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Abstract—The dynamic diffraction of an X-ray wave in a crystal with a third-order nonlinear response to
external field strength has been theoretically investigated. General equations for the wave propagation in crys-
tal and nonlinear Takagi equations for both ideal and deformed crystals are derived. Integrals of motion are
determined for the nonlinear problem of dynamic diffraction. The results of the numerical calculations of
reflectivity in the symmetric Laue geometry for an incident plane wave and the intensity distributions on the
output crystal surface for a point source are reported as an example.
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INTRODUCTION
The X-ray dynamic diffraction in crystals is

described by the Takagi equations [1], which include
the linear part of crystal susceptibility. In view of the
development of high-intensity synchrotron X-ray
sources and X-ray free-electron lasers, the theoretical
study of the dynamic diffraction with allowance for the
nonlinearity of crystal susceptibility becomes urgent.
Supplementing the linear polarization of crystal with
the third-order nonlinear part, one can derive the
propagation equations of dynamic diffraction by anal-
ogy with the derivation of the Takagi equations. One
can consider crystal an isotropic medium with a rather
high accuracy, as in the linear theory. In this case, the
expression for the third-order nonlinear polarization
is simplified. Note that the second-order nonlinear
polarization is completely absent in centrosymmetric
crystals. In noncentrosymmetric crystals, the influ-
ence of the second-order nonlinearity, i.e., the sec-
ond-harmonic generation (SHG), is significant when
certain phase-matching conditions are fulfilled. If not
(as will be assumed below), the SHG effect is insignif-
icant and can be neglected. Thus, there is only third-
order nonlinearity of susceptibility in the case under
consideration. These statements hold true for the
model accepted in the theory of visible light optics [2].
Two models are considered in the literature on the
nonlinear interaction of X rays with crystals; one of
them was noted above, and the other is the model of
cold plasma formed in a crystal by an ultrashort X-ray
pulse of ultrahigh intensity passing through it. Appar-
ently, the cold-plasma model is valid for media com-
posed of light elements, where scattering occurs
mainly from electrons weakly bound with atoms. For
media containing atoms with an intermediate serial
number or atoms of heavy elements, scattering is

mainly from electrons of inner atomic shells; thus, the
theory of scattering from inner atomic shells is more
appropriate in this case [3]. In addition, it is reason-
able to consider the cold-plasma model at very high
intensities of incident radiation, when the contribu-
tion from the nonlinear part of susceptibility to scat-
tering becomes equal to the contribution made by the
linear part. The linear two-wave second-harmonic
diffraction was considered in [4] within the cold-
plasma model. The reverse dynamic influence of the
two newly formed Bragg waves on the primary wave
was disregarded. The kinematic Bragg diffraction of an
intense plane X-ray wave under conditions of second-
order nonlinearity with parametric conversion of an
incident X-ray photon into an X-ray photon of lower
frequency and a UV photon was considered in [5, 6]
without application of the cold-plasma model. To
implement this process, phase-matching conditions
also must be fulfilled. The direct transmission of an
intense X-ray beam through a crystal under the condi-
tions of third-order crystal response to the radiation
field strength was analyzed in [7] in terms of the cold-
plasma model.

At low intensities, it is only the linear part of sus-
ceptibility that contributes to scattering. With a subse-
quent gradual increase in the incident radiation inten-
sity, the nonlinear susceptibility, as well as the linear
part of susceptibility, is formed due to the scattering
from inner-shell electrons. This scattering for intensi-
ties below critical (at which the contribution of the
nonlinear susceptibility to scattering becomes equal to
the contribution of the linear susceptibility) can phys-
ically be described using the model known in optics.
In this study we use the conventional model known in
the visible light optics [2] to theoretically analyze the
two-wave dynamic diffraction of X-ray waves in a
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crystal under the conditions of third-order response of
the crystal to the radiation field strength.

PROPAGATION EQUATIONS
Let us consider the dynamic diffraction of an X-ray

wave in a nonmagnetic perfect crystal without free
charges under conditions of a third-order response of
the crystal to the electric field strength. The crystal is
assumed to be isotropic, as in most cases of linear the-
ory. The second-order nonlinear susceptibility is
absent in centrosymmetric crystals, and, if the phase-
matching conditions are not fulfilled, the influence of
the second-order nonlinearity can be neglected. We
denote the electric field strength as , where  is
the radius vector of the observation point and t is time.
The electric field satisfies the wave equation [2]:

, (1)

where c is the speed of light,  F/m is

the permittivity of free space, and  is the polar-
ization of crystal. Equation (1) must be supplemented
with the equation for induction :

. (2)
In the case of monochromatic radiation with a fre-
quency ω, the electric field, polarization, and induc-
tion can be presented in the form:

 (3)

where c.c. is a complex conjugate value. Substituting
(3) into (1) and using (2), we obtain

, (4)

where . Equation (4) is a nonlinear analog of
the corresponding equation of the standard linear the-
ory of dynamic diffraction [8, 9].

