fig. 10) have a peak in the
vicinity of the isotropic point; however, the height of
this peak differs for positive and negative angles of
incidence of light (Figs. 10a, 10b).

CONCLUSIONS

Analytical expressions for the polarization azi-
muths χr,t and ellipticities Kr,t of reflected (r) and
transmitted (t) light waves as functions of the angle of
incidence were obtained for crystals of classes 2m
and . The influence of the diagonal (α11) and off-

4

4
4

diagonal (α12) components of the gyration tensor on
the polarization of the reflected and transmitted lights
was considered. For the plate cut perpendicular to the
optical axis the α12 value does not affect the polariza-
tion azimuths χt and ellipticities Kt of the transmitted
light but influences the corresponding values χr and Kr
for the ref lected light: we obtained χr ≠ 0 only at
α12 ≠ 0. If the plate is cut parallel to the optical axis,
the χr,t and Kr,t values differ at positive and negative
angles of incidence of light for a nonzero α12 value.
This is especially pronounced for the transmitted light
because α11 and α12 make a comparable effect on the
result in this case. For the reflected light, the influence
of α12 is much lower and proportional to the product of
the α12 value and the birefringence. 

For the crystals of class 2m, the dependences of χt
and Kt on the angle of incidence for a plate cut parallel
to the optical axis have radically different forms at dif-
ferent orientations of the second-order axes and the
symmetry planes with respect to the plate surface. If a
plate is cut parallel to one of the second-order symme-

4

Fig. 9. (a) Dependence χt(ϕ, λ) for the CdGa2S4 crystal of class  having the isotropic point for the plate cut parallel to the [010]
direction (ψ' = 90°) and (b) dependence χt(ϕ) at the isotropic point λ = 0.4907 μm: (1) ψ' = 90° and (2) ψ' = 45°; d = 1000 μm,
ni = 1, and nt = 1. 
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try axes, the χt and Kt values do not change with a
change in the sign of the angle of incidence. If the
plate is cut parallel to one of the symmetry planes, the
χt and Kt values are opposite at positive and negative
angles of incidence. In the other cases, χt and Kt differ
in magnitude with a change in the sign of the angle of
incidence. For the crystal of class , all these situa-
tions may occur at different orientations of the plate
with respect to the [100] and [010] crystallographic
directions. At the isotropic point, values of rotation of
the plane of polarization are different at positive and
negative angles of incidence.
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