It is convenient to represent polarization as a sum
of linear and nonlinear parts:

. (5)
The polarization and electric field are related as fol-
lows [2]:

 (6)

where  is the linear part of susceptibility (it is
a scalar in an isotropic medium);  is the ten-
sor of third-order nonlinear susceptibility and indices
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 acquire values of 1, 2, 3, which correspond to
the coordinate axes , respectively (repeating
indices imply summation over all values); and  indi-
cates a complex conjugate value. In the general case,
the tensor of the nonlinear part of susceptibility has 81
components; however, only 21 nonzero component
remain for an isotropic medium because of symmetry;
two of these components are independent, and the
others can be presented as [2]

, (7)

where δ is the Kronecker delta.
Substituting (7) into the second equation of (6), we

find

, (8)

where ;  is omit-
ted in the arguments for brevity.

Within the classical susceptibility theory, the elec-
trons of crystal atoms behave like nonlinear oscilla-
tors: they oscillate under an electric field to induce an
additional current and the corresponding polarization
[2]. Let us denote the maximum resonance frequency
of the oscillators as . In most cases the following
inequality is fulfilled: ; i.e., the external-
field frequency greatly exceeds the resonance frequen-
cies of the electrons of the medium [10]. In this case
one can neglect the oscillator resonance frequency in
the denominators of the final expressions for suscepti-
bilities (as if scattering occurred from free electrons),
as well as the oscillator damping coefficient. Within
this approximation, according to [2],

 (9)

where ;  is the elec-
tron concentration;  is the elementary charge;  is
the electron mass; and  is a phenomenological con-
stant, to which the third-order nonlinear part of the
restoring force on electron is proportional. Let us esti-
mate the third-order susceptibility based on quantum
mechanics. The electron perturbation Hamiltonian in
the radiation field has the form

, (10)

where  is the vector potential of the radiation field.
Then, to estimate the third-order susceptibility, we
will consider the first term in (10). The current density
operator j in the radiation field is known to have the
form [11, 12]:
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 (11)

where  is the operator of electron canonical
momentum,  is Planck’s constant,  is the electron
coordinate operator, and  is the Dirac delta. If the
electron wave function u is presented in the form of an
asymptotic series u = u(0)+u(1)+... in small perturba-
tion powers, the expression for the mean quantum-
mechanical current density will contain terms that are
linear, quadratic, third-order, etc., with respect to per-
turbation. Let us consider the third-order terms with
respect to the perturbation. The third-order current
perturbation can be written as

(12)

Here, the ellipsis indicates other terms that are of the
third order with respect to perturbation. Generally,
matrix elements (12) are considered within the dipole
approximation, both for optical radiation and for X-
ray waves [13]. In this approximation, the perturbation
Hamiltonian can be written as , where

 is the electron dipole moment operator [2].
Then, the mean quantum-mechanical value of the
third-order correction to the dipole moment of one
electron has the form

. (13)

The total dipole moment of unit volume is obtained as
a result of multiplying (13) by the electron concentra-
tion. A detailed calculation for optical waves was per-
formed in [2]. Based on the general formula derived in
[2] (for example, formulas (4.3.12)‒(4.3.14) in [2]),
the third-order susceptibility of an isotropic medium
in the case of low frequencies with respect to the reso-
nance frequencies of the electrons of the medium was
estimated to be

, (14)

where  is the characteristic resonance frequency of
the electrons of the medium and  is the characteristic
atomic radius, which can be assumed to be equal to the
Bohr radius:  m. For X-ray waves, the
external field frequency generally exceeds the reso-
nance frequencies of the electrons of the medium.
Using the same formulas [2] for the case where the fre-
quency of incident X-ray waves is much larger than the
resonance frequencies, we obtain the estimate
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which contains, in contrast to (14), the frequency of 
incident X rays instead of the resonance frequency of 
the medium. Having compared (15) with (9), one can 
assign a certain value to the phenomenological con-

stant.

Using the values  ≈  m–3 and 
1019 s‒1, we obtain the following estimate from (15):

 ≈  m2/V2. The quantum-mechan-
ical calculation of the third-order susceptibility [3]
yielded an estimate for light elements (with a serial
number Z < 10) far from the resonance frequencies:

 ≈  m2/V2. It was also concluded in
[3] that, in the range of X-ray frequencies far from res-
onance, the third-order susceptibility from bound
electrons can be neglected for media with light atoms.

Let us denote  =  = , where  is the
critical electric field strength of the incident radiation
at which the contribution of the third-order suscepti-
bility becomes of the same order of magnitude as the
contribution of linear susceptibility and  is the cor-
responding critical intensity. According to (9) and
(15), we have

 (16)

Let us now estimate the incident-wave peak power at
which the contribution of the third-order nonlinear
susceptibility to propagation equation (4) becomes
equal to the contribution of the linear susceptibility.
The incident-wave peak power can be written as  =

, where  is the modulus of the time-aver-
aged Poynting vector (energy density f lux),  is the
incident-wave cross-sectional area, and the super-
script  indicates the incident wave. Proceeding from
formula (15) and the estimate  m2/V2

(based on this formula), we obtain  ≈  ≈

 W/m2. If an incident wave has sizes of 100 μm
in the diffraction plane and 10 nm in the direction per-
pendicular to this plane,  m2 and the esti-
mated power is  GW, a value that can be
attained in X-ray free-electron lasers, according to [3].
Note that the above estimate is the upper limit of
application of the perturbation theory, whereas non-
linear effects can be observed at much lower (one or
even two orders of magnitude) incident radiation
intensities, both in the case of plane waves and in
experiments with a point source. Therefore, there is no
need to start consideration with the plasma model; it is
reasonable to apply it at intensities close to critical or
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higher. With a gradual increase in the incident radia-
tion intensity, the nonlinear susceptibility, as well as
the linear part of susceptibility, arises due to the scat-
tering from inner-shell electrons. At intensities below
critical, this scattering can physically be described
using the model known in optics; this description will
be performed below.

The electron concentration in a homogeneous
medium is independent of the observation-point
coordinates, whereas the electron concentration in a
crystal is a three-dimensional periodic function of
coordinates. Therefore, both linear and nonlinear
parts of susceptibility in a crystal are three-dimen-
sional periodic functions of coordinates. Note that,
according to (10), the classical theory of susceptibility
yields the following result:  = ; i.e.,
21 nonzero components of the third-order susceptibil-
ity tensor in an isotropic medium are expressed in
terms of one component, the role of which can be
played by . In this case, as follows from for-
mula (10) and definition of A and B, we have

, , and . Generally, the
quantum-mechanical theory may lead to different val-
ues of susceptibilities:  ≠  [2].

Below we introduce the designation ;
within the classical theory of susceptibility, .

NONLINEAR TAKAGI EQUATIONS

According to (9), ,  are three-dimensional
periodic functions; they can be expanded in Fourier
series in vectors g of crystal reciprocal lattice [8, 9]. At
the same time, as in the linear theory, the electric field
strength can be presented as a series of quasi-planar
waves [1]. Thus, we arrive at

 (17)

where  is the vector of the crystal reciprocal lattice
and , where  is the carrier wave vector
of the transmitted wave (this vector is chosen arbi-
trarily [1]); . Amplitudes  are slowly varying
(at atomic distances) functions of coordinates,
whereas the exponentials are microscopic values and
change rapidly at distances on the order of atomic. Let
us rewrite (4) in the form
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Substituting (17) into (18) and carrying out a deriva-
tion similar to the derivation of the Takagi equations
[1] in the linear theory, we arrive at nonlinear Takagi
equations. Let us recall the key points of this deriva-
tion. Only the first derivatives of amplitudes are
retained in the first term of (18). In the second term of
(18), it is taken into account that, in view of the small-
ness of susceptibility in the range of X-ray frequencies
(it is on the order of ),  is also small
(the electric field is almost transverse, see (2)). Based
on this circumstance, all derivatives of amplitudes are
rejected in the second term and only rapidly oscillating
exponentials are differentiated. Thus, we obtain an
infinite system of equations:

 (19)

Here,

 (20)

and  is the component of vector  that is perpen-

dicular to  and equal to . For an
absorbing crystal, susceptibilities are assumed to be
complex values, the imaginary parts of which deter-
mine the absorption in the crystal. For a deformed
crystal, the following transition is implemented in Eq.
(19): , , , ,

, where  is the displacement vector of
atoms from their equilibrium positions in an ideal
crystal [1]. System of equations (19) is the system of
nonlinear Takagi equations.

Let us consider the two-wave approximation, in
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reciprocal lattice propagate in the crystal. The Oy axis
is assumed to be perpendicular to the diffraction
plane, where s0 and sh are coordinates in the propaga-
tion directions of the transmitted and diffracted waves,
respectively. It is expedient to choose carrier wave vec-
tor  in system (19) to be oriented exactly at the
Bragg angle with respect to the reflecting planes; in
this case,  = . The two-wave-diffraction
equations can be simplified by introducing amplitudes
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antiparallel to diffraction vector h. Then, the terms
with factors  can be rejected. System (19) takes
the form

 (21)

Here, μ is the linear absorption coefficient of the crys-
tal. In the case of nonabsorbing crystal, ,

,  for arbitrary . With allowance for
this fact, multiplying the first and second equations of
system (21) by , , respectively, and the equations
complex-conjugate to them by ,  and summing
the four thus obtained equations, we arrive at

. (22)

Equation (22) is considered in the linear theory [7]; it
describes the energy f lux conservation law for a non-
absorbing crystal. Let us introduce, as in [7, 8], unit
polarization vectors:  (oriented parallel to the 
axis), , and , where  and 
are the unit vectors in the propagation directions of the
transmitted and diffracted waves, respectively.

If the incident wave has both σ-, and π-polarized
components, as follows from (21), due to the presence
of nonlinear terms, both polarizations are interrelated
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tions propagate) and their propagation equations are
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π-polarized component, system of equations (21)
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The reason is as follows. In the first case, according to
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the boundary conditions, the transmitted-wave ampli-
tude is zero on the crystal surface, and, under this
boundary condition, system (21) allows for zero solu-
tion for the amplitudes of π-polarized component.
Just the same, the amplitudes of σ-polarized compo-
nents are zero in the second case. Thus, system of
equations (21) is reduced to the following system for
an incident σ-polarized wave:

 (23)
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Systems of equations (23) and (24) show that,
instead of constant values of susceptibilities responsi-
ble for scattering in the linear approximation, the sus-
ceptibility coefficients in the nonlinear theory are
modulated by diffracted-wave amplitudes in a crystal.
These systems of equations can be used to determine
the amplitudes by numerical methods for an incident
wave of an arbitrary form in both ideal and deformed
crystals.

INCIDENT PLANE WAVE:
SYMMETRIC LAUE CASE

Let us consider the diffraction of an incident plane
σ-polarized wave in an ideal crystal in the symmetric
Laue case (the reflecting planes are perpendicular to
the input crystal surface). We introduce an  coor-
dinate system, where the  axis is directed into the
crystal bulk perpendicular to the input surface, the 
axis lies in the diffraction plane and is antiparallel to
the diffraction vector, and the Oy axis is perpendicular
to the diffraction plane. The incident-wave electric
field on the input crystal surface ( ) can be written as

, (25)

where  is a constant amplitude and  is the angle
between the incident-wave propagation direction and
the reflecting planes. Let us denote the deviation from
the exact Bragg direction as . In this case,
the solution to (23) can be presented as

, (26)

where parameter p must be determined from the
boundary conditions. The boundary conditions on the
input surface (z = 0) have the same form as in the lin-
ear theory, i.e.,

 (27)

It follows from (25)–(27) that

 (28)

Substituting (26) into (23), one can write the propaga-
tion equations as
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 (29)

In this case, the energy-flux conservation law for a
nonabsorbing crystal (22) takes the form

, (30)

where  is the incident-wave intensity. The value I of
the first integral was obtained using boundary condi-
tions (28). Multiplying the first and second equations
of (29) by  and , respectively, and the
first and second equations of the complex-conjugate
system by  and , respectively, and
summing the thus derived four equations, we obtain
the second integral of motion in a nonabsorbing crystal:

 (31)

System of equations (29) can efficiently be used to find
numerically both exact plane-wave solutions and
amplitudes for an ideal crystal.

EXAMPLE
As an example, we will consider the following con-

ditions: Si(220) reflection, incident radiation wave-
length Å (17.46 keV), symmetric Laue case,
σ-polarized wave, and extinction length corresponding
to linear susceptibility:  = 36.6 μm.
The values of the real and imaginary parts of linear
susceptibility are taken from [8]. Based on formulas
(8), (9), (15), and (16), we assume that  =

 for the real parts of the third-order sus-

ceptibility and that  =  for the
imaginary parts (this assumption is in correspondence
with the ratio of these values for the linear part of sus-
ceptibilities) and substitute these values into the sys-
tem of equations (23) and (29). Then the wave ampli-
tudes in the crystal are normalized by ampli-
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tude  and the intensities are normalized by
intensity . The same values will be used to nor-
malize, respectively, amplitude  and intensity  of
the incident wave. Let us solve numerically system
(29) for a plane wave incident on a crystal at the exact
Bragg angle and having intensity I = 0.03 (in 
units). This can be done using an algorithm of any
standard (providing necessary accuracy) numerical
method for solving systems of ordinary differential
equations. The computational burden is rather small.
The numerically obtained dependence of reflectivity

 (32)

on  for a crystal with thickness  is shown in
Fig. 1. It can be seen in this figure that the field in the
crystal, as in the case of linear polarization, is oscilla-
tory and has a corresponding nonlinear extinction
length. In the case of linear polarization, the reflectiv-
ity on the output crystal surface would be zero (mini-
mum). However, since the nonlinear extinction length
differs from linear, the reflectivity has no minimum. It
can also be seen in Fig. 1 that the nonlinear extinction
length exceeds linear, which is explained by the renor-
malization (reduction) of the effective susceptibility
(responsible for scattering in crystal). This follows
from system of equations (28), where  and  have
opposite signs. Calculations show that the increase in
the extinction length is significant even for the inci-
dent radiation intensity equal to 0.01; in addition, this
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increment is accumulated with an increase in the crys-
tal thickness. Thus, to observe the plane-wave nonlin-
ear pendulum effect, one can use intensities lower
than critical by two orders of magnitude.

In the case of inhomogeneous σ-polarized wave
incident on a crystal, system (23) must be numerically
solved. We will use the half-step algorithm of numeri-
cal integration of Takagi equations, which is well
known in the linear theory [9, 14], with only one dif-
ference: according to (23), in each step of calculating
amplitudes, one has effective susceptibilities modu-
lated by the amplitudes of transmitted and diffracted
waves at the output of a given layer instead of constant
values of susceptibilities; the values calculated at the
input of this layer are used for these amplitudes. The
calculated intensity distribution

 (33)

of the diffracted wave on the output surface ( ),
as a function of , for the same conditions as in the
previous example but for a point source located on the
crystal surface (Kato’s case [8, 9]) and for  is
shown in Fig. 2. In linear theory, this dependence is
symmetric with respect to x. As can be seen in Fig. 2,
this dependence becomes asymmetric in the nonlinear
theory, which is explained by the difference in the
reflectivities of rays with different deviations from the
exact Bragg direction. Similar calculations show that
this asymmetry is pronounced for incident-wave
intensities of 0.03 or higher. Therefore, nonlinear
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Fig. 1. Pendulum oscillations of the reflectivity of third-
order nonlinear plane-wave dynamic diffraction (numeri-
cal calculation).
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Fig. 2. Intensity distribution on the output crystal surface
for third-order nonlinear dynamic diffraction in the case of
a point source (numerical calculation).
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dynamic effects for a point source can be observed for
intensities two orders of magnitude lower than critical.

CONCLUSIONS
We theoretically considered the two-wave dynamic

diffraction of an X-ray wave in an ideal crystal with a
nonlinear third-order response to electric field
strength and presented a nonlinear analog of Takagi
equations: a system of propagation equations for trans-
mitted and diffracted waves in both ideal and
deformed crystals. Integrals of motion in a nonabsorb-
ing crystal were obtained in the symmetric Laue case
for a plane wave incident on a crystal. These propaga-
tion equations can be used to efficiently determine
amplitudes numerically. As an example, we presented
the results of a numerical calculation of the reflectivity
(pendulum effect) of nonlinear dynamic diffraction
for a plane wave incident on a crystal at the exact
Bragg angle and for a point source located on the crys-
tal surface. The calculations showed that dynamic
effects can be observed at intensities 1‒2 orders of
magnitude lower than critical.

Furthermore, it will be interesting to solve exactly
the presented nonlinear equations, numerically inves-
tigate other dynamic effects in the nonlinear mode
(such as the Borrmann effect, rocking curves, and
influence of asymmetry on the nonlinear diffraction),
analyze the nonlinear diffraction in the Bragg geome-
try, etc.

Corresponding experiments can be performed on
X-ray synchrotron radiation sources, in particular,
using X-ray free-electron lasers.
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